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1. Introduction

The dynamics of electromagnetic fields is described by Maxwell’s equations, which for 
classical materials take the form

∂0εE + σE − curl H = −J,

∂0μH + curl E = 0,

where ∂0 denotes time-differentiation, E the electric field, H the magnetic field. The term 
J summarises external current densities exciting the field, ε and μ describe dielectricity 
and permeability of the medium, σ its conductivity. Here, we consider Maxwell’s equa-
tions subject to the electric boundary condition; that is, we ask the electric field to have 
a vanishing tangential component at the boundary of the underlying domain Ω ⊆ R3. If 
Ω is regular enough to allow for a well-defined unit outward normal field n : ∂Ω → R3, 
the strong form of the mentioned boundary condition reads

E × n = 0 on ∂Ω.

It is possible to generalise this condition in a similar way to homogeneous Dirichlet 
boundary conditions also to Ω lacking the regularity for a well-defined unit outward 
normal. This will be detailed later in the text. For the time being we shall use ˚curl to 
denote the curl operator with the additional constraint of the appropriate generalisation 
of vanishing tangential component at the boundary. Consequently, the above mentioned 
Maxwell’s equations subject to the boundary condition read(

∂0

(
ε 0
0 μ

)
+
(
σ 0
0 0

)
+
(

0 − curl
˚curl 0

))(
E
H

)
=
(
−J
0

)
.

There is a suitable abstract framework, see [25], extended, for example in [26,30,36,37,
41,42], to incorporate dissipative, non-autonomous, and nonlinear systems. If for ex-
ample ε, μ, σ are all selfadjoint, non-negative, given e.g. by non-negative, real scalar 
L∞-multiplication-operators, then this abstract framework yields – with well-chosen 
boundary conditions – well-posedness of the problem, if we assume that μ and ε + σ

are both strictly positive. This allows for a type change by having ε = 0 in some re-
gions (eddy current case) and ε strictly positive in others. This eddy current problem 
is well-understood and well-justified, see [21] or [42, Section 5.3]. The problem we want 
to investigate here goes, however, one step further. We assume ε = 0 everywhere and σ
may still vanish in some regions, as e.g. suggested in [5].

In the case ε = 0, we eliminate H and obtain

∂0σE + curlμ−1 ˚curlE = −∂0J (1)



JID:YJFAN AID:108847 /FLA [m1L; v1.297] P.3 (1-45)
D. Pauly et al. / Journal of Functional Analysis ••• (••••) •••••• 3
as a degenerate eddy current problem, which formally has parabolic regions, where σ is 
strictly positive, and elliptic regions, where σ vanishes. Note that this indeed represents a 
particularly degenerate situation for if σ vanishes in some regions, the resulting problem 
still has a null-space, stemming from the infinite-dimensional null-space of the curl-
operator. In the derivation to be carried out below this is in fact the crucial observation.

In a sense the problems discussed in this manuscript can also be regarded as the 
parabolic extension of the framework provided for elliptic type problems presented in 
[38], where nonlinear differential inclusions in divergence form have been discussed.

The extended abstract framework of [26] still allows us to incorporate the degenerate 
situation, where σ is only supported in a bounded subset Ωc of the underlying open set 
Ω (with positive distance to the boundary of Ω).

Although electromagnetic fields are generally accepted to be controlled by Maxwell’s 
equations, it is still well established with engineers, see e.g. [1,11], to discard Maxwell’s 
correction; that is, the displacement current term. It appears that the rigorous justifica-
tion of the above degenerate eddy current problem, where ε = 0 and σ vanishes in some 
region, is still open or rather unattainable.

For a survey concerning the eddy current problem the reader may consult [7, Chapter 
8] and for various variants [17]. We shall furthermore refer to [3,2,4,32] for the eddy 
current problem particularly considered in the time harmonic case. A convergence result 
relating the non-vanishing dielectricity case to the eddy current version of Maxwell’s 
equations is also presented in [32]. We connect this convergence statement to the one 
derived in the concluding section of the paper at hand at the end of this manuscript, see 
Remark 6.3. We refer to [35] for a mathematical treatment of eddy current type problems 
and a selection of applications.

For a treatment of the full time-dependent problem with nowhere vanishing σ, we refer 
to the recent paper [12]. This treatment prerequisites more assumptions on the smooth-
ness of the boundary of the underlying domain (as well as on the magnetic permeability), 
which we wish to avoid here.

More specifically, our investigation is inspired by a series of papers by S. Nicaise et 
al., [20,18,19]. Among other things the so-called A-ϕ approach is addressed in these 
references. We shall comment on this approach, when we present the complete solution 
theory1 for the eddy current problem discussed here, see Remark 4.22.

We will employ the theory of evolutionary equations as laid out in Section 1, see 
[28,26], to analyse the structure of the degenerate eddy current problem. It will prove 
to be beneficial to embed the degenerate eddy current problem into an abstract class of 
degenerate parabolic systems in order to understand the mechanism of well-posedness 

1 A (linear) solution theory (for a linear operator B) comprises not just a description of a class of right-
hand sides f for which a solution u of Bu = f can be found, but also to identify a complete linear space, 
in which the solution can be found. Furthermore, one needs to ensure that for every right-hand side f
produced by an element u in the way that Bu = f , we actually can recover the original u from this right-
hand side by applying the proposed solution procedure. Indeed, here we consider providing a solution theory 
as establishing that the operator is a continuous bijection between its domain and its range as complete 
linear spaces (well-posedness).
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more deeply. After a brief introduction into the theory of a problem class (Section 2), 
which we will refer to as evolutionary equations or evo-systems, we shall investigate the 
mentioned abstract class of degenerate parabolic problems as a special case more closely 
in Section 3.

The application to the degenerate eddy current problem is then given in the concluding 
Section 4. In particular, having reformulated and solved the degenerate eddy current type 
problem, we shall address the validity of the equations one started out with. It appears 
that this a posteriori justification of the original equation has not been addressed in the 
literature as of yet. The application to the eddy current type model is discussed further 
in the concluding 2 sections. There we present an alternative saddle-point formulation for 
the problem at hand, which might be useful for numerical considerations. In fact a similar 
strategy has led to an efficient numerical treatment of Maxwell’s equations (see [34]). 
Moreover, we shall justify the degenerate eddy current model as a regular limit case of 
non-degenerate problems. In the framework presented here, we are thus mathematically 
justifying that the degenerate eddy current problem is indeed approachable by regular 
problems so that the maybe-easier-to-solve degenerate parabolic problem leads to an 
appropriate approximation of the full hyperbolic Maxwell’s equations.

2. A brief introduction to evo-systems

In this section we shall introduce the general abstract problem class we like to use as 
the underlying structure of the derivations to come.

More precisely, we will discuss evolutionary equations, evo-systems for short, in the 
following. These terms are chosen deliberately in order to distinguish from classical 
(explicit) evolution equations, which turn out to be just a special case of the class of 
evo-systems. For convenience of the reader, we gather some necessary information as 
follows.

