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1. Introduction

1.1. Starting point: the de Rham complex

In vector-analytic notation, the L2 de Rham complex in a bounded domain Ω ⊂ R3

reads1

R L2(Ω) L2(Ω) L2(Ω) L2(Ω) {0}.ıR grad curl div π{0}
(1.1)

It involves unbounded first-order differential operators inducing the domain Hilbert com-
plex

R H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω) {0},ıR grad curl div π{0}
(1.2)

where customary notation for Sobolev spaces equipped with graph inner products was 
adopted.2 Taking the closure of compactly supported functions in these Sobolev spaces 
and tagging the resulting closed subspaces with ‘ ◦ ’ on top, we obtain a subcomplex

{0} H̊1(Ω) H̊(curl,Ω) H̊(div,Ω) L2(Ω) {0},ı grad curl div 0 (1.3)

giving rise to the following structure:

H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)
∪ ∪ ∪ ∪

H̊1(Ω) H̊(curl,Ω) H̊(div,Ω) L2(Ω).

grad curl div

grad curl div

(1.4)

1.2. The de Rham complex and trace operators

The focus of this work is on trace operators. For the de Rham complex above, those 
are usually introduced as linear mappings of functions in Ω to functions on Γ = ∂Ω. Let 
us confine ourselves to Lipschitz boundaries Γ. In this case, the spaces Hs(Γ), 0 ≤ s ≤ 1, 
can be defined by localization and pullback under charts [30, Ch. 3] and, subsequently, 
by duality for −1 ≤ s < 0: H−s(Γ) = (Hs(Γ))′. Local charts can also be used to 
(almost everywhere on Γ) introduce surface differential operators, for instance the surface 
gradient gradΓ : H1(Γ) → L2

t (Γ) mapping into tangential surface vector fields and 
its rotated version, the vector-valued surface rotation curlΓ [33, Sect. 2.5]. By duality 

1 Throughout, we use special arrows to indicate properties of mappings: ‘�’ for surjectivity, ‘↪→’ for 
injectivity and ‘���’ for isometry.
2 For instance, the spaces H1(Ω), H(curl, Ω) and H(div, Ω) are discussed in [21]. They are equipped with 

the obvious graph norms making the operators involved in the domain Hilbert complex trivially bounded. 
In the Euclidean setting, we distinguish vector quantities from scalars by using a bold font.
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and interpolation these operators can be extended to Hs(Γ), −1 ≤ s < 1, see [14, 
Sect. 3]. Duality also yields the scalar-valued surface rotation curlΓ : L2

t(Γ) → H−1(Γ) as 
the adjoint of curlΓ.

The classical trace operators are obtained by extending the restriction operators3

γu := u
∣∣
Γ (pointwise trace), (1.5a)

γtu := n × (u
∣∣
Γ × n) (pointwise tangential component trace), (1.5b)

γnu := u
∣∣
Γ · n (pointwise normal component trace), (1.5c)

to continuous and surjective mappings from the Sobolev spaces involved in the domain 
de Rham complex to so-called trace spaces whose characterization is the main assertion 
of the standard trace theorems for a Lipschitz domain Ω:

γ : H1(Ω) → H1/2(Γ) [25, Thm. 4.2.1], (1.6a)

γt : H(curl,Ω) → H−1/2(curlΓ,Γ) [14, Thm. 4.1], (1.6b)

γn : H(div,Ω) → H−1/2(Γ) [21, Thm. 2.5, Cor. 2.8]. (1.6c)

The classical trace spaces can be defined based on surface differential operators as

H1/2(Γ) :=
{
φ ∈ H−1/2(Γ) | curlΓ φ ∈ H−1/2

t (Γ)
}
, (1.7a)

H−1/2(curlΓ,Γ) :=
{
φ ∈ H−1/2

t (Γ) | curlΓ φ ∈ H−1/2(Γ)
}
, (1.7b)

where H−1/2
t (Γ) designates the dual of the range of the tangential trace applied to 

H1(Ω). The mathematical theory of the pointwise trace γ is well established, cf. [30, 
Chap. 3]. That for the normal component trace γn is carefully developed in [21, Chap. 
1]. Regarding the tangential trace γt in (1.6b) and the trace space (1.7b), we refer to the 
comprehensive and profound analysis of [14], based on the earlier works [1,12,13].

These important results were generalized to arbitrary dimensions by Weck in [45]
using the framework of differential forms, where pullback by the boundary’s inclusion 
map provides a unified description and generalization of the traces (1.6). A similar char-
acterization of the range of the boundary restriction operator for Lipschitz subdomains 
of compact manifolds is given in [31], where a boundary de Rham complex involving 
surface differential operators is also studied.

One may wonder whether the structures shining through in (1.7a) and (1.7b) hint at 
a more general pattern governing the structure of trace spaces. Thus, in this article, we 
are going to elaborate this structure in the abstract framework of Hilbert complexes, of 
which the de Rham complex is the best-known representative. Since there is no notion of 
“boundary” in that abstract framework, we have to detach the concept of a trace space 

3 We denote by n ∈ L∞(Γ) the exterior unit normal vector-field on the boundary Γ.
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from the idea of a function space on a boundary. This can be accomplished by adopting 
a quotient-space view of traces.

Let us sketch this idea for the Euclidean de Rham complex. Since the kernels of the 
classical trace operators (1.6a)-(1.6c) are4

N (γ) = H̊1(Ω) := C∞
0 (Ω)

H1(Ω)
[30, Thm. 3.40], (1.8a)

N (γt) = H̊(curl,Ω) := C∞
0 (Ω)3

H(curl,Ω)
[32, Thm. 3.33], (1.8b)

N (γn) = H̊(div,Ω) := C∞
0 (Ω)3

H(div,Ω)
[32, Thm. 3.25], (1.8c)

we immediately conclude that these trace operators induce isomorphisms between the 
classical trace spaces and the quotient spaces:

H1(Ω)/H̊1(Ω) ∼= H1/2(Γ), (1.9a)

H(curl,Ω)/H̊(curl,Ω) ∼= H−1/2(curlΓ,Γ), (1.9b)

H(div,Ω)/H̊(div,Ω) ∼= H−1/2(Γ). (1.9c)

This paves the way for an alternative characterization of trace spaces independent of 
the notion of “function space on Γ”. We remark that the quotient space approach to the 
definition of trace spaces has also proved successful for the de Rham complex in order 
to define traces on sets more complicated than boundaries of Lipschitz domains [16,17].

Classical theory of trace spaces for H1(Ω), H(curl, Ω) and H(div, Ω) also addresses 
duality between trace spaces:

• The L2(Γ) inner product induces a duality between H1/2(Γ) and H−1/2(Γ); cf. [25, 
Chap. 4.2] and [30, Chap. 3].

• The skew-symmetric pairing5

〈u,v〉× :=
∫
Γ

(u × n) · v dσ (1.10)

can be extended from L2(Γ) × L2(Γ) to H−1/2(curlΓ, Γ) × H−1/2(curlΓ, Γ), allowing 
the identification of H−1/2(curlΓ, Γ) with its own dual space, cf. [14,15,32].

The following diagram hints that also the possibility to put trace spaces for the 3D de 
Rham complex into duality is governed by general rules.

4 We write N (T) and R(T) for the kernel/nullspace and range/image space, respectively, of a linear 
operator T.
5 We denote by σ the surface measure on the boundary.
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H1(Ω) H(curl,Ω) H(div,Ω)

H1/2(Γ) H−1/2(curlΓ,Γ) H−1/2(Γ)

grad

γ

curl

γt γn

L2-duality

L2-self duality

(1.11)

1.3. Goals, outline, and main results

There are obvious parallels in the definitions of the different trace spaces and their 
duality relations. One may wonder if this kind of resemblance between the trace spaces 
arises only for the de Rham complex or whether it is already manifest in a more ba-
sic/general setting, of which the de Rham complex is just a prominent specimen. That 
setting is the framework of Hilbert complexes,6 first introduced in [11]. Therefore, the 
guiding question behind this work is:

To what extent can results about traces for the de Rham domain complex be transferred 
to abstract Hilbert complexes?

Of course, abstract Hilbert complexes know neither domains nor boundaries. Therefore, 
as already mentioned above, we cannot expect to arrive at a characterization of trace 
spaces as function spaces on a boundary. Yet, a theory based on the quotient space 
view of trace spaces is feasible. Its development will be pursued in Section 3. There, we 
first propose trace operators induced by “generalized integration by parts formulas” and 
mapping into dual spaces, and then generalize (1.9) to a quotient-space understanding 
of trace spaces.

Next, in Section 4, we shed light on duality relationships between trace spaces and 
find that the observation made in (1.11) is a generic pattern; see Theorem 4.8. This 
even holds in a setting simpler than Hilbert complexes. “Minimal Hilbert complexes” 
will only enter the stage in Section 5 in order to define so-called “surface operators”, 
which are abstract counterparts of the classical surface differential operators such as 
gradΓ and curlΓ. The full structure of Hilbert complexes is exploited starting from 
Section 6. Augmenting it by assumptions about the existence of so-called stable regular 
decompositions (Assumptions B and C), we obtain characterizations of traces spaces, 
in Theorem 6.8 and Theorem 6.9, which reveal that the definitions (1.7a) and (1.7b) of 
classical trace spaces reflect a more general pattern. This paves the way for the key insight 
expressed in Theorem 7.1 that trace spaces and surface operators are the building blocks 

6 For the functional analytic foundations, we refer to parts of the FA-ToolBox from [37, Sec. 2], which is a 
compilation of useful functional analysis results that grew from its use in previous works, cf. [35, Sec. 4.1], 
[36, Sec. 2], [38, Sec. 2.1], [39, Sec. 2.1], [40, 2.2], [37, Sec. 2] and [34, App. 3]. We find the introduction 
in [6, Chap. 4] to be an accessible resource for readers unacquainted with Hilbert complexes, because it 
reviews in detail the material more concisely presented in [8, Sec. 3], cf. [7, Sec. 2] and [11].
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of what we call a trace Hilbert complex, a full-fledged Hilbert complex of unbounded, 
densely defined, and closed operators.

Parallel to its development, we will apply our new abstract theory to the de Rham 
complex in three-dimensional Euclidean space. We hope that this will motivate some 
of the assumptions made on the abstract spaces. The discussion will take the form of 
an ongoing specialization of the definitions and results, set apart from the main line of 
reasoning.
3D de Rham setting I: Traces and integration by parts. The key trace operators and trace spaces associated 
with the Euclidean de Rham complex in three space dimensions have already been introduced in (1.5)
and (1.6). We just want to add the well-known fact that the trace operators (1.6a)-(1.6c) have a close 
link with Green’s formulas

〈γu, γnv〉Γ =
∫
Ω

gradu · v + udiv(v) dx ∀u ∈ H1(Ω), ∀v ∈ H(div,Ω), (1.12a)

〈γtu, γtv〉× =
∫
Ω

curl u · v − u · curl vdx ∀u,v ∈ H(curl,Ω). (1.12b)

On the left, we denoted the duality pairing between H1/2(Γ) and H−1/2(Γ) by 〈·, ·〉Γ, but wrote 〈·, ·〉×
for the skew-symmetric self-duality pairing on H−1/2(curlΓ, Γ), cf. [14, Lem. 5.6].

Finally, we stress that we could have demonstrated the specialization of our results 
also in the setting of general exterior calculus, but refrained from it in the interest of 
readability.

List of symbols

Ak =̂ closed densely defined unbounded operators Section 2.2, (2.5a)
A∗
k =̂ Hilbert space adjoint of Ak Section 2.2, (2.5b)

Åk =̂ closed densely defined unbounded operator Åk ⊂ Ak Section 2.3, (2.8a)
Å∗
k =̂ Hilbert space adjoint of Åk Section 2.3, (2.8b)

RD(Å∗
k) =̂ Riesz isomorphism D(Å∗

k) → D(Å∗
k)′ Section 3.3, (3.12)

Tt
k =̂ primal Hilbert trace D(Ak) → D(Å∗

k)′ Section 3.1, (3.3)
Tn
k =̂ dual Hilbert trace D(Å∗

k) → D(Ak)′ Section 4.1, (4.2)
T (Ak) =̂ quotient space D(Ak)/D(Åk) Section 3.2, (3.23)
T (Å∗

k) =̂ quotient space D(Å∗
k)/D(A∗

k) Section 4.1, (4.8)
Itk =̂ isometric isomorphism D(Ak) → R(Tt

k) Section 3.2, (3.39)
Ink =̂ isometric isomorphism D(Å∗

k) → R(Tn
k ) Section 4.1, (4.19)

〈〈·, ·〉〉k =̂ duality pairing Section 4.2, (4.24b)
Kk =̂ isometric isomorphism induced by 〈·, ·〉k Section 4.2, (4.26)
Pt
k =̂ orthogonal projection D(Ak) → D(Å)⊥ Section 3.1, (3.28)

Pn
k =̂ orthogonal projection D(Å∗

k) → D(A∗
k)⊥ Section 4.1, (4.12)

πt
k =̂ canonical quotient map D(Ak) → T (Ak) Section 3.1, (3.28)

πn
k =̂ canonical quotient map D(Å∗

k) → T (Å∗
k) Section 3.1, (4.12)
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W+
k =̂ dense inclusion W+

k ↪→ D(Ak) and/or W+
k ↪→ D(Å∗

k−1) Section 6.1, (6.1)
W−

k =̂ dual space (W+
k )′ Section 6.1, (6.7)

W̊n,+
k =̂ intersection space D(A∗

k−1) ∩W+
k = N (Tn

k−1) ∩W+
k Section 6.3, (6.32)

W̊t,+
k =̂ intersection space D(Åk) ∩ W+

k = N (Tt
k) ∩ W+

k Section 6.3, (6.32)
Tn,+

k =̂ quotient space W+
k /W̊n,+ Section 6.4, (6.41b)

Tt,+
k =̂ quotient space W+

k /W̊t,+ Section 6.4, (6.41a)
Tn,−

k =̂ dual space (Tn,+
k )′ Section 6.4, (6.41b)

Tt,−
k =̂ dual space (Tt,+

k )′ Section 6.4, (6.41a)
Dt

k =̂ surface operator (Å∗
k+1)′ : D(Å∗

k)′ → D(Å∗
k+1)′ Section 5.1, (5.4a)

Dn
k =̂ surface operator A′

k−1 : D(Ak)′ → D(Ak−1)′ Section 5.1, (5.4b)
St
k =̂ surface operator πt

k+1 Ak : T (Ak) → T (Ak+1) Section 5.2, (5.23)
Sn
k+1 =̂ surface operator πn

k Å∗
k+1 : T (Å∗

k) → T (Å∗
k−1) Section 5.2, (5.23)

Ŝt
k =̂ surface operator πt

k+1 Ak : Tt,+
k+1 → T (Ak+1) Section 6.4 (6.44)

Ŝn
k =̂ surface operator πn

k Å∗
k+1 : Tn,+

k+1 → T (Å∗
k−1) Section 6.4, (6.44)

D̂t
k =̂ surface operator (Ŝn

k+1)′ : T (Å∗
k)′ → Tn,−

k+2 Section 6.4, (6.46)
D̂n

k =̂ surface operator (Ŝt
k)′ : T (Ak+1)′ → Tt,−

k Section 6.4, (6.46)

2. Hilbert complexes

2.1. Operators on Hilbert spaces

In this article, both bounded and unbounded linear operators take center stage.7 We 
distinguish them using the following notation. Let X and Y be two Hilbert spaces 
equipped with the inner products (·, ·)X and (·, ·)Y, respectively. We will consistently 
write A : D(A) ⊂ X → Y to indicate that A is regarded as an unbounded linear operator 
from X to Y with domain D(A), whereas we mean by A : X → Y that A is viewed as a 
bounded operator from X to Y defined on the whole space X.

Recall that the difference between A : D(A) ⊂ X → Y and A : D(A) → Y comes 
from whether the topology of the subspace D(A) ⊂ X is given by the norm of X or 
the graph norm induced by the inner product (x1, x2)D(A) := (x1, x2)X + (Ax1, Ax2)Y
∀x1, x2 ∈ D(A).

An unbounded operator A : D(A) ⊂ X → Y is said to be closed if and only if its 
domain D(A) is a Hilbert space when endowed with the graph norm, cf. [6, Prop. 3.1]. 
It is densely defined if D(A) is a dense subset of X. The kernel and range of A, whether 
it is bounded or not, will be denoted N (A) and R(A), respectively.

Topological dual spaces will be tagged with prime, e.g. X′. We use angle brackets 
for duality pairings, e.g. 〈φ, x〉X′ , φ ∈ X′, x ∈ X. Accordingly, the operator dual to a 
bounded linear operator A : X → Y is a bounded operator A′ : Y′ → X′.

7 Standard references concerning bounded and unbounded linear operators are [28, Chap. 3] and [46, 
Chap. 7]. We also particularly recommend [6, Chap. 3], [10, Chap. 1-6] and [42, Chap. 6-8].
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The Hilbert space adjoint of A : D(A) ⊂ X → Y is written A∗ : D(A∗) ⊂ Y → X. 
Recall that it is the unbounded linear operator satisfying

(A∗ y,x)X = (y,Ax)Y ∀y ∈ D(A∗),∀x ∈ D(A), (2.1)

whose domain D(A∗) consists of all y ∈ Y for which the linear functional D(A) → R

defined by x 
→ (y, Ax)Y is continuous in the X norm, i.e. for every y ∈ D(A∗), ∃Cy > 0
such that |(y, Ax)Y| ≤ Cy‖x‖X, ∀x ∈ D(A). If A is closed and densely defined, then A∗

is also closed and densely defined [6, Prop. 3.3]—in which case A∗∗ = A.
We write Å ⊂ A and say that an unbounded linear operator A : D(A) ⊂ X → Y is an 

extension of another unbounded linear operator Å : D(Å) ⊂ X → Y when D(Å) ⊂ D(A)
and Ax◦ = Åx◦ for all x◦ ∈ D(Å).
3D de Rham setting II: Differential operators. We refer to [6, Chap. 3] for the following mappings properties. 
The linear differential operators

grad :H1(Ω) ⊂ L2(Ω) → L2(Ω), (2.2a)

curl :H(curl,Ω) ⊂ L2(Ω) → L2(Ω), (2.2b)

div :H(div,Ω) ⊂ L2(Ω) → L2(Ω), (2.2c)

are densely defined and closed unbounded linear operators. They are extensions of

˚grad : H̊1(Ω) ⊂ L2(Ω) → L2(Ω), (2.3a)

˚curl : H̊(curl,Ω) ⊂ L2(Ω) → L2(Ω), (2.3b)

d̊iv : H̊(div,Ω) ⊂ L2(Ω) → L2(Ω). (2.3c)

The L2 Hilbert space adjoints of (2.2a)-(2.2c) are

grad∗ = −d̊iv : H̊(div,Ω) ⊂ L2(Ω) → L2(Ω), (2.4a)

curl∗ = ˚curl : H̊(curl,Ω) ⊂ L2(Ω) → L2(Ω), (2.4b)

div∗ = − ˚grad : H̊1(Ω) ⊂ L2(Ω) → L2(Ω), (2.4c)

respectively. Then, the adjoint operators of (2.3a)-(2.3c) are obtained using the fact that A∗∗ = A for 
all densely defined and closed unbounded linear operators between Hilbert spaces.

By abuse of notation, we generally write grad = ˚grad, curl = ˚curl and div = d̊iv.

2.2. Definition

A Hilbert complex is a sequence of Hilbert spaces Wk, k ∈ Z, together with a sequence 
of closed and densely defined unbounded linear operators Ak : D(Ak) ⊂ Wk → Wk+1
such that R(Ak) ⊂ N (Ak+1), i.e. Ak+1 ◦ Ak ≡ 0 for all k ∈ Z. It can be written as

· · · D(Ak−1) ⊂ Wk−1 D(Ak) ⊂ Wk D(Ak+1) ⊂ Wk+1 · · · ,
Ak−2 Ak−1 Ak Ak+1

(2.5a)
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cf. [6, Def. 4.1]. The associated sequence of adjoint operators spawns the so-called dual 
Hilbert complex

· · · D(A∗
k−2) ⊂ Wk−1 D(A∗

k−1) ⊂ Wk D(A∗
k) ⊂ Wk+1 · · · ,

A∗
k−2 A∗

k−1 A∗
k A∗

k+1

(2.5b)
which by (2.1) is itself a Hilbert complex, because A∗

k−1 ◦ A∗
k ≡ 0 for all k ∈ Z. 

“Finite” Hilbert complexes can be embedded into (2.5a) by setting Wk = {0} for all 
k /∈ {0, 1, ..., N}.

Notice that since R(Ak) ⊂ D(Ak+1) and R(A∗
k+1) ⊂ D(A∗

k), the sequences of bounded
operators Ak : D(Ak) → Wk+1 and A∗

k : D(A∗
k) → Wk also induce Hilbert complexes 

themselves:

· · · D(Ak−1) D(Ak) D(Ak+1) · · · ,
Ak−2 Ak−1 Ak Ak+1

(2.6a)

· · · D(A∗
k−2) D(A∗

k−1) D(A∗
k) · · · .

A∗
k−2 A∗

k−1 A∗
k A∗

k+1

(2.6b)

These are examples of bounded Hilbert complexes in which every operator is continuous. 
We refer to (2.6a) and (2.6b) as the domain complexes of (2.5a) and (2.5b).

If the range R(Ak) is a closed subset of Wk+1 for all k, we say that the Hilbert 
complex (2.5a) is closed. If this is the case, then R(A∗

k) is also closed in Wk by the 
closed range theorem [6, Thm. 3.7], rendering the dual complex (2.5b) a closed Hilbert 
complex too. Furthermore, (2.5a) is said to be Fredholm if the codimension of R(Ak) is 
finite in N (Ak+1)—in which case it is also closed by [6, Thm. 3.8]. Equivalently, a Hilbert 
complex is Fredholm if the quotient spaces N (Ak+1)/R(Ak) and N (A∗

k)/R(A∗
k+1) are 

finite dimensional, in other words, if the cohomology spaces of (2.5a) and (2.5b) have 
finite dimension. It is a sufficient condition for a Hilbert complex to be Fredholm to 
satisfy the compactness property, that is, the embedding D(Ak) ∩ D(A∗

k−1) ↪→ Wk is 
compact for all k ∈ Z.
3D de Rham setting III: The L2 de Rham complex in R3. The L2 de Rham complex (1.1) is a standard 
example of a Hilbert complex, where Ak ≡ 0 and Wk = {0} is set for k ∈ Z\{0, 1, 2, 3}. From (2.4) we 
conclude that its dual complex is represented by the sequence

{0} L2(Ω) H̊(div,Ω) ⊂ L2(Ω) H̊(curl,Ω) ⊂ L2(Ω) H̊1(Ω) ⊂ L2(Ω) {0},
0 −div curl −grad ı

(2.7)
cf. [6, Sec. 3.4] and [6, Sec. 4.3], and its embedding into our abstract framework is summarized in the 
following table:

k Wk Ak D(Ak) A∗
k D(A∗

k) D(Ak) ∩ D(A∗
k−1)

0 L2(Ω) grad H1(Ω) − div H̊(div,Ω) H1(Ω)
1 L2(Ω) curl H(curl,Ω) curl H̊(curl,Ω) H(curl,Ω) ∩ H̊(div,Ω)
2 L2(Ω) div H(div,Ω) −grad H̊1(Ω) H(div,Ω) ∩ H̊(curl,Ω)
3 L2(Ω) 0 L2(Ω) Id {0} H̊1(Ω)
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The de Rham complex satisfies the compactness property, and thus it is Fredholm. Indeed, recall 
that Rellich’s compact embedding theorem states that the inclusion of H1(Ω) and H̊1(Ω) in L2(Ω)
is compact. We refer to [41] for a proof that H(curl, Ω) ∩ H̊(div, Ω) and H(div, Ω) ∩ H̊(curl, Ω) are 
compactly embedded in L2(Ω).

2.3. Basic setting

Now, let a Hilbert complex as in (2.5a) be given and suppose that the unbounded 
linear operators of a second Hilbert complex

· · · D(Åk−1) ⊂ Wk−1 D(Åk) ⊂ Wk D(Åk+1) ⊂ Wk+1 · · ·
Åk−2 Åk−1 Åk Åk+1

(2.8a)
are such that Åk ⊂ Ak, i.e. D(Åk) ⊂ D(Ak) and Ak |D(Åk) = Åk. In other words, for 
all k ∈ Z, Ak is an extension of Åk. It is easy to verify that the adjoint operators 
Å∗
k := Å

∗
k : D(Å

∗
k) ⊂ Wk+1 → Wk involved in the dual complex

· · · D(Å∗
k−2) ⊂ Wk−1 D(Å∗

k−1) ⊂ Wk D(Å∗
k) ⊂ Wk+1 · · ·

Å∗
k−2 Å∗

k−1 Å∗
k Å∗

k+1

(2.8b)
are such that A∗

k ⊂ Å∗
k. In particular, the bounded domain complexes

· · · D(Åk−1) D(Åk) D(Åk+1) · · · ,
Åk−2 Åk−1 Åk Åk+1

(2.9a)

· · · D(A∗
k−2) D(A∗

k−1) D(A∗
k) · · · ,

A∗
k−2 A∗

k−1 A∗
k A∗

k+1

(2.9b)

are examples of Hilbert subcomplexes of the domain Hilbert complexes (2.6a) and 
(2.8b).

For reference, this basic setting is summarized in the following assumption.

Assumption A. For all k ∈ Z let Wk be real Hilbert spaces, and suppose that Ak :
D(Ak) ⊂ Wk → Wk+1 and Åk : D(Åk) ⊂ Wk → Wk+1 are densely defined and closed 
unbounded linear operators such that R(Ak) ⊂ N (Ak+1), R(Åk) ⊂ N (Åk+1), and Ak is 
an extension of Åk, i.e. D(Åk) ⊂ D(Ak) and Ak x◦ = Åk x◦ for all x◦ ∈ D(Åk).

3D de Rham setting IV: Boundary conditions. The Hilbert complex

{0} H̊1(Ω) ⊂ L2(Ω) H̊(curl,Ω) ⊂ L2(Ω) H̊(div,Ω) ⊂ L2(Ω) L2(Ω) {0}ı grad curl div 0

fulfills the hypothesis on (2.8a) for the L2 de Rham complex (1.1). Owing to (2.4a)-(2.4c), its dual 
complex is written

{0} L2(Ω) H(div,Ω) ⊂ L2(Ω) H(curl,Ω) ⊂ L2(Ω) H1 ⊂ L2(Ω) {0}.
0 −div curl −grad ı

(2.10a)
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Summing up, the various operators and spaces have the following incarnations for the de Rham complex 
in three-dimensional Euclidean space:

k Wk Åk D(Åk) Å∗
k D(Å∗

k) D(Åk) ∩ D(Å∗
k−1)

0 L2(Ω) grad H̊1(Ω) − div H(div,Ω) H̊1(Ω)
1 L2(Ω) curl H̊(curl,Ω) curl H(curl,Ω) H̊(curl,Ω) ∩ H(div,Ω)
2 L2(Ω) div H̊(div,Ω) −grad H1(Ω) H̊(div,Ω) ∩ H(curl,Ω)
3 L2(Ω) 0 L2(Ω) Id {0} H1(Ω)

3. Trace operators

The following sections lay the foundations of a general quotient-based abstract theory 
for traces in Hilbert spaces. To that end, we do not require the full structure of Hilbert 
complexes, but it suffices to focus on the following snippet of the Hilbert complexes 
(2.5a) and (2.8a):

· · · D(Ak−1) ⊂ Wk−1 D(Ak) ⊂ Wk D(Ak+1) ⊂ Wk+1 · · · ,
∪ ∪ ∪

· · · D(Åk−1) ⊂ Wk−1 D(Åk) ⊂ Wk D(Åk+1) ⊂ Wk+1 · · · .

Ak−2 Ak−1 Ak Ak+1

Åk−2 Åk−1 Åk Åk+1

In the sequel, we fix k ∈ Z and take for granted Assumption A.

3.1. Hilbert traces

From the estimate

|(Ak x,y)Wk+1 − (x, Å∗
ky)Wk

| ≤ ‖Ak x‖Wk+1‖y‖Wk+1 + ‖x‖Wk
‖Å∗

ky‖Wk

≤ ‖x‖D(Ak)‖y‖D(Å∗
k)

(3.1)

we infer that the following definition of a particular notion of a trace makes sense. 
mklet -n

Definition 3.1. In the setting of Assumption A, the bounded linear operator

Tt
k : D(Ak) → D(Å∗

k)′ (3.2)

defined for all x ∈ D(Ak) and y ∈ D(Å∗
k) by

〈Tt
kx,y〉D(Å∗

k)′ := (Ak x,y)Wk+1 − (x, Å∗
ky)Wk

(3.3)

is called the (primal) Hilbert trace associated with the pair of operators Ak and Åk.
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It also follows from (3.1) that

‖Tt
k‖ = 1, (3.4)

where ‖ · ‖ is the operator norm.

Remark 3.2. We point out that defining a trace operator as a mapping into a dual space 
has precedents in the theory of Friedrichs operators, has been pursued in [26, Sect. 1.5], 
[27, Sect. 2], [20, Sect. 2.2] and [19, Sect. 56.3.2], and is also discussed in [3–5]. In these 
works, the authors have dubbed “boundary operators” what we have decided to call 
“Hilbert traces”. In fact, the developments of Section 3 and Section 4 can probably be 
extended to the setting of Friedrichs operators, but this is outside the scope of this work.