The starting idea of the evo-system approach is to realise that the time-differentiation 
can be established as a normal operator in a real, weighted L2-type Hilbert space 
H�,0(R; H), � ∈ ]0,∞[, see e.g. [28], characterised by

H�,0 (R, H) =

⎧⎪⎨⎪⎩f ∈ L2,loc (R, H) | |f |�,0,0 :=
√√√√∫

R

|f (t)|2H exp (−2�t) dt < ∞

⎫⎪⎬⎪⎭ ,

where | · |H denotes the norm in the underlying real Hilbert space H. Our choice of a 
real Hilbert space is no important constraint, it merely is an adjustment to account for 
mostly real physical quantities. Note that every complex Hilbert space is in fact a real 
Hilbert space if we restrict scalar multipliers to R and take the real part of the inner 
product as the real inner product.
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The inner product 〈 · | · 〉�,0,0 of H�,0 (R, H) is given by

(φ, ψ) �→
∫
R

〈φ (t) |ψ (t)〉H exp (−2�t) dt,

where 〈 · | · 〉H denotes the inner product of H. We define the time-derivative ∂0,� (or 
just ∂0, if � is clear from the context) to be the distributional derivative with respect to 
the first variable in H�,0(R, H) with maximal domain. We also put H�,1(R, H) := D(∂0)
endowed with 〈∂0 · |∂0· 〉�,0,0 as scalar product. This is a scalar product the induced 
norm of which being equivalent to the graph norm of D(∂0). Indeed, for this ∂0 needs 
to be continuously invertible. This property on the other hand follows from maximal 
accretivity of ∂0. In fact, a simple integration-by-parts procedure shows that

1
2(∂0 + ∂∗

0 ) =: sym(∂0) ⊇
1
2 (∂0 + ∂∗

0) = �,

where � is a short-hand for the operator of multiplying by the scalar value �. So ∂0 is 
(real) strictly positive definite (or accretive). This observation can be lifted to obtain a 
solution theory for systems (evo-systems) of the form(

∂0M
(
∂−1
0
)

+ A
)
U = F,

where here we focus on simple, so-called ‘material law’ operators of the form

M
(
∂−1
0
)

= M0 + ∂−1
0 M1,

where Mk, k ∈ {0, 1}, are certain continuous, linear operators in H. The operator A is 
densely defined and closed in the Hilbert space H. All the operators M0, M1, and A are 
(canonically) lifted to the H-valued space H�,0(R; H) by being applied pointwise with 
maximal domain. Re-using the notation for these lifted operators, we easily verify that 
M0 and M1 are still bounded linear operator in the extended space H�,0(R; H) even 
commuting with ∂0, that is,

Mk∂0 ⊆ ∂0Mk (k ∈ {0, 1}).

A acting in H�,0(R; H) will still be densely defined and closed; the adjoint of the lifted 
A is the lift of the adjoint of A having acted in H. Focusing on the simple material law 
mentioned above, we want to solve evo-systems of the form(

∂0M0 + M1 + A
)
U = F. (2)

By solving this evo-system, we mean to show that for all F ∈ H�,0(R; H) there exists 
a unique U ∈ H�,0(R; H) satisfying (2). In other words, 

(
∂0M0 + M1 + A

)
needs to be 

shown to be continuously invertible.
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Furthermore, in order to render (2) ‘physically meaningful’, we shall show that (2)
also leads to a causal solution operator, which will be quantified in the next theorem 
and roughly means that there is ‘no reaction’ U , if there is ‘no action’ F . We shall 
furthermore refer to [40] and to [42, Chapter 2] for a more detailed account on causality.

The issue in the context of well-posedness of (2); that is, continuous invertibility of (
∂0M0 + M1 + A

)
is, see e.g. [26,42], to establish estimates of the form

〈U | (∂0M0 + M1 + A)U〉�,0,0 ≥ c0 〈U |U〉�,0,0 (U ∈ D(A) ∩D(∂0)), (3)〈
V | (∂0M0 + M1 + A)∗ V

〉
�,0,0 ≥ c0 〈V |V 〉�,0,0 (V ∈ D((∂0M0 + M1 + A)∗)) (4)

for some c0 > 0.
In the following we shall employ the convention to denote by D(C), R(C), N(C) the 

domain, range and kernel of a linear operator C.
We record the following variant of [26, Theorem 2.3] or [42, Theorem 3.4.6]. For this 

we briefly emphasise that in contrast to earlier treatments of this theorem, we shall 
focus on the real Hilbert space case, only. In this way the real parts used for the positive 
definiteness estimates in the mentioned theorems can entirely be dispensed with.

Theorem 2.1. Let M0, M1 ∈ L(H) with M0 = M∗
0 . Moreover, let A : D (A) ⊆ H → H be 

a closed, densely defined linear operator such that

〈W | (�M0 + M1 + A)W 〉H ≥ c0 〈W |W 〉H (5)

〈V | (�M0 + M∗
1 + A∗)V 〉H ≥ c0 〈V |V 〉H (6)

for some c0, �0 ∈ ]0,∞[ and all W ∈ D (A), V ∈ D (A∗) and � ∈ [�0,∞[. Then, equation 
(2) has for every F ∈ H�,0 (R, H) a unique solution U ∈ H�,0 (R, H). Moreover, we have 
for the corresponding solution operator the estimate∣∣∣χ]−∞,a]

(
∂0M0 + M1 + A

)−1
F
∣∣∣
�,0,0

≤ 1
c0

∣∣χ]−∞,a]F
∣∣
�,0,0

for all a ∈ R and F ∈ H�,0 (R, H), that is, we have continuous and causal dependence 
on the data.

Proof. The result largely follows with the general results in [26] and is a special case of 
[42, Theorem 3.4.6] or of [37, Theorem 3.1, Theorem 4.4]. Since, however, the material 
law is more elementary here, we outline – for sake of transparency and to remain self-
contained – a more straightforward independent proof. By density of D(A) in H, we 
obtain that D(A)-valued continuously differentiable functions with compact support are 
dense in H�,0(R; H).

Thus, letting U ∈ C̊1(R; D(A)) and using the Cauchy–Schwarz inequality as well as 
integration by parts, we obtain
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∣∣χ]−∞,a]U
∣∣
�,0,0

∣∣χ]−∞,a] (∂0M0 + M1 + A)U
∣∣
�,0,0

≥
〈
χ]−∞,a]U | (∂0M0 + M1 + A)U

〉
�,0,0

=
a∫

−∞

〈U | (∂0M0 + M1 + A)U〉H (t) exp (−2�t) dt

=
a∫

−∞

1
2 〈U |M0U〉′H (t) exp (−2�t) dt +

a∫
−∞

〈U |M1U〉H (t) exp (−2�t) dt

+
a∫

−∞

〈U |AU〉H (t) exp (−2�t) dt

= 1
2 〈U |M0U〉H (a) exp (−2�a) + �

a∫
−∞

〈U |M0U〉H (t) exp (−2�t) dt (7)

+
a∫

−∞

〈U |M1U〉H (t) exp (−2�t) dt +
a∫

−∞

〈U |AU〉H (t) exp (−2�t) dt

≥ �

a∫
−∞

〈U |M0U〉H (t) exp (−2�t) dt +
a∫

−∞

〈U |M1U〉H (t) exp (−2�t) dt

+
a∫

−∞

〈U |AU〉H (t) exp (−2�t) dt

=
a∫

−∞

〈U | (�M0 + M1 + A)U〉H (t) exp (−2�t) dt

≥ c0
〈
χ]−∞,a]U |χ]−∞,a]U

〉
�,0,0 .

Letting a → ∞ in (7) we get (3) with a density argument. Similarly, we obtain (4)
by re-doing the above estimate for a = ∞ and A replaced by A∗ (in which case there 
is no point-evaluation at the upper time boundary value and we need to confirm that 
(∂0M0 + M1 + A)∗ = ∂∗

0M0 + M∗
1 + A∗, which in turn follows using suitable density 

arguments as for instance in [30, the proof of Theorem 2.13]). Thus 
(
∂0M0 + M1 + A

)−1

is continuous. Hence, from N
(
(∂0M0 + M1 + A)∗

)
= N

(
∂∗
0M0 + M∗

1 + A∗
)

= {0}, we 

infer that 
(
∂0M0 + M1 + A

)−1 is also everywhere defined. Moreover, the above estimate 
(7) shows

∣∣∣χ]−∞,a]

(
∂0M0 + M1 + A

)−1
F
∣∣∣ ≤ 1 ∣∣χ]−∞,a]F

∣∣
�,0,0 (8)
�,0,0 c0



JID:YJFAN AID:108847 /FLA [m1L; v1.297] P.8 (1-45)
8 D. Pauly et al. / Journal of Functional Analysis ••• (••••) ••••••
for all a ∈ R and F ∈ H�,0 (R, H). If F = 0 on the time interval ] −∞, a] then we read 
off that also the solution U must vanish on this time-interval; that is, we have causality. 
Letting a → ∞ in (8) shows continuous dependence in the form∥∥∥(∂0M0 + M1 + A)

−1∥∥∥ ≤ 1
c0

. �
Remark 2.2. We identify the dual spaces

H = H ′,

H�,0 (R) = H�,0 (R)′ ,

and so we have

H�,0 (R, H) = H�,0 (R, H)′ .