3D de Rham setting V: Hilbert traces. Let us motivate the above notion of trace with classical examples. 
Applying Definition 3.1 in the 3D de Rham setting II, we obtain the Hilbert traces

Tt
0 = Tt

grad
: H1(Ω) → H(div,Ω)′, (3.5a)

Tt
1 = Tt

curl
: H(curl,Ω) → H(curl,Ω)′, (3.5b)

Tt
2 = Tt

div : H(div,Ω) → H1(Ω)′, (3.5c)

defined by

〈Tt
grad

v,u〉H(div,Ω)′ := (gradv,u)L2(Ω) + (v, divu)L2(Ω), (3.6a)

〈Tt
curl

z,w〉H(curl,Ω)′ := (curl z,w)L2(Ω) − (z, curlw)L2(Ω), (3.6b)

〈Tt
divu, v〉H1(Ω)′ := (divu, v)L2(Ω) + (u,grad v)L2(Ω), (3.6c)

for all v ∈ H1, u ∈ H(div, Ω) and z, w ∈ H(curl, Ω).
We recognize on the right hand sides of (3.6a)-(3.6c) the continuous bilinear forms occurring in 

Green’s formulas (1.12a) and (1.12b). Introducing the operators

γ′
n : H1/2(Γ) → H(div,Ω)′, γ′

t : H−1/2(curlΓ,Γ) → H(curl,Ω)′, γ′ : H−1/2(Γ) → H1(Ω)′,

(3.7)

dual to the classical traces, where we have identified H−1/2(Γ) with (H1/2(Γ))′ through the L2(Γ)-
pairing on the boundary and H−1/2(curlΓ, Γ) with its own dual through the skew-symmetric pairing 
defined in (1.10), we obtain

Tt
grad

= γ′
n ◦ γ, Tt

curl
= γ′

t ◦ γt, Tt
div = γ′ ◦ γn. (3.8)

Observe that, when identifying the reflexive space H(div, Ω) with its bi-dual H(div, Ω)′′,

(Tt
grad

)′ = Tt
div. (3.9)

The appeal of definitions (3.6a)-(3.6c) is that they do not explicitly depend on Γ. In fact, notice that 
they are well-defined for general bounded open sets Ω without any assumption on the regularity of their 
boundary Γ := ∂Ω.
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Proposition 3.3. Under Assumption A,

N (Tt
k) = D(Åk). (3.10)

Proof. On the one hand, for any x◦ ∈ D(Åk), it follows from Åk ⊂ Ak and (2.1) that

〈Tt
kx◦,y〉D(Å∗

k)′ = (Ak x◦,y)Wk+1 − (x◦, Å∗
ky)Wk

= (Åk x◦,y)Wk+1 − (x◦, Å∗
ky)Wk

= (x◦, Å∗
ky)Wk

− (x◦, Å∗
ky)Wk

= 0
(3.11)

for all y ∈ D(Å∗
k). This shows that D(Åk) ⊂ N (Tt

k).
On the other hand, if x ∈ D(Ak) is such that x ∈ N (Tt

k), then

0 = 〈Tt
kx,y〉D(Å∗

k)′ = (Ak x,y)Wk+1 − (x, Å∗
ky)Wk

∀y ∈ D(Å∗
k). (3.12)

If we set Cx := ‖x‖D(Ak), we see that

|(x, Å∗
ky)Wk

| = |(Ak x,y)Wk+1 | ≤ ‖Ak x‖Wk+1‖y‖Wk+1 ≤ Cx‖y‖Wk+1 ∀y ∈ D(Å∗
k).

(3.13)

As explained in Section 2.1, this means that x ∈ D((Å∗
k)∗) = D(Å

∗∗
k ) = D(Åk). �

3D de Rham setting VI: Kernels of classical Hilbert traces. Comparing Proposition 3.3 with (1.8a)-(1.8c), 
we verify that

N (Tt
grad

) = N (γ), N (Tt
curl

) = N (γt), N (Tt
div) = N (γn). (3.14)

Remark 3.4. Intuitively, we think of a trace operator as a means of imposing “boundary 
conditions”. The idea behind Definition 3.1 is to impose these boundary conditions on 
the operator itself, which is a common strategy in the analysis of variational problems 
and related operator equations. In this work, Ak is the operator of interest. We regard 
Åk as the operator on which boundary conditions are imposed. From that perspective, 
the operator Å∗

k does not feature boundary conditions. The right hand side of (3.3) plays 
a role akin to the bilinear form involved in classical integration by parts formulas.

3.2. Trace spaces

Recall that by hypothesis, D(A∗
k) ⊂ D(Å∗

k). The next proposition involves the annihi-
lator of D(A∗

k) in D(Å∗
k)′:

D(A∗
k)◦ :=

{
φ ∈ D(Å∗

k)′ | 〈φ,y〉D(Å∗
k)′ = 0 ∀y ∈ D(A∗

k)
}
⊂ D(Å∗

k)′. (3.15)
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Proposition 3.5. Under Assumption A, we find for the ranges of the Hilbert traces

R(Tt
k) = D(A∗

k)◦. (3.16)

Proof. Suppose that φ ∈ D(A∗
k)◦ and let w ∈ D(Å∗

k) be its Riesz representative in D(Å∗
k), 

that is

〈φ,y〉D(Å∗
k)′ = (w,y)D(Å∗

k) ∀y ∈ D(Å∗
k). (3.17)

We claim that x := −Å∗
kw ∈ D(Ak). Indeed, (3.17) implies that for all y∗ ∈ D(A∗

k), we 
have

0 = (w,y∗)D(Å∗
k) = (w,y∗)Wk+1 + (Å∗

kw, Å∗
ky∗)Wk

= (w,y∗)Wk+1 + (Å∗
kw,A∗

k y∗)Wk
.

(3.18)
This means

(w,y∗)Wk+1 = (x,A∗
k y∗)Wk

∀y∗ ∈ D(A∗
k) (3.19)

Therefore, if we set Cx := ‖w‖Wk+1 , we find the estimate

|(x,A∗
k y∗)Wk

| = |(w,y∗)Wk+1 | ≤ ‖w‖Wk+1‖y∗‖Wk+1 = Cx‖y∗‖Wk+1 ∀y∗ ∈ D(A∗
k),

(3.20)

which, as explained in Section 2.1, implies that x ∈ D(A∗∗
k ) = D(Ak).

Thus appealing to (2.1) we can rewrite (3.19) as (w, y∗)Wk+1 = (Ak x, y∗)Wk+1 . Since 
D(A∗

k) is dense in Wk+1, we infer Ak x = w. Hence, the inclusion R(Tt
k) ⊃ D(A∗

k)◦ is 
verified by observing that for all y ∈ D(Å∗

k),

〈Tt
kx,y〉D(Å∗

k)′ = (Ak x,y)Wk+1 − (x, Å∗
ky)Wk

= (w,y)Wk+1 + (Å∗
kw, Å∗

ky)Wk

= (w,y)D(Å∗
k) = 〈φ,y〉D(Å∗

k)′ ,
(3.21)

i.e. Tt
kx = φ.

To show that R(Tt
k) ⊂ D(A∗

k)◦, let φ = Tt
kx for some x ∈ D(Ak). Then, since A∗

k ⊂ Å∗
k, 

we obtain by (2.1) that for all y∗ ∈ D(A∗
k)

〈φ,y∗〉D(Å∗
k)′ = (Ak x,y∗)Wk+1 − (x, Å∗

ky∗)Wk
= (x,A∗

k y∗)Wk
− (x,A∗

k y∗)Wk
= 0,
(3.22)

i.e. φ ∈ D(A∗
k)◦. �
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Since D(Åk) is a Hilbert subspace of D(Ak), it is closed and we can proceed with the 
next definition.

Definition 3.6. In the setting of Definition 3.1, we call trace spaces the quotient spaces

T (Ak) := D(Ak)/D(Åk), (3.23)

equipped with the quotient norm

‖[x]‖T (Ak) := inf
z̊∈D(Åk)

‖x − z̊‖D(Ak) ∀x ∈ D(Ak). (3.24)

Remark 3.7. Notice that due to Proposition 3.3,

T (Ak) = D(Ak)/N (Tt
k). (3.25)

In Definition 3.6, the equivalence class in T (Ak) of x ∈ D(Ak) is denoted [x] =
{x + z̊ | ̊z ∈ D(Åk)}. Write πt

k : D(Ak) → T (Ak) for the canonical projection (also 
frequently called quotient map), i.e. πt

k(x) = [x]. It is an application of a classical 
theorem of functional analysis that there exists a bounded orthogonal projection Pt

k :
D(Ak) → D(Åk)⊥ onto the complement space

D(Åk)⊥ :=
{

x ∈ D(Ak) | (x, z̊)D(Ak) = 0 ∀̊z ∈ D(Åk)
}
⊂ D(Ak) (3.26)

such that

‖Pt
kx‖D(Ak) = ‖[x]‖T (Ak) ∀x ∈ D(Ak), (3.27)

cf. [46, Chap. 3.1] and [10, Chap. 5]. Write ıtk : D(Åk)⊥ ↪→ D(Ak) for canonical inclusion 
maps. Since N (Pt

k) = D(Åk) by (3.27), the bounded linear map Gt
k : T (Ak) → D(Åk)⊥

defined by Gt
k[x] := Pt

kx and involved in the commutative diagram

D(Ak) D(Åk)⊥

D(Ak)/N (Pt
k) = T (Ak)

Pt
k

πt
k Gt

k

(3.28)

as provided by the first isomorphism theorem for modules is a well-defined isometric 
isomorphism, cf. [18, Chap. 10.2, Thm. 4]. Since D(Åk)⊥ is closed [46, Chap. 3.1, Thm. 
1], it is a Hilbert space, and therefore so is T (Ak). The quotient norm is induced by the 
inner product
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([x], [z])T (Ak) := (Pt
kx,Pt

kz)D(Ak) ∀[x], [z] ∈ T (Ak). (3.29)

Remark 3.8. Notice that N (Pt
k) = D(Åk) = N (Tt

k).

That the projection Pt
k is orthogonal means that (x − Pt

kx, z⊥)D(Ak) = 0 for all 
x ∈ D(Ak) and z⊥ ∈ D(Åk)⊥. In other words, (Id−Pt

k)x ∈ D(Åk) for all x ∈ D(Ak). 
Hence, the simple observation that Id = Pt

k+(Id−Pt
k) shows that any element x ∈ D(Ak)

can be decomposed as

x = x⊥ + x◦ (3.30)

where x⊥ ∈ D(Åk)⊥ and x◦ ∈ D(Åk). It is easy to see that the decomposition (3.30) is 
unique.
3D de Rham setting VII: Trace spaces. In the 3D de Rham setting V, applying Definition 3.6 leads to

T (A0) = T (grad) = H1(Ω)/H̊1(Ω), (3.31a)

T (A1) = T (curl) = H(curl,Ω)/H̊(curl,Ω), (3.31b)

T (A2) = T (div) = H(div,Ω)/H̊(div,Ω). (3.31c)

Based on (1.8) the linear mappings

Xgrad :H1(Ω)/H̊1(Ω) → H1/2(Γ), (3.32a)

Xcurl :H(curl,Ω)/H̊(curl,Ω) → H−1/2(curlΓ,Γ), (3.32b)

Xdiv :H(div,Ω)/H̊(div,Ω) → H−1/2(Γ) (3.32c)

defined by

Xgrad[u] := γu ∀u ∈ H1(Ω), (3.33a)

Xcurl[u] := γtu ∀u ∈ H(curl,Ω), (3.33b)

Xdiv[v] := γnv ∀v ∈ H(div,Ω), (3.33c)

are the Hilbert space isomorphisms induced by the canonical projections involved in the following com-
mutative diagrams, in which ↔ indicates an isomorphism:

H1(Ω) H1/2(Γ) H(curl,Ω) H−1/2(curlΓ,Γ) H(curl,Ω) H−1/2(Γ)

T (grad) T (curl) T (div)

γ

πt
grad

γt

πt
curl

γn

πt
divXgrad Xcurl Xcurl

The trace spaces H1/2(Γ), H−1/2(curlΓ, Γ) and H−1/2(Γ) can therefore be identified with the quo-
tient spaces T (grad), T (curl) and T (div), respectively, as we have already observed in (1.9). Under 
these identifications, the bounded inverse theorem guarantees that the quotient spaces are equipped 
with equivalent norms. Moreover, due to the Lipschitz regularity of Γ and Sobolev extension theo-
rems, the definitions of T (grad), T (curl) and T (div) are intrinsic, in the sense that the quotient 
spaces H1(R3\Ω)/H̊1(R3\Ω), H(curl, R3\Ω)/H̊(curl, R3\Ω) and H(div, R3\Ω)/H̊(div, R3\Ω) are also 
Hilbert spaces with equivalent norms [16].
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Lemma 3.9. Under Assumption A, if x⊥ ∈ D(Åk)⊥, then Ak x⊥ ∈ D(Å∗
k) and

(Å∗
k Ak + Id)x⊥ = 0. (3.34)

Proof. Suppose that x⊥ ∈ D(Åk)⊥. Since Åk ⊂ Ak, we have by definition that

0 = (x⊥, z◦)D(Ak) = (x⊥, z◦)Wk
+ (Ak x⊥,Ak z◦)Wk+1

= (x⊥, z◦)Wk
+ (Ak x⊥, Åk z◦)Wk+1

(3.35)

for all z◦ ∈ D(Åk), which means

(Ak x⊥, Åk z◦)Wk+1 = −(x⊥, z◦)Wk
∀z◦ ∈ D(Åk). (3.36)

So by setting Cx⊥ := ‖x⊥‖Wk
, we conclude from the estimate

|(Ak x⊥, Åk z◦)Wk+1 |= |(x⊥, z◦)Wk
| ≤ ‖x⊥‖Wk

‖z◦‖Wk
=Cx⊥‖z◦‖Wk

∀z◦ ∈ D(Åk),
(3.37)

that Ak x⊥ ∈ D(Å
∗
k) = D(Å∗

k). Then as in (2.1), the identity (3.34) follows from 
(3.36). �
Corollary 3.10. Under Assumption A, the linear map Ak : D(Åk)⊥ → D(Å∗

k) is an isom-
etry.

Proof. Suppose that x⊥ ∈ D(Åk)⊥. Then, by Lemma 3.9,

‖Ak x⊥‖2
D(Å∗

k) = ‖Ak x⊥‖2
Wk+1

+ ‖Å∗
k Ak x⊥‖2

Wk
= ‖Ak x⊥‖2

Wk+1
+ ‖x⊥‖2

Wk

= ‖x⊥‖2
D(Ak). � (3.38)

Theorem 3.11. Under Assumption A, the linear map

Itk :
{
T (Ak) → R(Tt

k)
[x] 
→ Tt

kx
(3.39)

is a well-defined isometric isomorphism.

Proof. Since D(Åk) = N (Tt) by Proposition 3.3, notice that Itk : T (Ak) → R(Tt
k) is 

simply the well-defined induced isomorphism of modules involved in the commutative 
diagram
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D(Ak) R(Tt
k)

D(Ak)/N (Tt
k) = T (Ak)

Tt
k

πt
k Itk

provided by the first isomorphism theorem [18, Chap. 10.2, Thm. 4]. It only remains to 
show that it is an isometry.

Let x ∈ D(Ak). By Proposition 3.3,

‖ Itk[x] ‖D(Å∗
k)′ = ‖Tt

kx‖D(Å∗
k)′ = ‖Tt

k(x⊥ + x◦)‖D(Å∗
k)′ = ‖Tt

kx⊥‖D(Å∗
k)′ . (3.40)

Using that Å∗
k Ak x⊥ = −x⊥ by Lemma 3.9, we can choose y = Ak x⊥ ∈ D(Å∗

k) to obtain

‖Tt
kx⊥‖D(Å∗

k)′ = sup
0	=y∈D(Å∗

k)

|〈Tt
kx⊥,y〉|

‖y‖D(Å∗
k)

≥ |〈Tt
kx⊥,Ak x⊥〉|

‖Ak x⊥‖D(Å∗
k)

=
|(Ak x⊥,Ak x⊥)Wk+1 − (x⊥, Å∗

k Ak x⊥)Wk
|

‖Ak x⊥‖D(Å∗
k)

=
‖x⊥‖2

D(Ak)

‖Ak x⊥‖D(Å∗
k)
.

(3.41)

Recalling that ‖ Ak x⊥‖D(Å∗
k) = ‖x⊥‖D(Ak) by Corollary 3.10, we arrive at the inequality

‖Tt
kx⊥‖D(Å∗

k)′ ≥
‖x⊥‖2

D(Ak)

‖x⊥‖D(Ak)
= ‖x⊥‖D(Ak). (3.42)

Therefore, on the one hand, ‖ Itk[x] ‖D(Å∗
k)′ ≥ ‖x⊥‖D(Ak) = ‖[x]‖T (Ak) by (3.27).

On the other hand, inserting (3.4) in (3.40) leads to the estimate

‖ Itk[x] ‖D(Å∗
k)′ = ‖Tt

kx⊥‖D(Å∗
k) ≤ ‖Tt

k‖‖x⊥‖D(Ak) = ‖x⊥‖D(Ak) = ‖[x]‖T (Ak), (3.43)

which concludes the proof. �
It is natural to think of a trace operator as a bounded linear operator from a domain 

to a trace space. Therefore, based on the identification provided by Theorem 3.11, we 
introduce the following perspective: in the setting of Definition 3.1, we call quotient trace
the canonical projection

πt
k :

{
D(Ak) → T (Ak)

x 
→ [x]
. (3.44)

Notice that because Itk is an isomorphism, it follows from Itk(Itk)−1Tt
kx = Tt

kx = Itk[x]
that

πt
kx = (Itk)−1Tt

kx. (3.45)
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3.3. Riesz representatives

Let RD(Å∗
k) : D(Å∗

k) → D(Å∗
k)′ be the Riesz isomorphism defined by RD(Å∗

k)y = (y, ·)D(Å∗
k)

for all y ∈ D(Å∗
k), cf. [10, Thm. 5.5]. Notice that in the first part of the proof of Propo-

sition 3.5, we have shown that the following result holds with Å∗
kR

−1
D(Å∗

k)φ ∈ D(Ak).

Lemma 3.12. Under Assumption A, if φ ∈ D(A∗
k)◦, then Å∗

kR
−1
D(Å∗

k)φ ∈ D(Åk)⊥ with

(Ak Å∗
k + Id) R−1

D(Å∗
k)φ = 0 and Tt

Ak
(Å∗

kR−1
D(Å∗

k)φ) = −φ. (3.46)

Proof. It only remains to show that in particular Å∗
kR

−1
D(Å∗

k)φ ∈ D(Åk)⊥. Since A∗
k ⊂ Å∗

k, 
we find, using (Ak Å∗

k + Id) R−1
D(Å∗

k)φ = 0, that for all x◦ ∈ D(Åk),

(Å∗
kR−1

D(Å∗
k)φ,x◦)D(Ak) = (Å∗

kR−1
D(Å∗

k)φ,x◦)Wk
+ (Ak Å∗

kR−1
D(Å∗

k)φ,Ak x◦)Wk+1

= (R−1
D(Å∗

k)φ, Åk x◦)Wk+1 − (R−1
D(Å∗

k)φ, Åk x◦)Wk+1 = 0. �
(3.47)

Applying (Itk)−1 on both sides of the second identity in Lemma 3.12, we find using 
(3.45) a slightly more explicit expression of the inverse (Itk)−1.

Lemma 3.13. Under Assumption A, we have

(Itk)−1φ = −πt
Ak

(Å∗
kR−1

D(Å∗
k)φ) ∀φ ∈ D(A∗

k)◦ = R(Tt
k). (3.48)

Remark 3.14. The operators Å∗
kR

−1
D(Å∗

k) : R(Tt
k) → D(Åk)⊥ ⊂ D(Ak) could be called 

D(Ak)-harmonic extension operators.

In summary, we have shown so far in Section 3 that the following diagram is commu-
tative:

D(A∗
k)◦ = R(Tt

k)

D(Ak) D(Åk)⊥

T (Ak) = D(Ak)/D(Åk)

−Å∗
kR−1

D(̊A∗k)

(Itk)−1

Pt
k

Tt
k

πt
k

ıtk

Tt
k

πt
k

Gt
k

Itk
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4. Duality

In this section, we maintain the setting of Assumption A, and we focus on the following 
snippet of the dual Hilbert complex (cf. Sections 2.2 and 2.3):

· · · D(Å∗
k−2) ⊂ Wk−1 D(Å∗

k−1) ⊂ Wk D(Å∗
k) ⊂ Wk+1 · · ·

∪ ∪ ∪
· · · D(A∗

k−2) ⊂ Wk−1 D(A∗
k−1) ⊂ Wk D(A∗

k) ⊂ Wk+1 · · ·

Å∗
k−2 Å∗

k−1 Å∗
k Å∗

k+1

A∗
k−2 A∗

k−1 A∗
k A∗

k+1

Recall the simple though important observation that, because (Å∗
k)∗ = Å

∗∗
k = Åk, we 

have Åk ⊂ Ak ⇐⇒ A∗
k ⊂ Å∗

k. Given two operators Ak : D(Ak) ⊂ Wk → Wk+1 and 
Åk : D(Åk) ⊂ Wk → Wk+1 satisfying Assumption A, the Hilbert space adjoints Å∗

k :
D(Å∗

k) ⊂ Wk+1 → Wk and A∗
k : D(A∗

k) ⊂ Wk+1 → Wk thus also satisfy Assumption A, 
but with the roles of Wk and Wk+1 swapped. Indeed, both Å∗

k and A∗
k are densely 

defined and closed unbounded linear operators between the Hilbert spaces and Å∗
k is an 

extension of A∗
k, i.e. D(A∗

k) ⊂ D(Å∗
k) and A∗

k y∗ = Å∗
ky∗ for all y∗ ∈ D(A∗

k).
In Section 4.1, the dual Hilbert trace Tn

k will be nothing more than the primal Hilbert 
trace from Definition 3.1 but associated with the pair of operators Å∗

k and A∗
k. Neverthe-

less, we state its properties for completeness and to set up notation, because it will be 
used for the important duality results of Section 4.2.

4.1. Dual traces

As before, it follows from (3.1) that the following operator is well-defined.

Definition 4.1. Under Assumption A, we call dual Hilbert trace the bounded operator

Tn
k : D(Å∗

k) → D(Ak)′, (4.1)

defined for all y ∈ D(Å∗
k) and x ∈ D(Ak) by

〈Tn
ky,x〉D(Å∗

k)′ := (Å∗
ky,x)Wk

− (y,Ak x)Wk+1 . (4.2)

As in (3.4), we have ‖Tn
k‖ = 1, where ‖ · ‖ is the operator norm. Note that for all 

x ∈ D(Ak) and y ∈ D(Å∗
k),

〈Tt
kx,y〉D(Ak)′ = −〈x,Tn

ky〉D(Å∗
k)′ . (4.3)

In other formulas,
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(Tt
k)′ = −Tn

k and (Tn
k )′ = −Tt

k. (4.4)

The results of Section 3 can be mirrored by interchanging the roles of Ak and Å∗
k (and 

the roles of Åk and A∗
k accordingly). We translate a few of them without proof.

Proposition 4.2 (cf. Proposition 3.3). Under Assumption A, we have

N (Tn
k ) = D(A∗

k). (4.5)

The next proposition involves the annihilator of D(Åk) in D(Ak)′:

D(Åk)◦ := {φ ∈ D(Ak)′ | 〈φ,x◦〉 = 0, ∀x◦ ∈ D(Åk) }. (4.6)

Proposition 4.3 (cf. Proposition 3.5). Under Assumption A, we have

R(Tn
k ) = D(Åk)◦. (4.7)

Definition 4.4 (cf. Definition 3.6). We call dual trace spaces the quotient spaces

T (Å∗
k) := D(Å∗

k)/D(A∗
k), (4.8)

equipped with the quotient norm

‖[y]‖T (Å∗
k) := inf

z∗∈D(A∗
k)
‖y − z∗‖D(Å∗

k) ∀y ∈ D(Å∗
k). (4.9)

Remark 4.5. Just as in Remark 3.7, notice that due to Proposition 4.2,

T (Å∗
k) = D(Å∗

k)/N (Tn
k ). (4.10)

In (4.9), we used square brackets to denote the equivalence class in T (Å∗
k) of y ∈

D(Å∗
k), i.e. [y] = {y + z∗ | z∗ ∈ D(A∗

k)}. We will write πn
k : D(Å∗

k) → T (Å∗
k) for the 

associated canonical projection (quotient map), i.e. πn
k (y) = [y]. Then, as previously 

detailed in Section 3.2, there exists a bounded orthogonal projection Pn
k : D(Å∗

k) →
D(A∗

k)⊥ onto the complement space

D(A∗
k)⊥ :=

{
y ∈ D(Å∗

k) | (y, z∗)D(Å∗
k) = 0, ∀z∗ ∈ D(A∗

k)
}

(4.11)

satisfying ‖Pn
ky‖D(Å∗

k) = ‖[y]‖T (Å∗
k) for all y ∈ D(Å∗

k). We denote by ınk : D(A∗
k)⊥ ↪→

D(Å∗
k) the canonical inclusion maps.
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The induced operator Gn
k : T (Å∗

k) → D(A∗
k)⊥ involved in the commutative diagram

D(Å∗
k) D(A∗

k)⊥

D(Å∗
k)/N (Pn

k ) = T (Å∗
k)

Pn
k

πn
k Gn

k

(4.12)

is an isometric isomorphism. Accordingly, any y ∈ D(Å∗
k) can be uniquely decomposed 

as

y = Pn
ky + y∗, y∗ := (Id−Pn

k )y ∈ N (Pn
k ) = D(A∗

k). (4.13)

3D de Rham setting VIII: Classical dual traces. Using (4.4), we find for the de Rham complex that, after 
identifying spaces and their biduals,

Tn
grad

= −γ′ ◦ γn, Tn
curl

= γ′
t ◦ γt, Tn

div = −γ′
n ◦ γ. (4.14)

Recalling (1.8a) to (1.8c), we see from the table of the 3D de Rham setting IV that based on 
Proposition 4.2,

N (Tn
grad

) = N (γn), N (Tn
curl

) = N (γt), N (Tn
div) = N (γ). (4.15)

The trace spaces provided by Definition 4.4 in this setting are

T (grad∗) = T (div) = H(div,Ω)/H̊(div,Ω), (4.16a)

T (curl∗p) = T (curl) = H(curl,Ω)/H̊(curl,Ω), (4.16b)

T (div∗p) = T (grad) = H1(Ω)/H̊1(Ω). (4.16c)

Notice that from (3.9), we also have

(Tt
div)′ = Tt

grad
= −Tn

div = −(Tn
grad

)′ and (Tt
grad

)′ = Tt
div = −Tn

grad
= −(Tn

div)′. (4.17)

Moreover, we see that the skew-symmetry behind (1.10) is rooted in the fact that the identity A1 =
curl = Å∗

1 leads to skew-symmetry of the pairing

(x,y) 
→ (curl x,y)L2(Ω) − (x, curl y)L2(Ω). (4.18)

This is reflected in the observation that (γ′
t ◦ γt)′ = (Tt

1)′ = −Tn
1 = −γ′

t ◦ γt, which indeed occurs when 
duality is taken with respect to the skew-symmetric pairing (1.10).

Theorem 4.6 (cf. Theorem 3.11). Under Assumption A, the linear map

Ink :
{
T (Å∗

k) → R(Tn
k )

[y] 
→ Tn
ky

(4.19)

is a well-defined isometric isomorphism.
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We call dual quotient trace the canonical projection (cf. (3.44))

πn
k :

{
D(Å∗

k) → T (Å∗
k)

y 
→ [y]
. (4.20)

Similarly as before, notice that (cf. (3.45))

πn
ky = (Ink )−1Tn

ky, (4.21)

and the following diagram commutes:

D(Åk)◦

D(Å∗
k) D(A∗

k)⊥

T (Å∗
k)

−AkR−1
D(Ak)

(Ink )−1

Pn
k

Tn
k

πn
k

ınk

Tn
k

πn
k

Gn
k

Ink

4.2. Duality of trace spaces

In this section, we show that the trace spaces T (Ak) and T (Å∗
k) can be put in duality 

through an isometry. In fact, this follows immediately from a classical result in functional 
analysis. Indeed, according to [43, Thm. 4.9], we have the isometric isomorphisms

D(A∗
k)◦ ∼=

(
D(Å∗

k)/D(A∗
k)
)′

and D(Åk)◦ ∼=
(
D(Ak)/D(Åk)

)′
. (4.22)

Combining these results with Propositions 3.5 and 4.3, along with Theorems 3.11 and 
4.6,

T (Ak) ∼= R(Tt
k) = D(A∗

k)◦ ∼=
(
D(Å∗

k)/D(A∗
k)
)′

= (T (Å∗
k))′, (4.23a)

T (Å∗
k) ∼= R(Tn

k ) = D(Åk)◦ ∼=
(
D(Ak)/D(Åk)

)′
= (T (Ak))′. (4.23b)

Nevertheless, we provide a detailed proof below, not only for convenience and com-
pleteness, but also because the exercise is illuminating. We proceed with the definition 
of a continuous bilinear form on T (Ak) × T (Å∗

k) and prove that the associated induced 
linear operator is an isometry. This pairing will be at the heart of sections 7.2 and 7, 
where it will be used to prove that Hilbert complexes affording so-called compact regular 
decompositions spawn Fredholm trace Hilbert complexes.
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Lemma 4.7. Under Assumption A, the bilinear form

〈〈·, ·〉〉k : T (Ak) × T (Å∗
k) → R, (4.24a)

defined by

〈〈[x], [y]〉〉k := (Ak x,y)Wk+1 − (x, Å∗
ky)Wk

∀[x] ∈ T (Ak),∀[y] ∈ T (Å∗
k), (4.24b)

is well-defined and continuous with norm ≤ 1.

Proof. Since 〈 〈[x], [y]〉 〉k = 〈Tt
kx, y〉D(Ak)′ , it is well-defined thanks to Proposition 3.3

and Proposition 3.5. By the same propositions, the orthogonal decompositions (3.30)
and (4.13) yield the estimate

|〈Tt
kx,y〉D(Ak)′ | = |〈Tt

kPt
kx,Pn

ky〉D(Ak)′ |
= |(Ak Pt

kx,Pn
ky)Wk+1 − (Pt

kx, Å∗
kPn

ky)Wk
|

≤ ‖Ak Pt
kx‖Wk+1‖Pn

ky‖Wk+1 + ‖Pt
kx‖Wk

‖Å∗
kPn

ky‖Wk

≤ ‖Pt
kx‖D(Ak)‖Pn

ky‖D(Å∗
k) = ‖[x]‖T (Ak)‖[y]‖T (Å∗

k),

(4.25)

showing that the bilinear form is continuous with norm ≤ 1. �
The next result shows in particular that T (Ak) and T (Å∗

k) can be put in duality 
through the bilinear form 〈 〈·, ·〉 〉k.

Theorem 4.8. Under Assumption A, the bounded linear operator

Kk :
{
T (Ak) → T (Å∗

k)′

[x] 
→ 〈〈[x], ·〉〉k
(4.26)

induced by the bilinear form defined in Lemma 4.7 is an isometric isomorphism.

Proof. The key to the proof is that (4.24b) permits us to appeal to Theorem 3.11.
Notice that since R(Tt

k) = D(A∗
k)◦, it follows from the orthogonal decomposition 

(4.13) that Kk is the pullback by Gn
k of Itk, i.e. Kk[x]([y]) = Itk[x](Gn

k [y]). We first show 
that it is an isomorphism.

If Kk[x] = Kk[z], then since Gn
k is an isomorphism onto D(A∗

k)⊥, it then follows from 
Proposition 3.5 and decomposition (4.13) that Itk[x](y) = Itk[z](y) for all y ∈ D(Å∗

k). But 
Itk is also an isomorphism, so Itk[x] = Itk[z] implies that x = z and we conclude that Kk is 
injective.
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Suppose that φ ∈ T (Å∗
k)′. Then the pullback of φ by the canonical quotient map 

πn
k : D(Å∗

k) → T (Å∗
k) is a bounded linear functional on D(Å∗

k), i.e. φ ◦ πn
k ∈ D(Å∗

k)′. 
Indeed, this simply holds because

|φ(πn
ky)| ≤ ‖φ‖‖πn

ky‖T (Å∗
k) ≤ ‖φ‖‖πn

k‖‖y‖D(Å∗
k) ∀y ∈ D(Å∗

k). (4.27)

Moreover, since N (πn
k ) = D(A∗

k), we find in particular that φ ◦ πn
k ∈ D(A∗

k)◦ = R(Tt
k). 