Moreover, the dual (∂∗
0)� of the — by choice of inner product — unitary operator 

∂∗
0 ιH�,1(R,H) : H�,1 (R, H) → H�,0 (R, H) — has an extension to a continuous opera-

tor for which we keep the notation ∂0 and so

∂0 : H�,0 (R, H) → H�,−1 (R, H) := H�,1 (R, H)′ .

Similarly, the continuous mapping

A∗ιH�,0(R,D(A∗)) : H�,0 (R, D (A∗)) → H�,0 (R, H)

has as dual

(A∗)� =
(
A∗ιH�,0(R,D(A∗))

)� : H�,0 (R, H) → H�,0
(
R, D (A∗)′

)
,

which may be considered as a continuous extension of A and so justifies (with some care) 
to keep A as a notation for (A∗)�.2

Indeed, for Ψ ∈ H�,0(R, D(A∗)) we compute(
(A∗)� Φ

)
(Ψ) :=

〈
Ψ| (A∗)� Φ

〉
�,0,0 = 〈A∗Ψ|Φ〉�,0,0

for all Φ ∈ H�,0 (R, D (A)), in which case AΦ = (A∗)� Φ and by continuous extension 
also to Φ ∈ H�,0 (R, H). We have for a solution of the evo-system (2) that

∂0M0U + M1U + AU = F

2 Note that we routinely use D (A) for the domain of A also for the corresponding Hilbert space with 
respect to the graph inner product of A. In this sense D (A∗)′ denotes the dual Hilbert space of the Hilbert 
space D (A∗).
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holds in the space H�,−1
(
R, D (A∗)′

)
. Note that

H�,−1
(
R, D (A∗)′

)
⊇ H�,−1 (R, H) ∩H�,0

(
R, D (A∗)′

)
.

We shall use this observation to conveniently drop the closure bar in equations of the 
form (2).

Remark 2.3. (a) In the case of a simple material law as used here it is interesting to 
note that the result easily carries over to a local-in-time formulation. Indeed, the time-
derivative restricted to a finite time-interval [0, T ], T ∈ ]0,∞[, given as the closure 
∂0,�,]0,T ] of ∂0 restricted to C̊1 (]0, T ], H) in H�,0 (]0, T [ , H) loses the skew-selfadjointness, 
keeps, however, the maximal accretivity. We emphasise the parentheses of the interval in 
the index of the time-derivative operator: ∂0,�,]0,T ] has a zero boundary condition at 0, 
and no boundary condition at T ; whereas ∂0,�,[0,T [ (defined as ∂0,�,]0,T ] with ]0, T ] being 
interchanged by [0, T [) has no boundary condition at 0 and a zero boundary condition 
at T . In classical terms, we have

D(∂0,�,]0,T ]) = {φ ∈ H1(0, T );φ(0) = 0},

D(∂0,�,[0,T [) = {φ ∈ H1(0, T );φ(T ) = 0}.

For the closure ∂0,�,[0,T [ we still have ∂∗
0,�,]0,T ] = −∂0,�,[0,T [ + 2�. Thus, it is rather 

straightforward to see

∂0,�,]0,T ], ∂
∗
0,�,]0,T ] ≥ �,

which allows the solution theory of

∂0,�M0 + M1 + A

to be carried over to

∂0,�,]0,T ]M0 + M1 + A.

In this sense the above solution strategy also carries over to problems with finite time 
horizon. For this, we also refer to [14] for a numerical treatment of evo-systems. Regarding 
numerics, we shall furthermore refer to the Section 5.

(b) It is also possible to use the above derived solution theory for incorporating initial 
value problems. For this there are at least two possibilities. One is to require that the 
initial datum U0 is in the domain of A. Then one can show that for the unique solution 
V of

(∂0M0 + M1 + A)V = −χ[0,∞)M1U0 − χ[0,∞)AU0,
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it follows that U = V + χ[0,∞)U0 satisfies the initial value problem

{
(∂0M0 + M1 + A)U = 0 on (0,∞)
(M0U)(0+) = M0U0

in an appropriate sense. It is also possible to extend the solution operator
(∂0M0 + M1 + A)−1 to a continuous linear operator S from H�,−1(R; H) into itself. 
It can then be shown that the solution U of the just introduced initial value problem 
satisfies

U = Sδ0M0U0,

where δ0 is the Dirac delta-distribution. Interestingly, the latter formulation is also well-
defined for U0 /∈ D(A) and, thus, serves as a generalisation for the initial value problem 
for less regular initial data; we refer to [28, Chapter 6], [33, Lecture 9] for the details.

Our focus in the following will be on a rather particular subclass, where M1 = 0 and 
A = C∗C for a closed, densely defined operator C with closed range. The coefficient 
M0 may have a non-trivial null space but, as we shall see, that 0 is in the resolvent set 
of the reduction of C∗C to the subspace R (C∗), which is also closed, can be used to 
compensate for this short-coming. Recall that for elliptic problems; that is, for M0 = 0, 
the strategy of projecting onto R(C∗) has been successfully applied also to non-linear 
(abstract) differential inclusions, see [38]. Also in [38], the crucial assumption for the 
well-posedness was a closed range condition.

3. A class of degenerate abstract parabolic equations

In this whole section, we let H and X be Hilbert spaces and let η ∈ L(H) be a 
bounded, selfadjoint, non-negative operator. Furthermore, let

C : D (C) ⊆ H → X

be closed and densely defined; throughout assume C to have a closed range.
Abstractly speaking, we want to consider

(
∂0η + C∗C

)
U = F. (9)

Remark 3.1. Note that the equation holds in the form

∂0ηU + C∗C U = F

if considered in the space
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H�,−1
(
R, D (C∗C)′

)
.

This is clear from Remark 2.2. Henceforth, we shall therefore dispose of the closure bar 
in equations of the form (9) unless it is needed for sake of clarity.

Without having looked at this equation in detail, it is immediately clear, where de-
generacies might arise. Indeed, if U attains non-zero values in N(η) ∩N(C); that is, if 
U ∈ H�,0 (R, N (η) ∩N (C)) we have

∂0ηU + C∗CU = 0,

and so if N (η) ∩N (C) is not trivial, well-posedness for (9) is out of reach. Hence, the 
term ‘degenerate’. We shall come back to this issue in a moment’s time. Following the 
solution strategy for evo-systems as it has been sketched in the previous section, we 
realise that the issue in the context of well-posedness is to establish estimates of the 
form

〈U | (∂0η + C∗C)U〉�,0,0 =
〈
η1/2U |∂0η

1/2U
〉
�,0,0

+ 〈CU |CU〉�,0,0

≥ c0 〈U |U〉�,0,0 ,〈
U | (∂0η + C∗C)∗ U

〉
�,0,0 =

〈
η1/2U |∂∗

0η
1/2U

〉
�,0,0

+ 〈CU |CU〉�,0,0

≥ c0 〈U |U〉�,0,0 .