But Itk is an isomorphism onto R(Tt
k), so there exists [x] ∈ T (Ak) such that Itk[x] = φ◦πn

k . 
Evaluating

Kk[x] = Itk[x] ◦ Gn
k = φ ◦ πn

k ◦ Gn
k = φ (4.28)

shows that Kk is surjective.
We now prove that Kk is an isometry. Using similar arguments as above, we estimate

‖Kk[x]‖ = sup
[y]∈T (Å∗

k),
‖[y]‖T (̊A∗

k
)=1

|Kk[x]([y])| = sup
y⊥∈D(A∗

k)⊥,
‖y⊥‖D(̊A∗

k
)=1

|Itk[x](y⊥)| = ‖Itk[x]‖ = ‖[x]‖T (Ak). �

(4.29)

We have arrived at an integration by parts formula involving the traces from Sec-
tion 3.1 and Section 4.1: for all x ∈ D(Ak) and y ∈ D(Å∗

k),

(Ak x,y)Wk+1 − (x, Å∗
ky)Wk

= 〈〈πt
kx,πn

ky〉〉k. (4.30)

Theorem 4.8, in combination with (1.12a) and (1.12b), reveals the abstract version of 
the duality observed for the de Rham complex in Section 1.

5. Operators on trace spaces

Starting from this section, we start exploiting more of the structure of Hilbert com-
plexes by introducing the minimal Hilbert complex setting required to define what we 
will call surface operators. We “zoom in” on short snippets of (2.5a) and (2.8a) of the 
form

· · · D(Ak) ⊂ Wk D(Ak+1) ⊂ Wk+1 D(Ak+2) ⊂ Wk+2 · · ·
∪ ∪

· · · D(Åk) ⊂ Wk D(Åk+1) ⊂ Wk+1 D(Åk+2) ⊂ Wk+2 · · ·

Ak−1 Ak Ak+1 Ak+2

Åk−1 Åk Åk+1 Åk+2

(5.1)
We may call the highlighted sequences “minimal Hilbert complexes”. The index k should 
be considered arbitrary but fixed in this section.
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3D de Rham setting IX: Minimal Hilbert complexes. Based on the 3D de Rham setting III and IV, we 
obtain two minimal complexes such as (5.1). For k = 0, we have

H1(Ω) ⊂ L2(Ω) H(curl,Ω) ⊂ L2(Ω) L2(Ω),

H̊1(Ω) ⊂ L2(Ω) H̊(curl,Ω) ⊂ L2(Ω) L2(Ω).

grad curl

grad curl
(5.2)

For k = 1, we get

H(curl,Ω) ⊂ L2(Ω) H(div,Ω) ⊂ L2(Ω) ⊂ L2(Ω),

H̊(curl,Ω) ⊂ L2(Ω) H̊(div,Ω) ⊂ L2(Ω) L2(Ω).

curl div

curl div
(5.3)

The associated dual minimal complexes can be excised from (2.7) and (2.10a).

5.1. Surface operators in domains

Notice that due to the complex property, we have in particular that R(Ak) ⊂ D(Ak+1)
and R(Å∗

k+1) ⊂ D(Å∗
k). The following key operators are thus well-defined.

Definition 5.1. We call surface operators the bounded linear maps

Dt
k := (Å∗

k+1)′ : D(Å∗
k)′ → D(Å∗

k+1)′, (5.4a)

Dn
k+1 := A′

k : D(Ak+1)′ → D(Ak)′, (5.4b)

dual to Å∗
k+1 : D(Å∗

k+1) → D(Å∗
k) and Ak : D(Ak) → D(Ak+1), respectively. Equiva-

lently,

〈Dt
kφ, z〉D(Å∗

k+1)′
= 〈φ, Å∗

k+1z〉D(Å∗
k)′ , ∀φ ∈ D(Å∗

k)′,∀z ∈ D(Å∗
k+1) ⊂ Wk+2,

(5.5a)

〈Dn
k+1ψ,x〉D(Ak)′ = 〈ψ,Ak x〉D(Ak+1)′ , ∀ψ ∈ D(Ak+1)′,∀x ∈ D(Ak) ⊂ Wk.

(5.5b)

Remark 5.2. Recall the distinction made in Section 2.1 between the notation for bounded 
and unbounded linear operators. We point out that in Definition 5.1, the operators 
Å∗
k+1 : D(Å∗

k+1) → D(Å∗
k) and Ak : D(Ak) → D(Ak+1) are bounded.

Remark 5.3. The name ‘surface operators’ was chosen by analogy with standard surface 
operators on the boundary of a domain, despite the fact that there is no boundary 
involved in the above definition. The relation between Definition 5.1 and standard surface 
operators is made more explicit in the two following 3D de Rham settings X and XI.
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3D de Rham setting X: Surface operators in domains. In the 3D de Rham setting IX, we find the surface 
operators

Dt
0 := curl′ : H(div,Ω)′ → H(curl,Ω)′, (5.6a)

Dt
1 := (−grad)′ : H(curl,Ω)′ → H̃−1(Ω), (5.6b)

dual to the bounded operators

curl : H(curl,Ω) → H(div,Ω) and −grad : H1(Ω) → H(curl,Ω), (5.7)

where we have written H̃−1(Ω) := H1(Ω)′. In other words,

〈Dt
0φ,v〉H(curl,Ω)′ = 〈φ, curl v〉H(div,Ω)′ , ∀φ ∈ H(div,Ω)′, ∀v ∈ H(curl,Ω), (5.8a)

〈Dt
1φ, u〉H̃−1(Ω) = 〈φ,−gradu〉H(curl,Ω)′ ∀φ ∈ H(curl,Ω)′, ∀u ∈ H1(Ω). (5.8b)

In the adjoint perspective, the bounded linear operators

Dn
1 := grad′ : H(curl,Ω)′ → H̃−1(Ω), (5.9a)

Dn
2 := curl′ : H(div,Ω)′ → H(curl,Ω)′ (5.9b)

are dual to the bounded linear operators

grad : H1(Ω) → H(curl,Ω) and curl : H(curl,Ω) → H(div,Ω). (5.10)

That is,

〈Dn
1ψ, u〉

H̃−1(Ω) = 〈ψ,gradu〉H(curl,Ω)′ ∀ψ ∈ H(curl,Ω)′, ∀u ∈ H1(Ω), (5.11a)

〈Dn
2ψ,v〉H(curl,Ω)′ = 〈ψ, curl v〉H(div,Ω)′ ∀ψ ∈ H(div,Ω)′, ∀v ∈ H(curl,Ω). (5.11b)

Since

R(Ak) ⊂ D(Ak+1) = D(Tt
k+1), R(Tt

k) ⊂ D(Å∗
k)′ = D(Dt

k), (5.12a)

R(Å∗
k+1) ⊂ D(Å∗

k) = D(Tn
k ), R(Tn

k+1) ⊂ D(Ak+1)′ = D(Dn
k+1), (5.12b)

the linear operators

Dt
k ◦ Tt

k : D(Ak) → D(Å∗
k+1)′, Tt

k+1 ◦ Ak : D(Ak) → D(Å∗
k+1)′, (5.13a)

Dn
k+1 ◦ Tn

k+1 : D(Å∗
k+1) → D(Ak)′, Tn

k ◦ Å∗
k+1 : D(Å∗

k+1) → D(Ak)′, (5.13b)

are also well-defined and bounded.
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Lemma 5.4. Assumption A implies the following commuting relations:

−Dt
k ◦ Tt

k = Tt
k+1 ◦ Ak and −Dn

k+1 ◦ Tn
k+1 = Tn

k ◦ Å∗
k+1. (5.14)

Proof. By symmetry, we need to verify only one relation. Recall that because of the 
complex property Ak+1 ◦ Ak = 0, we also have Å∗

k ◦ Å∗
k+1 = 0. Therefore, for all x ∈

D(Ak) ⊂ Wk and z ∈ D(Å∗
k+1) ⊂ Wk+2, we have on the one hand that

〈Dt
kTt

kx, z〉D(Å∗
k+1)′

= 〈Tt
kx, Å∗

k+1z〉D(Å∗
k)′ = (Ak x, Å∗

k+1z)Wk+1 − (u, Å∗
kÅ∗

k+1z)Wk

= (Ak x, Å∗
k+1z)Wk+1 .

(5.15)

On the other hand, we also evaluate

〈Tt
k+1 Ak x, z〉D(Å∗

k+1)′
= (Ak+1 Ak x, z)Wk+2 − (Ak x, Å∗

k+1z)Wk+1

= −(Ak x, Å∗
k+1z)Wk+1 .

� (5.16)

Remark 5.5. Consistent with (4.4), (Dt
k◦Tt

k)′ = Dn
k+1◦Tn

k+1 and Dt
k◦Tt

k = (Dn
k+1◦Tn

k+1)′.

Lemma 5.4 states that the following diagrams commute:

D(Ak) D(Ak+1) D(Å∗
k+1) D(Å∗

k)

R(Tt
k) R(Tt

k+1) R(Tn
k+1) R(Tn

k )

Ak
Å∗
k+1

Tt
k

−Dt
k

Tt
k+1 Tn

k+1

−Dn
k+1

Tn
k

(5.17)
An important consequence of this result is that

Dt
k(R(Tt

k)) ⊂ R(Tt
k+1) = D(A∗

k+1)◦, (5.18)

an observation that is key to the introduction of trace Hilbert complexes in later sections.
3D de Rham setting XI: Commutative relations. In the 3D de Rham setting, it follows from (4.17) that 
the four relations obtained from Lemma 5.4 boil down to the single identity

grad′γ′
t ◦ γt = γ′ ◦ γncurl. (5.19)

In particular, (5.19) states that for all u ∈ H(curl, Ω) and v ∈ H1(Ω),∫
v n · curl udσ =

∫
n × (u × n) · (grad v × n) dσ. (5.20)
Γ Γ
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Recall that n · curl = curlΓ ◦ γt on H(curl, Ω), while the L2(Γ)-dual operator curlΓ = curl′Γ is such 
that grad · ×n = curlΓ ◦ γ on H1(Ω). Therefore, (5.20) expresses that∫

Γ

u curlΓudσ =
∫
Γ

curlΓu · udσ ∀u ∈ H1/2(Γ), u ∈ H−1/2(curlΓ,Γ). (5.21)

We conclude that the duality between the surface operators and their surface vector calculus counterparts 
in classical trace spaces is indeed captured by the duality in Section 4.2 and Lemma 5.4.

We point out that if one works with the L2(Γ)-pairing instead of the skew-symmetric pairing (1.10)
from the start, then the two isometrically isomorphic perspectives of tangential and “rotated” tangential 
traces from [14] are also captured by the abstract theory. Indeed, by introducing the trace γτ : · 
→ · ×n, 
one obtains Tt

curl = γ′
t ◦ γτ and Tn

curl = −γ′
τ ◦ γτ , which also satisfy (4.4). With these definitions, 

Lemma 5.4 leads to two identities corresponding to (5.21) and∫
Γ

v divΓvdσ = −
∫
Γ

gradΓv · vdσ ∀v ∈ H1/2(Γ), v ∈ H−1/2(divΓ,Γ), (5.22)

which is a “rotated” version of (5.21), where γncurl = divΓγτ on H(curl, Ω) and H−1/2(divΓ, Γ) is 
defined by analogy with (1.7b).

5.2. Surface operators in quotient spaces

Let us investigate the properties of the linear operators between trace spaces induced 
by the surface operators defined in Section 5.1.

Definition 5.6. We call quotient surface operators the bounded linear maps

St
k :

{
T (Ak) → T (Ak+1)

[x] 
→ πt
k+1 Ak x

and Sn
k+1 :

{
T (Å∗

k+1) → T (Å∗
k)

[z] 
→ πn
k Å∗

k+1z
. (5.23)

We verify that St
k is well-defined. The analogous result holds for Sn

k+1 by duality. 
Suppose that x◦ ∈ D(Åk). Harnessing the complex property and the definition (4.24b)
of the duality pairing we evaluate

〈〈πt
k+1 Ak x◦, [z]〉〉k+1 = (Ak+1 Ak x◦, z)Wk+2 − (Ak x◦, Å∗

k+1z)Wk+1

= −(Åk x◦, Å
∗
k+1 z)Wk+1 = −(Åk+1 Åk x◦, z)Wk+2 = 0

(5.24)

for all z ∈ D(Å∗
k+1) ⊂ Wk+2. By the duality of T (Ak+1) and T (Å∗

k+1) asserted in 
Theorem 4.8 we conclude that πt

k+1 Ak x̊ = 0.
From the above, we also find that for all x ∈ D(Ak) ⊂ Wk and z ∈ D(Å∗

k+1) ⊂ Wk+2,

〈〈St
k ◦ πt

k x,πn
k+1 z〉〉k+1 = −(Ak x, Å∗

k+1z)Wk+1 = −〈〈πt
k x,Sn

k+1 ◦ πn
k+1 z〉〉k.

(5.25)
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We can view the identity

〈〈St
k[x], [z]〉〉k+1 = −〈〈[x],Sn

k+1[z]〉〉k ∀[x] ∈ T (Ak),∀[z] ∈ T (Å∗
k+1), (5.26)

as an integration by parts formula in (quotient) trace spaces.
Recalling Section 4.2, we can rewrite (5.26) as

Kk+1 ◦ St
k = −(Sn

k+1)′ ◦ Kk, (5.27)

which gives rise to the commutative diagram

T (Å∗
k)′ T (Å∗

k+1)′

T (Ak) T (Ak+1)

−(Sn
k+1)

′

St
k

Kk Kk+1
(5.28)

We end this section by putting the results of the subsections 5.1 and 5.2 together into 
a single diagram. On the one hand, for all x ∈ D(Ak) and z ∈ D(Å∗

k+1), we find from 
the proof of Lemma 5.4 that

〈Dt
k ◦ Tt

k x, z〉D(Å∗
k+1)′

= 〈Dn
k+1 ◦ Tn

k+1z,x〉D(Ak)′

= 〈〈πt
k x,Sn

k+1 ◦ πn
k+1 z〉〉k = −〈〈St

k ◦ πt
k x,πn

k+1 z〉〉k+1. (5.29)

On the other hand, we have by definition

St
kπ

t
k x = πt

k+1 Ak x and Sn
k+1π

n
k+1 z = πn

k Å∗
k+1z. (5.30)

Also recall (3.45) and (4.21). In summary, the following diagrams commute:

T (Ak) T (Ak+1) T (Å∗
k+1) T (Å∗

k)

D(Ak) D(Ak+1) D(Å∗
k+1) D(Å∗

k)

R(Tt
k) R(Tt

k+1) R(Tn
k+1) R(Tn

k )

St
k

Itk Itk+1

Sn
k+1

Ink+1 Ink

πt
k

Ak

πt
k+1 πn

k+1

Å∗
k+1

πn
k

Tt
k

−Dt
k

Tt
k+1 Tn

k+1

−Dn
k+1

Tn
k

(5.31)
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6. Trace spaces: characterization by regular subspaces

6.1. Bounded regular decompositions

In this section, we augment Assumption A. We first detail results in the setting of 
Definition 3.1 for primal Hilbert traces, then formulate their analogs in the dual setting 
of Definition 4.1. By symmetry, the primal and dual settings are evidently two faces of 
the same coin. From an abstract point of view, they are identical. Nevertheless, the dual 
setting is presented for convenience. The two settings are covered independently to avoid 
loosing sight of the core considerations.