Since, due to the density of elements with compact time support in D (∂0),〈
η1/2U |∂∗

0η
1/2U

〉
�,0,0

=
〈
η1/2U |∂0η

1/2U
〉
�,0,0

= �
∣∣∣η1/2U

∣∣∣2
�,0,0

we only need to consider one of the estimates, thus we need to have

�
∣∣∣η1/2U

∣∣∣2
�,0,0

+ |CU |2�,0,0 ≥ c0 |U |2�,0,0 , (10)

which again emphasises that the Hilbert space we choose U from cannot contain the 
space H�,0 (R, N (η) ∩N (C)).

It is the aim of this section to show that restricting our attention to the orthogonal 
complement of N (η) ∩ N (C) as well as assuming an estimate of the type (10) for U
attaining values in

H0 := (N (η) ∩N (C))⊥ ⊆ H

leads to well-posedness and causality with state space H0. Since both η and C are 
operators acting on the ‘spatial’ Hilbert space, only, it is possible to provide an equivalent 
formulation, which only uses the spatial scalar product.
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Proposition 3.2. Let C and η be as above. Then the following conditions are equivalent:

1. There exists � > 0 and c0 > 0 such that for all U ∈ H�,0 (R, H0 ∩D(C)) we have

�
∣∣∣η1/2U

∣∣∣2
�,0,0

+ |CU |2�,0,0 ≥ c0 |U |2�,0,0 .

2. There exists c0 > 0 such that for all U ∈ H0 ∩D(C) we have∣∣∣η1/2U
∣∣∣2
H

+ |CU |2X ≥ c0 |U |2H .

Proof. An easy density argument implies that the second inequality implies the first one 
with � = 1 and the same c0 > 0. Thus, it remains to show the converse implication. For 
this, note that with �∗ := max{�, 1} we have for all U ∈ H�,0 (R, H0 ∩D(C))∣∣∣η1/2U

∣∣∣2
�,0,0

+ |CU |2�,0,0 ≥ c0
�∗

|U |2�,0,0 .

Let x ∈ H0 ∩ D(C). Using the latter inequality for U(t) := exp(�t)x for t ∈ [0, 1] and 
U(t) = 0 for t < 0 and t > 1, we infer the desired inequality. �

Next, note that, since elements in N (η) ∩N (C) are orthogonal to R (C∗) and R (η)
and if C and consequently C∗ are operators with closed range we may reduce the operator 
C to H0 := (N (η) ∩N (C))⊥. Indeed, as we shall see next, the operator

C0 : D (C) ∩H0 ⊆ H0 → X

u �→ Cu

retain the closedness of the range and is also still densely defined. With ιH0→H denoting 
the canonical isometric embedding of H0 as a subspace of H, we have

C0 = CιH0→H .

The mentioned properties of C0 are proved next.

Lemma 3.3. The operator C0 is closed, densely defined and has a closed range.

Proof. It is

H = H0 ⊕H⊥
0

and

H⊥
0 = N (η) ∩N (C) ⊆ N (C) ⊆ D (C)
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and so

D (C) = (D (C) ∩H0) ⊕H⊥
0 .

The density of D (C0) = D (C) ∩ H0 in H0 now follows from the continuity of the 
orthogonal projector PH0 onto H0. Indeed, let x∞ ∈ H0. Then we find a sequence (xn)n in 
D(C) such that xn → x∞. Thus, also PH0xn → PH0x∞ = x∞. Since, (1 −PH0)xn ∈ D(C)
for all n ∈ N by the argument above, we infer that (PH0xn)n∈N is, in fact, a sequence 
in D(C0) showing that C0 is densely defined.

Since C0 = C ∩ (H0 ⊕ X), where we identify the operators with their graphs, the 
closedness of C0 follows.

We are left with showing the closedness of the range of C0. For this, let z be a sequence 
in H0 such that C0z = Cz → w∞ for some w∞ ∈ X. Then by the closedness of the range 
of C we have

Cx∗ = w∞

for some x∗ ∈ D (C). Since

w∞ = Cx∗ = CPH0x∗ = C0 (PH0x∗) ,

we confirm that w∞ ∈ R(C0) finally proving that indeed closedness of the range is 
preserved. �
Lemma 3.4. We have

C∗
0 = ι∗H0→HC∗.

Proof. Since C0 is densely defined we obtain the assertion with [27, Theorem 1.2]. �
Thus, we are led to study the reduced – by construction injective – operator

∂0η0 + C∗
0C0 = ι∗H0→H (∂0η + C∗C) ιH0→H

with η0 := ι∗H0→HηιH0→H now being selfadjoint in H0.
To proceed with our approach we need to assume moreover for some c1 > 0∣∣∣η1/2

0 U
∣∣∣2
H0

+ |C0U |2X ≥ c1 |U |2H0
(11)

for all U ∈ D (C0).

Remark 3.5. Note that (11) is equivalent to the inequalities asserted in Proposition 3.2. 
For this, we observe that for all U ∈ H0∩D(C) = D(C0) we have C0U = CU . Moreover, 
for U ∈ H0 we compute
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∣∣∣η1/2
0 U

∣∣∣2
H0

= 〈η1/2
0 U |η1/2

0 U〉H0

= 〈U |η0U〉H0

= 〈U |ι∗H0→HηιH0→HU〉H0

= 〈ιH0→HU |ηιH0→HU〉H0

= 〈U |ηU〉H

=
∣∣∣η1/2U

∣∣∣2
H
,

which yields the desired equivalence.

The latter assumption leads to well-posedness of the evo-system under consideration 
in the state space H0.

Proposition 3.6. Assume (11). Then ∂0η0 + C∗
0C0 is continuously invertible in H�,0(R, H0)

for all � ≥ 1.

Proof. In order to prove this theorem, it suffices to apply Theorem 2.1 to M0 = η0
and A = C∗

0C0 note that it is easy to see that the positive definiteness conditions of 
Theorem 2.1 are then satisfied due to assumption (11). �

The next result relates the solution U of

(
∂0η0 + C∗

0C0
)
U = f (12)

or

(
η + C∗

0C0∂
−1
0
)
U = ∂−1

0 f (13)

in H0 to the equation (9).

Proposition 3.7. Assume (11). Let U :=
(
∂0η0 + C∗

0C0
)−1

F for some F ∈ H�,0(R, H0)
for some � ≥ 1. Then U satisfies (9).

Proof. Since ∂−1
0 commutes with 

(
∂0η0 + C∗

0C0
)−1, we infer that (13) is in fact a con-

sequence of (12). Moreover, we read off that

∂−1
0 U ∈ D (C∗

0C0)

and so in particular

C∗
0C0∂

−1
0 U = C∗C∂−1

0 U (14)
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and

η0U = ηU. (15)

Indeed, since 〈
φ|C∗

0C0∂
−1
0 U

〉
H

=
〈
C0φ|C0∂

−1
0 U

〉
X

=
〈
Cφ|C∂−1

0 U
〉
X

and

〈φ|η0U〉H = 〈φ|ηU〉H

for all φ ∈ D (C0) = D (C) ∩H0, as well as〈
ψ|C∗

0C0∂
−1
0 U

〉
H

=
〈
Cψ|C∂−1

0 U
〉
X

= 0

and

〈ψ|η0U〉H = 〈ψ|ηU〉H = 0

for ψ ∈ H⊥
0 = N (C) ∩N (η), we have〈

V |C∗
0C0∂

−1
0 U

〉
H

=
〈
CV |C∂−1

0 U
〉
X

and

〈V |η0U〉H = 〈V |ηU〉H

for all V ∈ D (C). Thus, we read off (15) and

C∂−1
0 U ∈ D (C∗)

as well as

C∗
0C0∂

−1
0 U = C∗C∂−1

0 U,

that is, (14). Letting now

V := −C∂−1
0 U

we obtain

V + C∂−1
0 U = 0,

ηU − C∗V = ∂−1F.
(16)
0
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Thus, we find that