6.1.1. Primal decomposition
Now, we aim at a more detailed characterization of the space D(Å∗

k)′. Recall that by 
the complex property, R(Å∗

k+1) ⊂ D(Å∗
k).

We refer to [37, Def. 2.12] for the next assumption, which introduces additional struc-
ture.

Assumption B. For all k ∈ Z, Assumption A holds along with the following hypotheses:

I The Hilbert spaces W+
k ⊂ Wk are such that the inclusion maps spawn continuous 

and dense embeddings

W+
k ↪→ D(Å∗

k−1). (6.1)

II There exist bounded operators

Lt
k+1 : D(Å∗

k) → W+
k+1 and Vt

k+1 : D(Å∗
k) → W+

k+2 (6.2)

such that

y = (Lt
k+1 + Å∗

k+1Vt
k+1)y ∀y ∈ D(Å∗

k). (6.3)

III The Hilbert spaces

W+
k+2(Å

∗
k+1) :=

{
z ∈ W+

k+2 | Å∗
k+1z ∈ W+

k+1

}
, (6.4)

equipped with the graph inner product defined for all z1, zz ∈ W+
k+2(Å∗

k+1) by

(z1, z2) + ˚∗ := (z1, z2)W+ + (Å∗
k+1z1, Å∗

k+1z2)W+ , (6.5)
Wk+2(Ak+1) k+2 k+1
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are such that the inclusions W+
k+2 ⊂ Wk+2 induce continuous and dense embed-

dings

W+
k+2(Å

∗
k+1) ↪→ D(Å∗

k−1). (6.6)

We adopt a shorter notation for the dual spaces:

W−
k := (W+

k )′, k ∈ Z. (6.7)

Remark 6.1. In Hypothesis II , (6.3) implies a stable regular decomposition of the form

D(Å∗
k) = W+

k+1 + Å∗
k+1W+

k+2, k ∈ Z. (6.8)

By stable, we mean that the lifting and potential operators in (6.2) are bounded. We call 
it regular due to Hypothesis I , based on which we can imagine the W+

k s as subspaces of 
“extra regularity”.

Remark 6.2. The decomposition in (6.3)/(6.8) need not be direct.

Remark 6.3. Assumption B is stated for all k ∈ Z. Strictly speaking, in the setting of a 
minimal complex with k ∈ Z fixed, to which we adhere in this section, only one stable 
regular decomposition (the one written in (6.3) and involving the regular spaces W+

k+1
and W+

k+2) is necessary for the characterization of D(Å∗
k)′ and R(Tt

k).

Lemma 6.4. Under Assumption B, the surface operator Dt
k : D(Å∗

k)′ → D(Å∗
k+1)′ defined 

in (5.4a) can be extended to a continuous mapping

Dt
k :

⎧⎨⎩W−
k+1 → W+

k+2(Å∗
k+1)′

φ 
→ 〈φ, Å∗
k+1· 〉W−

k+1

, (6.9)

still designated by the same notation.

Proof. For all φ ∈ W−
k+1, it follows by definition that ∀z ∈ W+

k+2(Å∗
k+1),

|〈φ, Å∗
k+1z〉W−

k+1
| ≤ ‖φ‖W−

k+1
‖Å∗

k+1z‖W+
k+1

≤ ‖φ‖W−
k+1

‖z‖W+
k+2(Å∗

k+1)
. � (6.10)

6.1.2. Dual decomposition
We may also adopt the adjoint perspective. It goes without saying that the develop-

ment is completely symmetric to Section 6.1.1. We present it for completeness.

Assumption C. (cf. Assumption B) For all k ∈ Z, beside Assumption A we stipulate the 
following:
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I The Hilbert spaces W+
k ⊂ Wk are such that the inclusion maps spawn continuous 

and dense embeddings

W+
k ↪→ D(Ak). (6.11)

II There exist bounded operators

Ln
k+1 : D(Ak+1) → W+

k+1 and Vn
k+1 : D(Ak+1) → W+

k (6.12)

such that

y = (Ln
k+1 + Ak Vn

k+1)y ∀y ∈ D(Ak+1). (6.13)

III The Hilbert spaces

W+
k (Ak) :=

{
x ∈ W+

k | Ak x ∈ W+
k+1

}
, (6.14)

equipped with the graph inner product defined for all x1, x2 ∈ W+
k (Ak) by

(x1,x2)W+
k (Ak) := (x1,x2)W+

k
+ (Ak x1,Ak x2)W+

k+1
, (6.15)

are such that the inclusions W+
k ⊂ Wk induce continuous and dense embeddings

W+
k (Ak) ↪→ D(Ak). (6.16)

Lemma 6.5. Under Assumption C, the surface operator Dn
k+1 can be extended to a con-

tinuous mapping

Dn
k :

⎧⎨⎩W−
k+1 → W+

k (Ak)′

ψ 
→ 〈ψ,Ak · 〉W−
k+1

. (6.17)

Proof. Parallel to the proof of Lemma 6.4, it follows by definition that given ψ ∈ W−
k+1,

|〈ψ,Ak x〉W−
k+1

| ≤ ‖ψ‖W−
k+1

‖Ak x‖W+
k+1

≤ ‖ψ‖W−
k+1

‖x‖W+
k (Ak) ∀x ∈ W+

k (Ak). �
(6.18)

It is not excluded that both Assumptions B and C hold, in which case the inclusion

W+
k+1 ↪→ D(Å∗

k) ∩ D(Ak+1) (6.19)

is assumed to be a dense embedding.
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3D de Rham setting XII: Stable regular decompositions. There is some freedom in choosing the spaces 
W+

k , k ∈ Z. For the de Rham complex though, there are obvious candidates satisfying (6.19) that 
also satisfy both Assumptions B and C: functions in the Sobolev space H1(Ω) and vector-fields with 
components in H1(Ω), which by Rellich’s lemma [30, Thm. 3.27] are compactly embedded in the spaces 
L2(Ω) and L2(Ω), respectively.

k 0 1 2 3
Wk L2(Ω) L2(Ω) L2(Ω) L2(Ω)
W+

k H1(Ω) H1(Ω) H1(Ω) H1(Ω)
D(Ak) H1(Ω) H(curl,Ω) H(div,Ω) L2(Ω)
D(Å∗

k) H(div,Ω) H(curl,Ω) H1(Ω) {0}

It is well-known (cf. [23, Sec. 2], [22, Lem. 2.4] and [24, Sec. 3]) that the graph spaces D(Ak) and 
D(Å∗

k) given in the above table admit the stable decompositions

D(A2) = D(Å∗
0) = H(div,Ω) = H1(Ω) + curlH1(Ω), (6.20a)

D(A1) = D(Å∗
1) = H(curl,Ω) = H1(Ω) + gradH1(Ω) (6.20b)

These satisfy Assumptions B and C. Moreover, you may recall that

H1(Ω) ↪→ H(curl,Ω) ∩ H(div,Ω) (6.21)

is a dense embedding [2, Prop. 2.3].

6.2. Characterization of dual spaces

In light of Lemma 6.4, the Hilbert space

W−
k+1(D

t
k) :=

{
φ ∈ W−

k+1 | Dt
kφ ∈ W−

k+2
}
, (6.22)

equipped with the graph norm ‖ · ‖2
W−

k+1(Dt
k) := ‖ · ‖2

W−
k+1

+ ‖Dt
k · ‖2

W−
k+2

, is well-defined 

under Assumption B. In this setting, observe that, if φ ∈ W−
k+1(Dt

k), then based on the 
decomposition (6.3), the evaluation

φ(y) = φ(Lt
k+1y) + φ(Å∗

k+1Vt
k+1y) = φ(Lt

k+1y) + Dt
kφ(Vt

k+1y) (6.23)

is well-defined for all y ∈ D(Å∗
k) thanks to the hypothesis that guarantees R(Lt

k+1) ⊂
W+

k+1 and R(Vt
k+1) ⊂ W+

k+2.

Theorem 6.6. Assumption B guarantees the following isomorphism of normed vector 
spaces,

D(Å∗
k)′ ∼= W−

k+1(D
t
k). (6.24)
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Proof. Due to (6.1) from Hypothesis I of Assumption B, the restriction of functionals 
D(Å∗

k+1)′ ↪→ W−
k+2 is a continuous embedding, so the inclusion D(Å∗

k)′ ⊂ W−
k+1(Dt

k) is 
immediate from Definition 5.1.

Moreover, for all φ ∈ W−
k+1(Dt

k), we estimate using (6.23) that

|φ(y)| ≤ ‖φ‖W−
k+1

‖Lt
k+1y‖W+

k+1
+ ‖Dt

kφ‖W−
k+2

‖Vt
k+1y‖W+

k+2

≤ C(‖φ‖W−
k+1

+ ‖Dt
kφ‖W−

k+2
)‖y‖D(Å∗

k)

(6.25)

for all y ∈ D(Å∗
k), where C > 0 is a constant of continuity related to the boundedness of 

the potential and lifting operators in hypothesis II of Assumption B. We conclude that

W−
k+1(D

t
k) ⊂ D(Å∗

k)′. (6.26)

Notice that it also follows from (6.25) that

‖φ‖D(Å∗
k)′ = sup

0	=y∈D(Å∗)

|φ(y)|
‖y‖D(Å∗

k)
≤ C(‖φ‖W−

k+1
+ ‖Dt

kφ‖W−
k+2

) = C‖φ‖W−
k+1(Dt

k)

(6.27)
for all φ ∈ W−

k+1(Dt
k). In other words, the identity map is continuous as a mapping

W−
k+1(D

t
k) ↪→ D(Å∗

k)′. (6.28)

Appealing to the bounded inverse theorem verifies the equivalence of norms. �
Similarly, under Assumption C, Lemma 6.5 ensures that the Hilbert space

W−
k+1(D

n
k+1) :=

{
ψ ∈ W−

k+1 | Dn
k+1ψ ∈ W−

k

}
, (6.29)

equipped with the graph norm ‖ ·‖W−
k+1(Dn

k+1)
:= ‖ ·‖W−

k+1
+‖Dn

k+1 ·‖W−
k
, is well-defined. 

We obtain the following analogous result.

Theorem 6.7 (cf. Theorem 6.6). Under Assumption C, we conclude the isomorphism of 
normed vector spaces

D(Ak+1)′ ∼= W−
k+1(D

n
k+1). (6.30)

3D de Rham setting XIII: Characterization of dual spaces. Now, we specialize the theoretical results of 
Section 6.2 to the 3D de Rham setting using the table in Example XII. We obtain the following charac-
terization of the dual spaces:

H(curl,Ω)′ = D(A1)′ = D(Å∗
1)′ ∼=

{
φ ∈ H̃−1(Ω) | grad′ φ ∈ H̃−1(Ω)

}
, (6.31a)

H(div,Ω)′ = D(A2)′ = D(Å∗
0)′ ∼=

{
φ ∈ H̃−1(Ω) | curl′ φ ∈ H̃−1(Ω)

}
. (6.31b)
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Note that these characterizations are interesting in their own right. They do not depend on the theory 
of traces developed in the previous sections. The take-home message from the de Rham settings XII and 
XIII is that via the decompositions (6.20a) and (6.20b), the dual spaces of H(curl, Ω) and H(div, Ω)
can be characterized using more regular spaces such as H1(Ω) and H1(Ω).

6.3. Characterization of trace spaces

We have almost reached characterizations of the ranges of the Hilbert traces R(Tt
k)

and R(Tn
k ) in terms of the spaces of “extra regularity” provided by Assumptions B and C. 

To achieve these new characterizations, we introduce the following spaces for all k ∈ Z:

W̊n,+
k := W+

k ∩ D(A∗
k−1), and W̊t,+

k := W+
k ∩ D(Åk). (6.32)

Notice that by Propositions 4.2 and 3.3, we have

W̊n,+
k = W+

k ∩N (Tn
k−1), and W̊t,+

k = W+
k ∩N (Tt

k), (6.33)

respectively.

Assumption D. Suppose that Assumption B holds. For all k ∈ Z, we make the hypothesis 
that the inclusion map W+

k ⊂ D(Å∗
k−1) spawns a continuous and dense embedding

W̊n,+
k ↪→ D(A∗

k−1). (6.34)

The next result involves the annihilator

(W̊n,+
k+1)

◦ :=
{
φ ∈ W−

k+1 | 〈φ,y〉W−
k+1

= 0, ∀y ∈ W̊n,+
k+1

}
. (6.35)

Theorem 6.8. Taking for granted Assumption D we obtain the characterization

R(Tt
k) = W−

k+1(D
t
k) ∩ (W̊n,+

k+1)
◦ =

{
ψ ∈ (W̊n,+

k+1)
◦ | Dt

kψ ∈ (W̊n,+
k+2)

◦
}
, (6.36)

in the sense of equality of functionals in W−
k+1 and with equivalent norms.

Proof. We already know by Proposition 3.5 that R(Tt
k) = D(A∗

k)◦. To verify the equality 
on the right, recall that Dt

k(R(Tt
k)) ⊂ R(Tt

k+1) = D(A∗
k+1)◦.

“⊂”: On the one hand, since D(A∗
k)◦ ⊂ D(Å∗

k)′, it follows immediately from The-
orem 6.6 and (6.34) that R(Tt

k) ⊂ W−
k+1(Dt

k). Moreover, as W̊n,+
k+1 ⊂ D(A∗

k), any 
functional in the annihilator of D(A∗

k) will, in particular, vanish on W̊n,+
k+1, which implies 

D(A∗
k)◦ ⊂ (W̊n,+

k+1)◦.
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Thanks to the continuous embedding of Assumption BI and (5.5a) from the definition 
of the operator Dt

k, we find for every ϕ ∈ D(Å∗
k)′:

‖ϕ‖W−
k+1

+ ‖Dt
kϕ‖W−

k+2
= sup

w∈W+
k+1

|ϕ(w)|
‖w‖W+

k+1

+ sup
w∈W+

k+2

|ϕ(Å∗
k+1w)|

‖w‖W+
k+2

≤ C sup
w∈D(Å∗

k)

|ϕ(w)|
‖w‖D(Å∗

k)
+ sup

w∈D(Å∗
k+1)

|ϕ(Å∗
k+1w)|

‖w‖D(Å∗
k+1)

≤ 2C‖ϕ‖D(Å∗
k)′ ,

for some constant C > 0 independent of ϕ.
“⊃”: On the other hand, it also follows by Theorem 6.6 that any φ ∈ W−

k+1(Dt
k) ∩

(W̊n,+
k+1)◦ is a continuous functional in D(Å∗

k)′ vanishing on W̊n,+
k+1. By Assumption D

W̊n,+
k+1 is densely embedded in D(A∗

k). Thus, φ must also vanish on D(A∗
k) by continuity. 

We conclude that the inclusion W−
k+1(Dt

k) ∩ (W̊n,+
k+1)◦ ⊂ R(Tt

k) = D(A∗
k)◦ holds.

Finally, the estimate (6.25) gives us

‖φ‖D(Å∗
k)′ ≤ C(‖φ‖W−

k+1
+ ‖Dt

kφ‖W−
k+2

)

with C > 0 independent of φ. �
Of course, there is a symmetric statement on the dual side.

Assumption E. (cf. Assumption D) Suppose that Assumption C holds. For all k ∈ Z, 
we make the hypothesis that the inclusion map W+

k ⊂ D(Ak) spawns a continuous and 
dense embedding

W̊t,+
k ↪→ D(Åk). (6.37)

Theorem 6.9 (cf. Theorem 6.8). Under Assumption E we have equality in W−
k+1 with 

equivalent norms,

R(Tn
k+1) = W−

k+1(D
n
k+1) ∩ (W̊t,+

k+1)
◦ =

{
ψ ∈ (W̊t,+

k+1)
◦ | Dn

k+1ψ ∈ (W̊t,+
k )◦

}
,

(6.38)
where (W̊t,+

k+1)◦ :=
{
φ ∈ W−

k+1 | 〈φ,y〉W−
k+1

= 0, ∀y ∈ W̊t,+
k+1

}
is defined analogously 

to (6.35).

3D de Rham setting XIV: Characterization of trace spaces. We specialize the theoretical results of Sec-
tion 6.3 to the 3D de Rham setting.
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k 0 1 2 3
Wk L2(Ω) L2(Ω) L2(Ω) L2(Ω)
W+

k H1(Ω) H1(Ω) H1(Ω) H1(Ω)
W̊t,+

k H̊1(Ω) H1(Ω) ∩ H̊(curl,Ω) H1(Ω) ∩ H̊(div,Ω) H̊1(Ω)
W̊n,+

k H̊1(Ω) H1(Ω) ∩ H̊(div,Ω) H1(Ω) ∩ H̊(curl,Ω) H̊1(Ω)

Loosely speaking, Theorems 6.8 and 6.9 state that the range of the Hilbert trace is a subspace of 
functionals in the dual of a regular space W+

k whose image under the corresponding surface operator 
also lies in the dual of W+

k+1. Linear functionals in that subspace vanish on a dense subset of the dual 
trace’s kernel:

R(Tt
curl) = R(Tn

curl) =
{
φ ∈ H̃−1(Ω) ∩ H̊(curl,Ω)◦ | grad′ φ ∈ H̃−1(Ω) ∩ H̊1(Ω)◦

}
, (6.39a)

R(Tt
grad) = R(Tn

div) =
{
φ ∈ H̃−1(Ω) ∩ H̊(div,Ω)◦ | curl′ φ ∈ H̃−1(Ω) ∩ H̊(curl,Ω)◦

}
.

(6.39b)

One thing immediately apparent is that R(Tn
curl) = R(Tt

curl) and R(Tn
div) = R(Tt

grad), which is 
expected because we already know from previous sections that

R(Tn
curl) = D(Å1)◦ = H̊(curl,Ω)′ = D(A∗

1)◦ = R(Tt
curl), (6.40a)

R(Tn
div) = D(Å2)◦ = H̊(div,Ω)′ = D(A∗

1) = R(Tt
grad). (6.40b)

Before we compare these characterizations with (1.7a) and (1.7b), we want to reformulate them in 
terms of quotient spaces in the next section.

6.4. Characterization of trace spaces in quotient spaces

We can reformulate the characterizations of Section 6.3 in terms of quotient spaces. 
To proceed, let us set

Tt,+
k := W+

k /W̊
t,+
k , Tt,−

k :=
(
Tt,+

k

)′
, (6.41a)

Tn,+
k := W+

k /W̊
n,+
k , Tn,−

k :=
(
Tn,+

k

)′
. (6.41b)

Under Assumption D (resp. E), it follows by definition of the space W̊n,+
k (resp. W̊t,+

k ) 
that the dense embedding W+

k ↪→ D(Å∗
k−1) (resp. W+

k ↪→ D(Ak)) induces a well-defined 
and dense embedding{

Tn,+
k ↪→ T (Å∗

k−1)
[x] 
→ πn

k−1x

(
resp.

{
Tt,+

k ↪→ T (Ak)
[x] 
→ πt

kx

)
(6.42)

on the quotient spaces. Accordingly, the associated restriction of functionals{
T (Å∗

k−1)′ ↪→ Tn,−
k

ψ 
→
{

[x] 
→ ψ(πn
k−1x)

} (
resp.

{
T (Ak)′ ↪→ Tt,−

k

φ 
→ { [x] 
→ φ(πt
kx) }

)
(6.43)
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is also well-defined and gives rise to dense embeddings.
In the next lemma, we make explicit the mappings induced on the quotient spaces by 

restricting the operators Å∗
k−1 and Ak to W+

k . Those are the restrictions of the surface 
operators Sn

k−1 and St
k to Tn,+

k and Tt,+
k , respectively; cf. Definition 5.6.

Lemma 6.10. Assumptions D and E imply that the mappings

Ŝn
k+1 :

{
Tn,+

k+2 → T (Å∗
k)

[z] 
→ πn
k Å∗

k+1z
and Ŝt

k :
{

Tt,+
k → T (Ak+1)
[x] 
→ πt

k+1 Ak x
, (6.44)

respectively, are well-defined and continuous.

Proof. Consider the mapping on the left. We know from the complex property for Å∗
k

in Assumption A that Å∗
k+1z ∈ D(Å∗

k) for all z ∈ W+
k+1. We only need to verify that 

Å∗
k+1z◦ ∈ D(A∗

k) for all z◦ ∈ W̊n,+
k+2 = W+

k+2 ∩ D(A∗
k+1), but this immediately follows 

from the complex property for A∗
k+1, also provided by Assumption A. The proof is similar 

for Ŝt
k. �

Using the same strategy as in Lemmas 6.4 and 6.5, the mappings

D̂t
k := (Ŝn

k+1)′ : T (Å∗
k)′ → Tn,−

k+2 and D̂n
k := (Ŝt

k)′ : T (Ak+1)′ → Tt,−
k , (6.45)

defined as the bounded operators dual to Ŝn
k+1 and Ŝt

k, can be extended, using (6.43), to 
the continuous mappings

D̂t
k : Tn,−

k+1 → Tn,+
k+2(Ŝ

n
k+1)′ and D̂n

k : Tt,−
k+1 → Tt,+

k (Ŝt
k)′, (6.46)

involving the dual spaces of the Hilbert spaces

Tn,+
k+2(Ŝ

n
k+1) :=

{
[z] ∈ Tn,+

k+2 | Ŝn
k+1[z] ∈ Tn,+

k+1

}
, (6.47a)

Tt,+
k (Ŝt

k) :=
{

[x] ∈ Tt,+
k | Ŝt

k[x] ∈ Tt,+
k+1

}
, (6.47b)

equipped with the natural graph inner products.
With the operators (6.46), we can reformulate Theorems 6.8 and 6.9 using the iso-

metric isomorphisms

(W+
k /W̊

t,+
k )′ ∼= (W̊t,+

k )◦ and W+
k /W̊

n,+
k

∼= (W̊n,+
k )◦ (6.48)

provided by [43, Thm. 4.9].

3D de Rham setting XV: Characterization of trace spaces as quotient spaces. Recall from (1.8b) and (1.8c)
that N (γt) = H̊(curl, Ω) and N (γn) = H̊(div, Ω). So let us denote the spaces of H1-regular vector fields 
with vanishing tangential and normal traces by
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Theorem 6.11. Under Assumptions D and E we have the isomorphisms of Hilbert spaces

R(Tt
k) ∼=

{
φ ∈ Tn,−

k+1 | D̂t
kφ ∈ Tn,−

k+2

}
and R(Tn

k ) ∼=
{
φ ∈ Tt,−

k | D̂n
kφ ∈ Tt,−

k−1

}
,

(6.49a)

respectively.

H1
t (Ω) := N (γt

∣∣
H1(Ω)) = H1(Ω) ∩ H̊(curl,Ω) (6.50a)

H1
n(Ω) := N (γn

∣∣
H1(Ω)) = H1(Ω) ∩ H̊(div,Ω), (6.50b)

respectively.

k 0 1 2 3
Wk L2(Ω) L2(Ω) L2(Ω) L2(Ω)
W+

k H1(Ω) H1(Ω) H1(Ω) H1(Ω)
Tt,+

k H1(Ω)/H̊1(Ω) H1(Ω)/H1
t (Ω) H1(Ω)/H1

n(Ω) H1(Ω)/H̊1(Ω)
Tn,+

k H1(Ω)/H̊1(Ω) H1(Ω)/H1
n(Ω) H1(Ω)/H1

t (Ω) H1(Ω)/H̊1(Ω)

Reformulating (6.39a) and (6.39b), we obtain

R(Tt
curl) = R(Tn

curl) ∼=
{
φ ∈

(
H1(Ω)/H1

t (Ω)
)′

| grad′ φ ∈
(
H1(Ω)/H̊1(Ω)

)′
}
, (6.51a)

R(Tt
grad) = R(Tn

div) ∼=
{
φ ∈

(
H1(Ω)/H1

n(Ω)
)′

| curl′ φ ∈
(
H1(Ω)/H1

t (Ω)
)′
}
. (6.51b)

These characterizations are to be compared with

H−1/2(curlΓ,Γ) =
{
φ ∈ H−1/2

t (Γ) | curlΓ φ ∈ H−1/2(Γ)
}

= R(γt), (6.52a)

H1/2(Γ) =
{
φ ∈ H−1/2(Γ) | curlΓ φ ∈ H−1/2

t (Γ)
}

= R(γ), (6.52b)

where as before the two spaces

H−1/2(Γ) =
(
H1/2(Γ)

)′
=

(
γH1(Ω)

)′ (6.53a)

H−1/2
t (Γ) =

(
H1/2

t (Γ)
)′

=
(
γtH1(Ω)

)′ (6.53b)

are dual to the more regular spaces γ H1(Ω) and γt H1(Ω), respectively.
In the classical trace spaces, the quotient spaces involved in (6.51a) and (6.51b) are featured implicitly, 

because as previously stated in (6.50a) and (6.50b), H1
t (Ω) and H1

n(Ω) are kernels which vanish under 
application of the traces. In fact, since γ : H1(Ω) → H1/2(Γ) and γt : H1(Ω) → H1/2

t (Γ) are surjective, 
it follows from (6.50a) and (6.50b) that the same argument as in the 3D de Rham setting VII shows 
that the traces induce the isomorphisms

H1/2
t (Γ) ∼= H1(Ω)/H1

t (Ω) and H1/2(Γ) ∼= H1(Ω)/H̊1(Ω), (6.54)
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which in turn imply isomorphisms between the dual spaces.
We would like to draw the reader’s attention to the fact that it is an annihilator related to the kernel 

of the dual trace that is used to characterize the range of the primal trace and vice-versa. This is in 
agreement with the characterizations provided in [14], where the range of γt is characterized using the 
dual space (γτH1(Ω))′, involving the rotated tangential trace γτ discussed in the 3D de Rham setting XI. 
As in [14], recall that if the skew-symmetric pairing (1.10) is replaced with the L2(Γ)-pairing, the dual 
trace Tn

curl, corresponding with the rotated tangential trace (roughly speaking), arises in the abstract 
setting of Section 4.1 as dual to Tt

curl, which corresponds to γt.
Finally, notice that the surface operators curlΓ and curlΓ are dual to the domain operators on which 

the relevant traces are applied, which is in line with (6.51a) and (6.51b), i.e. (cf. [14])

curlΓ ◦ γ = (γt ◦ ∇)′ and curlΓ ◦ γt = (γn ◦ curl)′. (6.55)

7. Trace Hilbert complexes

From now on, we make use of the full setting of Hilbert complexes as presented in 
Section 2.2. Both Assumptions D and E are not required for the mere characterization 
of the trace Hilbert complexes in Section 7.1: each one of these hypotheses suffices for 
the corresponding characterization. However, we do rely on both decompositions for the 
upcoming compactness result in Section 7.2, where we must take (6.19) for granted.

7.1. Complexes of quotient spaces

It is easy to verify that Dt
k+1 ◦Dt

k = 0, Dn
k ◦Dn

k+1 = 0, St
k+1 ◦St

k = 0 and Sn
k ◦Sn

k+1 = 0. 
Therefore, we have already seen from (5.31) that Hilbert complexes give rise to Hilbert 
complexes in trace spaces. The bounded complexes

· · · R(Tt
k) R(Tt

k+1) R(Tt
k+2) · · · ,

Dt
k−1 Dt

k
Dt

k+1 Dk+2
(7.1a)

and

· · · R(Tn
k ) R(Tn

k+1) R(Tn
k+2) · · · ,

Dn
k Dn

k+1 Dn
k+2 Dk+3

(7.1b)

are isometrically isomorphic to the bounded complexes of quotient spaces

· · · T (Ak) T (Ak+1) T (Ak+2) · · · ,
St
k St

k
St
k+1 St

k+2
(7.2a)

and

· · · T (Å∗
k) T (Å∗

k+1) T (Å∗
k+2) · · · .

Sn Sn Sn Sn
(7.2b)
k k+1 k+2 k+3
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While the bounded domain complexes are interesting in their own right, the rich 
structure of Hilbert complexes reveals itself when closed densely defined unbounded 
operators are introduced. As stated in [6, Chap. 4], the complex produced by the latter 
contains more information than the associated domain complexes. It turns out that the 
characterizations provided in Section 6 shed more light on the structure of (7.1a)-(7.2b). 
The next theorem provides a first characterization of what we call trace Hilbert complexes.

Theorem 7.1. Under Assumptions D and E respectively, the sequences of unbounded 
operators

· · ·
Dt

k−1−−−−→ R(Tt
k) ⊂ (W̊n,+

k+1)◦
Dt

k−−−−→ R(Tt
k+1) ⊂ (W̊n,+

k+2)◦
Dt

k+2−−−−→ · · · (7.3)

and

· · · ←−−−−
Dn

k

R(Tn
k ) ⊂ (W̊t,+

k )◦ ←−−−−
Dn

k+1

R(Tn
k+1) ⊂ (W̊t,+

k+1)◦ ←−−−−
Dn

k+2

· · · (7.4)

are Hilbert complexes as defined in Section 2.2.

Proof. By symmetry, it is sufficient to verify the claim for (7.3). In light for (7.1a) and 
Theorem 6.8, we simply need to show that Dt

k : R(Tt
k) ⊂ (W̊n,+

k+1)◦ → (W̊n,+
k+2)◦ is a 

densely defined and closed unbounded linear operator.
To begin with, from Proposition 3.5 we know that D(Dt

k) = R(Tt
k) = D(A∗

k)◦ ⊂
D(Å∗

k)′ is a Hilbert space. Next, Theorem 6.8 tells us that, indeed, it is a Hilbert space 
as a subspace of (W̊n,+

k+1)◦. This implies that the operator Dt
k must be closed on (W̊n,+

k+1)◦.
It remains to confirm that R(Tt

k) is dense in (W̊n,+
k+1)◦. To that end we employ two 

key mappings:

(I) Recall that since W+
k+1 is a Hilbert space and Hilbert spaces are reflexive (cf. 

[43, Sec. 4.5], [10, Thm. 5.5]), the map

ρ :

⎧⎪⎪⎨⎪⎪⎩
W+

k+1 −→ (W−
k+1)′

y 
→
{

W−
k+1 → R

φ 
→ ρy(φ) = φ(y)
(7.5)

is an isometric isomorphism. Substituting ρ−1(φ̃) for y in the definition 
(ρy)(φ) = φ(y), we find a useful formula involving the inverse:

ψ̃(φ) = φ(ρ−1ψ̃) (7.6)

for all φ ∈ W−
k+1 and ψ̃ ∈ (W−

k+1)′.
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(II) Since the inclusion W+
k+1 ↪→ D(Å∗

k) is continuous and dense by Assumption B, 
the restriction of functionals J : D(Å∗

k)′ → W−
k+1 is also a continuous and 

dense embedding. In particular, because R(Tt
k) = D(A∗

k)◦ by Proposition 3.5
and W̊n,+

k+1 ⊂ D(A∗
k) by definition, it satisfies the important property that 

J(R(Tt
k)) ⊂ (W̊n,+

k+1)◦.