∂0V + CU = 0,
ηU − C∗V = ∂−1

0 F,
(17)

and so also

∂0ηU + C∗CU = F

hold in a distributional sense. In particular, this confirms that we have indeed solved the 
original equation (9). �
Remark 3.8. For F ∈ H�,0(R; H0) we set U := (∂0η0 + C∗

0C0)−1F ∈ H�,0(R; H). 
Then, there exists a sequence (Un)n∈N in H�,1(R; D(C∗

0C0)) such Un → U and 
(∂0η0 + C∗

0C0)Un → F . For n ∈ N we estimate

|C0Un|2�,0,0 ≤ �〈η0Un|Un〉�,0,0 + 〈C∗
0C0Un|Un〉�,0,0

= 〈(∂0η0 + C∗
0C0)Un|Un〉�,0,0 (18)

and since the right-hand side is bounded, we infer that (up to a subsequence) C0Un ⇀ w

for some w ∈ H�,0(R; X). By the closedness (and hence, weak closedness) of C0, we 
derive that U ∈ D(C0) and w = C0u. In particular |C0U |�,0,0 ≤ lim infn→∞ |C0Un|�,0,0. 
Letting n tend to infinity in (18) we get

〈F |U〉�,0,0 = �〈η0U |U〉�,0,0 + lim
n→∞

〈C0Un|C0Un〉�,0,0

≥ �〈η0U |U〉�,0,0 + 〈C0U |C0U〉�,0,0

= 1
2 (2�〈η0U |U〉�,0,0 + 〈C0U |C0U〉�,0,0) + 1

2 〈C0U |C0U〉�,0,0

≥ 1
2c1|U |2�,0,0 + 1

2 |C0U |2�,0,0

≥ c̃1|U |2�,0,1

with c̃1 := 1
2 min{1, c1}. Estimating the left hand side by |F |�,0,−1|U |�,0,1 we end up with

|U |�,0,1 ≤ 1
c̃1

|F |�,0,−1.

Thus, the solution operator S attains values in H�,0(R; D(C0)) and can be extended 
continuously to H�,0(R; D(C∗

0 )′). This is a refinement of the earlier observation in the 
general case, see Remarks 2.2 and 3.1.
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Example 3.9. As a quick example, it might be illustrative to apply the observations in 
the previous remark to the (non-degenerate) case of the heat equation. So, take η = 1
to be the identity in H = L2(Ω) and C = ˚grad with D(C) = H1

0 (Ω). Then the previous 
remark confirmed a solution theory for the heat equation (∂0 − Δ)U = F for right-hand 
sides F taking values in H−1(Ω). By the general theory developed here, we obtain that 
U assumes values even in H1

0 (Ω).

For sake of later reference let us summarise the core of the above observations in the 
following theorem.

Theorem 3.10. Let C : D (C) ⊆ H → X be a closed densely defined linear operator 
with closed range and such that (11) holds. Then, for every F ∈ H�,0 (R, D(C∗

0 )′) there 
is a unique (weak) solution U ∈ H�,0 (R, D (C0)) of (13) or equivalently of the system 
(16). Moreover the solution operator S : H�,0 (R, H0) → H�,0 (R, D (C0)) is continuous 
(| · |�,0,1 denotes the norm of H�,0 (R, D (C0)) and causal in the sense that

∣∣χ]−∞,a]SF
∣∣
�,0,1 ≤ C1

∣∣χ]−∞,a]F
∣∣
�,0,−1

for some positive C1 uniformly in a ∈ R and F ∈ H�,0 (R, H0) as long as � ∈ ]0,∞[ is 
sufficiently large.

Proof. The result largely follows from our previous considerations. The sharper regular-
ity statement U ∈ H�,0 (R, D (C0)) and the sharper continuous dependence statement 
follows by Remark 3.8. The claim of causality follows from a slight refinement of the 
estimates along the reasoning of Remark 3.8. Indeed, we have for all sufficiently large 
� ∈ ]0,∞[

∣∣χ]−∞,a]U
∣∣
�,0,1

∣∣χ]−∞,a] (∂0η0 + C∗
0C0)U

∣∣
�,0,−1

≥
〈
χ]−∞,a]U | (∂0η0 + C∗

0C0)U
〉
�,0,0

= �
∣∣∣η1/2

0 χ]−∞,a]U
∣∣∣2
�,0,0

+ 1
2

∣∣∣η1/2
0 U (a)

∣∣∣2
0
exp (−2�a) +

∣∣C0χ]−∞,a]U
∣∣2
�,0,0

≥ 1
2c1
∣∣χ]−∞,a]U

∣∣2
�,0,0 + 1

2
∣∣C0χ]−∞,a]U

∣∣2
�,0,0

≥ 1
2c1
(∣∣χ]−∞,a]U

∣∣2
�,0,0 +

∣∣C0χ]−∞,a]U
∣∣2
�,0,0

)
= 1

2c1
∣∣χ]−∞,a]U

∣∣2
�,0,1

for U ∈ H�,1(R; D(C∗
0C0)) from which

∣∣χ]−∞,a]U
∣∣
�,0,1 ≤ 2

c1

∣∣χ]−∞,a] (∂0η0 + C∗
0C0)U

∣∣
�,0,−1

follows. The result then follows by continuous extension. �
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Note that the estimate obtained here is a slightly stronger causality estimate than 
available in the general case of Theorem 2.1.

Remark 3.11. Of course we also have (since |φ|�,0,0 ≤ |φ|�,0,1 for φ ∈ H�,0 (R, D (C0)))

|SF |D(∂0η0+C∗
0C0

) ≤√1 + C2
1 |F |�,0,0 .

We also note the resulting energy balance law for solutions of (9).

Theorem 3.12. (Energy balance law) For a right-hand side F ∈ H�,1 (R, H0) with F = 0
on [T0, T1] we have for the solution U ∈ H�,1 (R, D (C0))

1
2 〈U |ηU〉H (T1) +

∫
[T0,T1]

〈CU |CU〉H =

= 1
2 〈U |ηU〉H (T0) .

Proof. For F = 0 on [T0, T1] we have

0 =
∫

[T0,T1]

〈U |∂0ηU〉H +
∫

[T0,T1]

〈CU |CU〉H

= 1
2 〈U |ηU〉H (T1) −

1
2 〈U |ηU〉H (T0) +

+
∫

[T0,T1]

〈CU |CU〉H ,

where we have used the Sobolev embedding theorem to justify the integration by parts. 
Furthermore note that the time-derivative commutes with the solution operator. �

For later purposes we analyse the underlying Hilbert spaces

H = H0 ⊕H⊥
0

H0 = (N (C) ∩N (η))⊥

further. For a Hilbert space K and a subspace L ⊆ K, we define

K � L := K ∩ L⊥.

Lemma 3.13. We have

H0 = R (C∗) ⊕ (N (C) ∩H0)

= R (C∗) ⊕
(
N (C) ∩R (η)

)
⊕
(
(N (C) ∩H0) �

(
N (C) ∩R (η)

))
.
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Proof. By the projection theorem we have

H = R(C∗) ⊕N(C).