To prove density, we show that an arbitrary functional φ̃◦ ∈ ((W̊n,+
k+1)◦)′ such that 

φ̃◦(Jξ) = 0 for all ξ ∈ R(Tt
k) vanishes in ((W̊n,+

k+1)◦)′. We proceed in three short steps.

1) First, we use the Hahn–Banach theorem to extend φ̃◦ to a functional φ̃ ∈ (W−
k+1)′. 

By definition,

φ̃(Jξ) = 0 ∀ξ ∈ R(Tt
k). (7.7)

2) Secondly, we set y := ρ−1φ̃ ∈ W+
k+1 ⊂ D(Å∗

k). Based on (7.6), it follows from (7.7)
that

ξ(y) = Jξ(y) = Jξ(ρ−1φ̃) = φ̃(Jξ) = 0 ∀ξ ∈ R(Tt
k) = D(A∗

k)◦. (7.8)

In particular, we obtain from (7.8) that y ∈ D(A∗
k). Thus, under the choice made in 

(6.32), y ∈ D(A∗
k) ∩ W+

k+1 = W̊n,+
k .

3) Finally, the previous step implies that

φ̃(φ◦) = ρy(φ◦) = φ◦(y) = 0 ∀φ◦ ∈ (W̊n,+
k+1)

◦. (7.9)

Therefore, φ̃◦ = φ̃
∣∣
(W̊n,+

k+1)◦
= 0, which concludes the proof. �

Now, rewriting the trace Hilbert complexes (7.3) and (7.4) in terms of the isometrically 
isomorphic characterizations given in Theorem 6.11, we obtain the Hilbert complexes

· · · Tn,−
k+1(D̂t

k) ⊂ Tn,−
k+1 Tn,−

k+2(D̂t
k+1) ⊂ Tn,−

k+2 · · ·
D̂t

k−1 D̂t
k

D̂t
k+1 (7.10a)

and

· · · Tt,−
k (D̂n

k ) ⊂ Tt,−
k Tt,−

k+1(D̂n
k+1) ⊂ Tt,−

k+1 · · · .
D̂n

k D̂n
k+1 D̂n

k+2

(7.10b)

7.2. Compactness property

It is well-known that compact embeddings of the regular spaces W+
k ⊂ Wk in the 

stable decompositions (6.3) and (6.13) lead to the Hilbert complexes (2.5a) and (2.8b)
being Fredholm. For convenience, we review this result in the next lemma.
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Assumption F. Suppose that the dense inclusions ı+k : W+
k ↪→ Wk are compact for all 

k ∈ Z.

Lemma 7.2. Under Assumption F, Assumptions B and C guarantee compactness of the 
inclusions

D(Å∗
k) ∩ D(Åk+1) ↪→ Wk+1 and D(Ak+1) ∩ D(A∗

k) ↪→ Wk+1, (7.11)

respectively.

Proof. By symmetry, it is sufficient to prove that, under Assumption F, it follows from 
Assumption C that the dense inclusion D(Ak+1) ∩D(A∗

k) ↪→ Wk+1 is a compact operator. 
In particular, let (y�)�∈Z ⊂ D(Ak+1) ∩ D(A∗

k) be an arbitrary sequence that is bounded 
in D(Ak+1) ∩D(A∗

k). We only need to show that there exists a subsequence (y�ρ)ρ∈Z that 
is Cauchy in Wk.

By Assumption C, for all � ∈ Z, there exist p+
� ∈ W+

k+1 and x+
� ∈ W+

k such that

y� = p+
� + Ak x+

�

(
in particular, p+

� := Ln
k+1y� and x+

� := Vn
k+1y�

)
. (7.12)

The norm in D(Ak+1) ∩D(A∗
k) is stronger than the norm in D(Ak+1). Therefore, since the 

decomposition is stable by hypothesis II from Assumption C, the sequences (p+
� )� and 

(x+
� )� are bounded in W+

k+1 and W+
k , respectively. Under Assumption F, we can thus 

find subsequences (p+
�ρ

)ρ and (x+
�ρ

)ρ that are Cauchy in Wk+1 and Wk, respectively. 
Evaluating

‖y�n − y�m‖2
Wk+1

=
(
p+
�n

− p+
�n
,y�n − y�n

)
Wk+1

+
(
Ak

(
x+
�n

− x+
�n

)
,y�n − y�n

)
Wk+1

≤ ‖p+
�n

− p+
�n
‖Wk+1‖y�n − y�n‖Wk+1 +

(
x+
�n

− x+
�n
,A∗

k (y�n − y�n)
)
Wk

≤ ‖p+
�n

− p+
�n
‖Wk+1︸ ︷︷ ︸

→0 as n,m→0

‖y�n − y�n‖Wk+1 + ‖x+
�n

− x+
�n
‖Wk︸ ︷︷ ︸

→0 as n,m→0

‖A∗
k (y�n − y�n) ‖Wk

,

we arrive at the conclusion once noticing that ‖y�n −y�n‖Wk+1 and ‖ A∗
k (y�n − y�n) ‖Wk

are also bounded by hypothesis. �
In other words, under Assumption F, the stable decompositions of Section 6.1 imply 

complex properties, which as stated in Section 2.2, guarantee that the associated Hilbert 
complexes are Fredholm. The goal of this section is to show that this carries over to the 
trace spaces. Ultimately, this is because what is essential for Lemma 7.2 to hold is not 
compactness of the embeddings, but rather that the potential and lifting operators Ln

k+1
and Vn

k+1 are compact operators.
In order to obtain the complex properties for the trace Hilbert complexes, we find it 

most convenient to work with the characterizations provided in Theorem 7.1, because it 
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allows us to harness the theory developed in Section 3.3. By symmetry, we may focus on 
(7.3).

For any x ∈ D(Ak), it follows from Assumption C and the commuting relations of 
Lemma 5.4 that

Tt
kx = Tt

kLn
kx + Tt

k Ak−1 Vn
kx = Tt

kLn
kx − Dt

k−1Tt
k−1Vn

kx. (7.13)

Recall from Lemma 3.12 that the D(Ak)-harmonic extension operators −Å∗
kR

−1
D(Å∗

k) :
R(Tt

k) → D(Ak) satisfy Tt
k(−Å∗

kR
−1
D(Å∗

k)φ) = φ for all φ ∈ R(Tt
k). Inserting this iden-

tity in (7.13) yields the decomposition

φ =
(
−Tt

kLn
k Å∗

kR−1
D(Å∗

k)φ
)

+ Dt
k−1

(
Tt
k−1Vn

k Å∗
kR−1

D(Å∗
k)φ

)
(7.14)

for all φ ∈ R(Tt
k).

Compare (7.14) with the regular decompositions provided in (6.3) and (6.13). In 
(7.14), the bounded maps

−Tt
kLn

k Å∗
kR−1

D(Å∗
k) : R(Tt

k) → Tt
k(W+

k ) ⊂ R(Tt
k) (7.15)

and

Tt
k−1Vn

k Å∗
kR−1

D(Å∗
k) : R(Tt

k) → Tt
k−1(W+

k−1) ⊂ R(Tt
k−1) (7.16)

play the roles of lifting and potential operators. Compactness of these operators as map-
pings R(Tt

k) → (W̊n,+
k+1)◦ and R(Tt

k) → (W̊n,+
k )◦ follows upon observing that under 

Assumption F, the map

Tt
k : W+

k → (W̊n,+
k+1)

◦ (7.17)

is a compact operator, because the product of two bounded linear operators between 
normed spaces is compact if any one of the operands is [29, Thm. 2.16]. To confirm that 
the operator (7.17) is compact, it is sufficient to recall from Definition 3.1 that it is the 
operator associated with the compact bilinear form (cf. [44, Chap. 3]){

W+
k × W+

k+1 → R

(x,y) 
→ (Ak x, ı+k+1y)Wk+1 − (ı+k x, Å∗
ky)Wk

(7.18)

where, for the sake of clarity, we have introduced the compact inclusions ı+k+1 and ı+k
supplied by Assumption F.

In the next theorem, the unbounded linear operators

(Dt
k)∗ : D

(
(Dt

k)∗
)
⊂ (W̊n,+

k+2)
◦ → (W̊n,+

k+1)
◦, (7.19a)

(Dn
k )∗ : D ((Dn

k )∗) ⊂ (W̊t,+
k−1)

◦ → (W̊t,+
k )◦, (7.19b)
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are the Hilbert space adjoints of the closed densely defined unbounded operators

Dt
k : R(Tt

k) ⊂ (Wn,+
k+1)

◦ → (Wn,+
k+2)

◦ and Dn
k : R(Tn

k ) ⊂ (W̊t,+
k )◦ → (W̊t,+

k−1)
◦,

(7.20)
respectively.

Theorem 7.3. Under Assumptions D, E and F, the inclusions

R(Tt
k) ∩ D

(
(Dt

k−1)∗
)
↪→ (Wn,+

k+1)
◦ and R(Tn

k ) ∩ D
(
(Dn

k+1)∗
)
↪→ (Wt,+

k )◦

(7.21)
are compact.

Proof. We follow the arguments in the proof of Lemma 7.2. Let (φ�)�∈Z ⊂ R(Tt
k) ∩

D
(
(Dt

k−1)∗
)

be a bounded sequence in R(Tt
k) ∩ D

(
(Dt

k−1)∗
)
.

The goal is to find a subsequence (φ�ρ)ρ∈Z that is Cauchy in (Wn,+
k+1)◦. Similarly to 

(7.12), we use the stable decomposition in trace spaces (7.14):

φ� = ξ+
� + Dt

k−1ζ
+
� (7.22)

for all � ∈ Z, where

ξ+
� := −Tt

kLn
k Å∗

kR−1
D(Å∗

k)φ� ∈ Tt
k(W+

k ) and ζ� := Tt
k−1Vn

k Å∗
kR−1

D(Å∗
k)φ� ∈ Tt

k−1(W+
k−1).

Since the norm in R(Tt
k) ∩D

(
(Dt

k−1)∗
)

is stronger than the norm in R(Tt
k), the sequence 

(φ�)�∈Z is bounded in the norm of R(Tt
k). Hence, by compactness of the operators 

−Tt
kLn

k Å∗
kR

−1
D(Å∗

k) : R(Tt
k) → (Wn,+

k+1)◦ and Tt
k−1Vn

k Å∗
kR

−1
D(Å∗

k) : R(Tt
k) → (Wn,+

k )◦, there 

exist subsequences (ξ+
�ρ

)ρ∈Z and (ζ+
�ρ

)ρ∈Z that are Cauchy in (Wn,+
k+1)◦ and (Wn,+

k )◦, 
respectively.

Now, we verify that (φ�ρ)ρ∈Z is indeed Cauchy in (Wt,+
k+1)◦. We evaluate directly

‖φ�n − φ�n‖
2
(Wt,+

k+1)◦

=
(
ξ+
�n

− ξ+
�n
,φ�n − φ�n

)
(Wn,+

k+1)◦
+

(
Dt

k−1
(
ζ+
�n

− ζ+
�n

)
,φ�n − φ�n

)
(Wn,+

k+1)◦

≤ ‖ξ+
�n

− ξ+
�n
‖(Wn,+

k+1)◦
‖φ�n − φ�n‖(Wn,+

k+1)◦

+
(
ζ+
�n

− ζ+
�n
, (Dt

k−1)∗
(
φ�n − φ�n

))
(Wn,+

k )◦ ,

from which we conclude that
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‖φ�n − φ�n‖(Wt,+
k+1)◦

≤‖ξ+
�n

− ξ+
�n
‖(Wn,+

k+1)◦︸ ︷︷ ︸
→0 as m,n→0

‖φ�n − φ�n‖(Wn,+
k+1)◦

+ ‖ξ+
�n

− ξ+
�n
‖(Wn,+

k )◦︸ ︷︷ ︸
→0 as m,n→0

‖(Dt
k−1)∗

(
φ�n − φ�n

)
‖(Wn,+

k )◦ .

The desired result thus follows because the norms ‖φ�n−φ�n‖(Wn,+
k+1)◦

and ‖(Dt
k−1)∗(φ�n−

φ�n)‖(Wn,+
k )◦ are bounded uniformly in �n by hypothesis. �

Corollary 7.4. Under Assumptions D, E and F, the trace Hilbert complexes introduced in 
Theorem 7.1 are Fredholm.

It is particularly interesting that while only one decomposition was sufficient to obtain 
Lemma 7.2, we needed both decompositions (Assumptions B and C) to achieve a proof 
of the compactness property for the trace Hilbert complex: one for the space character-
ization and the other for the decomposition formula itself. The question whether it is 
necessary to have both remains open.

3D de Rham setting XVI: Trace de Rham complexes. Trace Hilbert complexes for the de Rham complex 
in 3D arise from the results of XV:

{0} {0}

D(curl′) ⊂ H̃−1(Ω) ∩ H̊(div,Ω)◦ D(curl′) ⊂
(
H1(Ω)/H1

n(Ω)
)′

D(grad′) ⊂ H̃−1(Ω) ∩ H̊(curl,Ω)◦ D(grad) ⊂
(
H1(Ω)/H1

t (Ω)
)′

H̃−1(Ω) ∩ H̊1(Ω)◦
(
H1(Ω)/H̊1(Ω)

)′

{0} {0}

ı ı

curl′ curl′

grad′ grad′

0 0

(7.23)

In light of the de Rham setting XV, they correspond to

{0} H1/2(Γ) ⊂ H−1/2(Γ) H−1/2(curlΓ,Γ) ⊂ H−1/2
t H−1/2(Γ) {0}ı curlΓ curlΓ 0 (7.24)

or its rotated version.
Since by Rellich’s lemma the embeddings H1(Ω) ↪→ L2(Ω) and H1(Ω) ↪→ L2(Ω) are compact, the 

de Rham complexes in (1.4) satisfy Assumption F with the regular decompositions presented in the de 
Rham setting XII. Therefore, the associated trace de Rham complexes are Fredholm. As a consequence, 
their cohomology spaces are finite-dimensional.
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8. Conclusion

As we have demonstrated in the present article, it takes only a pair of Hilbert com-
plexes linked by the sub-complex relationship of their domain complexes to recover 
essential aspects of the structures inherent in the trace operators and trace spaces for 
the de Rham complex. Relying on notions of trace spaces as dual spaces or quotient 
spaces, we could establish detailed characterizations merely assuming the existence of 
stable regular decompositions induced by bounded lifting operators. These developments 
culminated in the discovery of associated trace Hilbert complexes, which are Fredholm 
under the mild additional assumption that the lifting operators are compact.

Hilbert complexes have recently moved into the focus of applied mathematicians, since 
they underlie a host of PDE-based mathematical models in areas as diverse as linear 
elasticity, gravity, and fluid dynamics. The related complexes are known as the elasticity 
complex, [7, Sect. 11] and [40], conformal complex, or Stokes complex [9, Sect. 4.4]. These 
and many more complexes [38,39] arise from the de Rham complex through the powerful 
Bernstein-Gelfand-Gelfand (BGG) construction, as has been shown in [9]. Most likely, 
many more Hilbert complexes relevant for mathematical modeling still await discovery.

This backdrop lends relevance to our present work. Once the Hilbert complex structure 
is established, trace operators and trace spaces become available, which can serve as 
stepping stones towards the study of boundary value problems and the development of 
integral representations.
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