Intersecting both sides with H0 and using that R(C∗) = N(C)⊥ ⊆ H0 we obtain the first 
decomposition. For the second one, we observe that N(C) ∩ R (η) is a closed subspace 
of N(C) ∩H0, since R (η) = N(η)⊥ ⊆ H0. Hence, by the projection theorem

N(C) ∩H0 =
(
N(C) ∩R (η)

)
⊕
(
(N(C) ∩H0) �

(
N(C) ∩R (η)

))
yielding the second decomposition. �
Example 3.14. As a more elaborate illustrational example let us consider the solution 
to the linear part of the so-called “bidomain model”3 used in cardiac electrophysiology, 
see [8]. For this let Ω ⊆ Rd be open, bounded and connected satisfying the segment 
property. The equation in question is given by(

∂0

(
1 1
1 1

)
+ C∗C

)
U = F

with some given data F taking values in the state space

H = L2 (Ω) ⊕ L2 (Ω)

and

C =
(√

σ1 0
0 √

σ2

)(
grad 0

0 grad

)

with σk ∈ L(L2(Ω, Rd)), k ∈ {1, 2}, selfadjoint and strictly positive definite with D(C) =
H1(Ω) ⊕H1(Ω) and X = L2(Ω)d ⊕ L2(Ω)d as well as

η =
(

1 1
1 1

)
.

Note that grad (and therefore also C) has closed range, as a standard contradiction 
argument using the compactness of the embedding H1(Ω) ↪→ L2(Ω) eventually proving 
a Poincare-type estimate shows; in fact we have

|u|L2(Ω) ≤ k |gradu|L2(Ω,Rd) (19)

3 We are indebted to Ralph Chill for drawing our attention to this model.
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for all u ∈ D(grad) with 
∫
Ω u = 0 and some k ≥ 0.

Next, we aim at applying our abstract findings. In particular, we need to establish 
the estimate in (11). For this, let us describe the reduced state space, H0, first. We have

H0 = (N (η) ∩N (C))⊥

=
{
V ∈ L2(Ω) ⊕ L2(Ω)

∣∣V =
(

u

−u

)
for some u ∈ N(grad)

}⊥

=
{
V ∈ L2(Ω) ⊕ L2(Ω)

∣∣V = α

(
χΩ
−χΩ

)
for some α ∈ R

}⊥

=

⎧⎨⎩(W1,W2) ∈ L2(Ω) ⊕ L2(Ω)
∣∣ ∫
Ω

W1(x)dx =
∫
Ω

W2(x)dx

⎫⎬⎭ ,

where in the second last equality we have used that Ω is connected in order to have that 
N(grad) = spanχΩ. According to our abstract theory we need an estimate of the form∣∣PR(η)U

∣∣2
H

+ |C0U |2X ≥ c∗ |U |2H ,

holding for all

U ∈ D (C0) ⊆ H0 = R (C∗) ⊕ (N (C) ∩R (η)) ⊕ ((N (C) ∩H0) � (N (C) ∩R (η)))

for some c∗ > 0 and where PR(η) denotes the projection onto the range R (η) = R (η) of 
η. Take U = U0 + U1 + U2 in the sense of this orthogonal decomposition. First we note 
that

N (C) ∩R (η) =
{
α

(
χΩ

χΩ

)∣∣∣α ∈ R

}

and

N (C) ∩H0 =
{
α

(
χΩ

−χΩ

)∣∣∣α ∈ R

}
,

so

U2 = 0.

Thus, we infer that

H0 = R (C∗) ⊕ (N (C) ∩R (η)) .
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Moreover, by (19) and the assumptions on σk, we find c > 0 satisfying

c |U0|H ≤ |CU0|H (U0 ∈ R(C∗) ∩D(C)).

Hence, for all U ∈ D(C0) we have with U = U0 + U1 for uniquely determined U0 ∈
R(C∗) ∩D(C) and U1 ∈ N(C) ∩R(η) that∣∣PR(η)U

∣∣2
H

+ |C0U |2X =
∣∣PR(η)U0 + U1

∣∣2
H

+ |C0U0|2X
=
∣∣PR(η)U0

∣∣2
H

+ |U1|2H + 2〈PR(η)U0, U1〉H + |C0U0|2X
=
∣∣PR(η)U0

∣∣2
H

+ |U1|2H + 2〈U0, U1〉H + |C0U0|2X
=
∣∣PR(η)U0

∣∣2
H

+ |U1|2H + |C0U0|2X
≥ |U1|2H + c2 |U0|2H .

Thus, we found as desired∣∣PR(η)U
∣∣2
H

+ |C0U |2X ≥ min
{
1, c2

}
|U |2H .

Therefore, well-posedness of the evo-system is implied by Theorem 3.10. Moreover, since 
η [R (C∗)] ⊆ R (C∗) the problem can be further reduced to an evo-system in the subspace 
R (C∗) and an ordinary differential equation in N (C) ∩ R (C). This insight might be 
useful, when dealing with problems in the light of homogenisation, see e.g. [39, Theorem 
4.7] for this.

4. Application to a degenerate evo-system associated with the eddy current problem

In this section, we shall now turn to our main application. Consider the system

σE − curl H = −J
∂0μH + ˚curlE = K

(20)

in an arbitrary non-empty open bounded set Ω ⊆ R3 with connected boundary. We will 
require more regularity properties for Ω, in the following.

After having specified the constituents of this system of two equations, we shall re-
formulate the system in order to be in a position to apply our general well-posedness 
theorem. This reformulation will then be studied and related to the system (20). We 
shall show that the solution for the reformulation yields a solution for the equation, we 
started out with. In view of the particular situation of the eddy current model at hand, 
though this being a natural property to ask for, it appears to have been overlooked in 
the literature so far.

We specify the operators occurring in (20) next. The operator ˚curl denotes the closure 
of the classical vector analytic operation curl defined on C∞-vector fields with compact 
support in Ω considered as a mapping in L2 (Ω,R3); that is,
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˚curl : D( ˚curl) ⊆ L2(Ω,R3) → L2(Ω,R3)

given by

φ ∈ D( ˚curl), ψ = ˚curlφ

⇐⇒ There exists a sequence (φn)n in C̊∞(Ω,R3) such that

φn → φ and

⎛⎜⎝ ∂2φn,3 − ∂3φn,2
∂3φn,1 − ∂1φn,3
∂1φn,2 − ∂2φn,1

⎞⎟⎠→ ψ in L2(Ω,R3) as n → ∞.

We emphasise that for smooth Ω belonging to the domain of D( ˚curl) is equivalent to the 
(classical) vanishing of tangential component at the boundary. We define

curl :=
(

˚curl
)∗

,

which is the so-called weak curl-derivative in L2 (Ω,R3). The equations can now be 
written as a block operator matrix system as(

∂0

(
0 0
0 μ

)
+
(
σ 0
0 0

)
+
(

0 − curl
˚curl 0

))(
E
H

)
=
(
−J
K

)
. (21)

Remark 4.1. It might seem unphysical to assume a non-zero source term K on the right-
hand side. In the formulation of evolutionary equations in particular concerning the 
reformulation of appropriate initial value problems as evolutionary equations with par-
ticular right-hand side it so happens that K might be non-zero. We refer to Remark 2.3(b) 
and to [33, Example 9.44] for the details.

Furthermore, assume that

μ : L2 (Ω) → L2 (Ω)

is selfadjoint and strictly positive definite. The assumption on σ : L2 (Ω) → L2 (Ω)
is less standard. We shall assume a certain degree of degeneracy, which is specified in 
the following assumption. For convenience of the reader we denote the vector analytical 
operators defined on the whole of Ω by curl, grad, and div (and the respective ones with 
full homogeneous boundary conditions by ˚curl, ˚grad, and d̊iv). For operators defined on 
other domains Ωc, we shall use this domain as an index to refer to these operators such 
as for example gradΩc

(the operator ˚gradΩc
is the operator acting as gradΩc

with domain 
restricted to H1

0 (Ωc)).

Remark 4.2. As Ω is bounded, we have that R( ˚grad) is closed by Poincaré’s inequality. 
Moreover, R( ˚grad) ⊆ N( ˚curl) and thus, the projection theorem gives
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N( ˚curl) = R( ˚grad) ⊕
(
R( ˚grad)⊥ ∩N( ˚curl)

)
= R( ˚grad) ⊕

(
N(div) ∩N( ˚curl)

)
.

The space

HD,Ω := N(div) ∩N( ˚curl)

is known as the space of harmonic Dirichlet fields. Since the boundary of Ω is connected, 
it follows that HD,Ω = {0} by [23, Theorem 1] and thus,

N( ˚curl) = R( ˚grad). (22)

Assumption 4.3. Let Ωc ⊆ Ω be open. Moreover, assume that Ωc ⊆ Ω and that Ωc has 
a (3-dimensional) Lebesgue null set as topological boundary and is such that Ωc has 
finitely many connected components and the connected components of Ωc have disjoint 
closures. We also assume that Ωc is such that

D(gradΩc
) = χΩc

[
D( ˚grad)

]
. (23)

Let

σ̃ : L2 (Ωc,R
3)→ L2 (Ωc,R

3)
such that σ̃ is strictly positive definite. We shall assume that σ is degenerate in the sense 
that4

σ = ιΩc
σ̃ ι∗Ωc

.

We note here that (23) indeed is a regularity requirement for Ωc. In maybe more 
familiar terms, this requirement equivalently reads as

H1(Ωc) = {φ ∈ L2(Ωc)| there is φ̃ ∈ H1
0 (Ω) such that χΩc φ̃ = φ}.

Remark 4.4. We comment some more on the condition (23). Since for every open set 
Ωc ⊆ R3, a function u ∈ H1

0 (Ωc) if and only if

4 In this case

χΩc
:= ιΩc

ι
∗
Ωc

is the orthogonal projector PR(σ) from H = L2 (Ω,R3) onto the closed linear subspace R(σ) =
ιΩc

[
L2 (Ωc,R

3)] (the canonical embedding ιΩc
of L2 (Ωc,R

3) into L2 (Ω,R3) is via “extension by zero”).
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ũ :=
{
u on Ωc

0 else
∈ H1(R3),

the requirement (23) is equivalent of Ωc being an H1-extension domain (see [15] for the 
definition). The Calderon–Stein theorem asserts that Lipschitz domains are H1-extension 
domains. An improvement of this result can be found in [16], which holds for so-called 
uniform domains allowing the boundary of Ωc to have any Hausdorff dimension strictly 
less than 3. A necessary criterion, however, is due to [15, Theorem 2] the measure density 
condition; that is, there exists c > 0 such that for all x ∈ Ωc and 0 < r ≤ 1 we have

λ(B(x, r) ∩ Ωc) ≥ cr3,

where λ(·) denotes the Lebesgue measure in R3. Thus, all domains Ωc failing this 
condition are no H1-extension domains. Furthermore, if Ωc has cracks of big enough 
Hausdorff-dimension (see e.g. [18] for a two-dimensional setting), Ωc is no H1-extension 
domain.

We record an elementary consequence of the assumptions on σ.

Proposition 4.5. Assume Assumption 4.3 to be in effect. Then

R (σ) = R
(
χΩc

)
= L2 (Ωc,R

3) ,
N (σ) = R

(
1 − χΩc

)
= L2 (Ω,R3)� L2 (Ωc,R

3) ,
= L2 (Ω \ Ωc,R

3) ,
where L2 (Ωc,R3) , L2 (Ω \ Ωc,R3) are considered as subspaces of L2 (Ω,R3) via exten-
sion by zero.

For the transcription of (20) into a problem of the form (9), we need to warrant the 
closed range condition first. This, in turn, is a regularity requirement for Ω:

Assumption 4.6. Let Ω be such that ˚curl and consequently its adjoint curl have closed 
range:

R
(

˚curl
)
, R (curl) closed. (24)

Remark 4.7. A closed range requirement is the fundamental property of linear equation 
theory (see e.g. [38] for a corresponding result in elliptic theory) and linear operator 
equations with an operator having closed range are therefore, since the beginning of 
last century also referred to as normally solvable. That for exterior domains or for R3

the differential operators (without or with associated homogeneous boundary condition) 
grad, ˚grad, curl, ˚curl, div, d̊iv have no closed range in an L2-setting, can be shown by ap-
proximations of the regularised fundamental solution of the scalar or vectorial Laplacian. 
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Note that for grad, ˚grad, the closedness of the range is equivalent (this equivalence is due 
to the closed graph theorem, see e.g. [38, Remarks 3.2]) to Poincaré’s inequality, which 
holds for Ω of bounded width, in particular for pipes and slabs, where Rellich’s selection 
theorem fails. For R (curl) and R

(
˚curl
)

closedness has so far only been obtained via 
a compact embedding result. Open subsets of Riemannian manifold allowing for such a 
compact embedding result have been described in [29], asking for Ω to satisfy only rather 
mild conditions (e.g., strictly weaker than C1,1-domains and particularly not allowing 
for Gaffney’s inequality to hold). We shall particularly refer to [6] for other boundary 
conditions.

For later use, we shall further record the last two remaining regularity properties 
needed for our well-posedness theorem to apply.

Assumption 4.8. Assume Assumption 4.3 to be in effect. We shall assume that

N( ˚curl) ∩ L2(Ω \ Ωc,R
3) = N( ˚curlΩ\Ωc

) and

N( ˚curl) ∩ L2(Ωc,R
3) = N( ˚curlΩc

).

Moreover, we suppose that

R(gradΩc
) is closed.

Remark 4.9. Assumption 4.8 is another (boundary) regularity property. For this to con-
firm, we realise that any φ ∈ D( ˚curlΩ\Ωc

) extended by zero to the whole of Ω satisfies 
φ ∈ D( ˚curl). Thus, in this sense, N( ˚curl) ∩L2(Ω \Ωc, R3) ⊇ N( ˚curlΩ\Ωc

). For the other 
inclusion the equality

D( ˚curl) ∩ L2(Ω \ Ωc,R
3) = {φ ∈ D( ˚curl)|φ = 0 on Ωc} = D( ˚curlΩ\Ωc

)

is sufficient. If for instance, Ω \ Ωc satisfies the segment property, the desired equality 
holds. The second equation and the third property in the assumptions are fulfilled, if, 
for instance, Ωc has the segment property. We refer to Remark 4.7 for the limitations of 
the closed range requirement.

We are now in the position to state the setting for the application of Theorem 3.10. 
We put

H = X = L2 (Ω,R3) ,
C : D(C) ⊆ H → X,

E �→ μ−1/2 ˚curlE, (25)

D(C) = D( ˚curl),

η = σ.
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Proposition 4.10. Let Ω ⊆ R3 be open with connected boundary. Assume Assumption 4.3, 
4.6, 4.8, to be in effect. Then C and η as given in (25) satisfy the assumptions in 
Theorem 3.10.

The proof of Proposition 4.10 requires a lot of preparations. The main issue is of 
course to prove inequality (11) under the current assumptions. Indeed, note that since μ
is selfadjoint and a topological isomorphism, we easily realise that C is densely defined 
and closed. Moreover, we obtain C∗ = curlμ−1/2 from which we read off that

R(C∗) = R(curl),

which is assumed to be closed by Assumption 4.6. Thus, we are left with showing (11). 
Before, however, doing so, we reason, why it makes sense to look at the setting (25) for 
solving (20).

Remark 4.11. Using the assumptions of Proposition 4.10 and using the notation intro-
duced in the previous section, we are led to the evo-system

∂0η0u + C∗
0C0u = −j ∈ H�,0 (R, H0) ,

with

j := J − C∗
0∂

−1
0 μ−1/2K,

where

J ∈ H�,0 (R, H0) .

Hence, with

E := ∂0u

and

H := −∂−1
0 μ−1/2

(
C0E − μ−1/2K

)
we recover

σE − C∗μ1/2H = −J

∂0μ
1/2H + CE = μ−1/2K

or
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σE − curl H = −J,

∂0μH + ˚curl E = K,

which is (20). Note that the argument just presented is an incarnation of Proposition 3.7, 
which in turn yields the solvability of the system, we started out with.

To demonstrate (11) we first recall Lemma 3.13. In particular, we have

H0 = (N(C) ∩N(η))⊥

= R(C∗) ⊕H1 ⊕H2, where (26)

H1 = N(C) ∩R(η) and

H2 = (N(C) ∩H0) � (N(C) ∩R(η)) .

In the following, we describe these spaces more explicitly. Throughout, we shall assume 
that the assumptions of Proposition 4.10 are in effect. For the formulation of Lemma 4.14, 
we recall for an open set O ⊆ R3

HD,O = N(divO) ∩N( ˚curlO),

the space of harmonic Dirichlet fields in O. In the following we will use the projection the-
orem in different spaces. For the sake of readability, we will use indices at the orthogonal 
complements in order to clarify, in which space we take the orthogonal complement.

In order to illustrate the following findings, we recall one of the main results in [23], 
namely the computation of the dimension of the harmonic Dirichlet fields. For this let 
O ⊆ R3 be open bounded with continuous boundary. We denote

cc(b)(O) := {z ⊆ R3 \ O; z (bounded) connected component}.

For z ∈ ccb(O) let ψz ∈ C∞
c (R3) such that

ψz(x) =
{

1, x ∈ z,

0, x ∈
⋃

z′∈cc(O)\{z} z
′.

Define qz := gradψz and φz := πHD,Oqz|O, where πHD,O denotes the L2(O)3-orthogonal 
projection onto HD,O.

Theorem 4.12 ([23, Theorem 1]). Assume Ω ⊆ R3 to be bounded with continuous bound-
ary. Let m ∈ N be the number of connected components of R3 \ Ω. Then

dimHD,Ω = m− 1.

More precisely, (φz)z∈ccb(O) constitutes a basis for HD,Ω.
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Remark 4.13. (a) In the particular case that Ω is a ball and Ωc is an inscribed ball, the 
number of connected components of R3 \

(
Ω \ Ωc

)
is 2. Thus,

dimHD,Ω\Ωc
= 1.

It is possible to compute this function by appropriately projecting the gradient of a 
function, which is identically 1 on Ωc and 0 outside Ω. It is possible to compute such a 
solution numerically, by solving a variational problem. We refer to [22] for the details. 
In the situation of Ωc being a ball, we also have that

HD,Ωc
= {0}.

(b) Note that the construction principle to obtain a basis for the space of harmonic 
Dirichlet fields extends to other differential operators. For this, we also refer to [22] for 
the details using the machinery of Hilbert complexes.

Lemma 4.14. The following equalities hold:

H0 =
(
N
(
divΩ\Ωc

)
∩H⊥L2(Ω\Ωc)

D,Ω\Ωc

)
⊕ L2 (Ωc,R

3) ,
H

⊥L2(Ω)
0 = N( ˚curlΩ\Ωc

),

H1 = N
(

˚curlΩc

)
=
(
N (divΩc

) ∩H⊥L2(Ωc)
D,Ωc

)⊥L2(Ωc)
, (27)

H
⊥L2(Ω)
1 =

(
N (divΩc

) ∩H⊥L2(Ωc)
D,Ωc

)
⊕ L2 (Ω \ Ωc,R

3) ,
H2 = N

(
˚curl
)
∩
((

N (divΩc
) ∩H⊥L2(Ωc)

D,Ωc

)
⊕
(
N
(
divΩ\Ωc

)
∩H⊥L2(Ω\Ωc)

D,Ω\Ωc

))
.

Proof. Using Assumptions 4.8 and 4.3, we obtain

H
⊥L2(Ω)
0 = N(C) ∩N(η)

= N( ˚curl) ∩ L2(Ω \ Ωc,R
3)

= N( ˚curlΩ\Ωc
).

Since ˚grad
∗
Ω\Ωc

= − divΩ\Ωc
with adjoint computed in L2(Ω \Ωc, R3) and R( ˚gradΩ\Ωc

) ⊆
N( ˚curlΩ\Ωc

), we thus obtain

H0 = N( ˚curlΩ\Ωc
)⊥L2(Ω)

= N( ˚curlΩ\Ωc
)⊥L2(Ω\Ωc) ⊕ L2(Ωc,R

3)

=
(
R( ˚gradΩ\Ω ) ⊕HD,Ω\Ω

)⊥L2(Ω\Ωc) ⊕ L2(Ωc,R
3)
c c
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=
(
N(divΩ\Ωc

) ∩H⊥L2(Ω\Ωc)

D,Ω\Ωc

)
⊕ L2(Ωc,R

3).

Next, we have by Assumption 4.8

H1 = N(C) ∩R(η)

= N( ˚curl) ∩ L2(Ωc,R
3)

= N( ˚curlΩc
).

An analogous argument as already done for H0 implies the asserted equation for H
⊥L2(Ω)
1 , 

which in turn implies the second expression for H1. Finally, from R(C∗) = R(curl) and 
the already derived expression for H0, we deduce

N(C) ∩H0 = N
(

˚curl
)
∩
((

N
(
divΩ\Ωc

)
∩H⊥L2(Ω\Ωc)

D,Ω\Ωc

)
⊕ L2 (Ωc,R

3))
and therefore

H2 = (N (C) ∩H0) � (N (C) ∩R (η))

= (N (C) ∩H0) ∩H
⊥L2(Ω)
1

= N
(

˚curl
)
∩
((

N
(
divΩ\Ωc

)
∩H⊥L2(Ω\Ωc)

D,Ω\Ωc

)
⊕ L2 (Ωc,R

3)) ∩
∩
((

N (divΩc
) ∩H⊥L2(Ωc)

D,Ωc

)
⊕ L2 (Ω \ Ωc,R

3))
= N

(
˚curl
)
∩
((

N (divΩc
) ∩H⊥L2(Ωc)

D,Ωc

)
⊕
(
N
(
divΩ\Ωc

)
∩H⊥L2(Ω\Ωc)

D,Ω\Ωc

))
. �

A next step towards the desired proof of Proposition 4.10 is provided next.

Lemma 4.15. We have for Uk ∈ Hk, k ∈ {1, 2},

∣∣χΩc
(U1 + U2)

∣∣2 = |U1|2 +
∣∣χΩc

U2
∣∣2 .

Proof. By Lemma 4.14, we obtain that

χΩc
U2 ∈ N (divΩc

) ∩H⊥L2(Ωc)
D,Ωc

Hence, with (27) we deduce

∣∣χΩc
(U1 + U2)

∣∣2 =
∣∣χΩc

U1
∣∣2 +

〈
χΩc

U1|χΩc
U2
〉

+
∣∣χΩc

U2
∣∣2

= |U1|2 +
〈
U1|χΩc

U2
〉

+
∣∣χΩc

U2
∣∣2

= |U1|2 +
∣∣χΩ U2

∣∣2 . �

c
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By Assumption 4.6, we deduce with an application of the closed graph theorem, that 
there exists k0 ≥ 0 such that

|U | ≤ k0

∣∣∣ ˚curl U
∣∣∣ (28)

for all U ∈ D
(

˚curl
)
∩ R (C∗). Finally we need a more subtle result, which is the key 

step towards showing the desired inequality (11) in the present context.

Proposition 4.16. There exists k1 ≥ 0 so that

|U | ≤ k1
∣∣χΩc

U
∣∣ (29)

for all U ∈ H2

In order to prove this proposition we need some preparations. We start with the 
following observation.

Lemma 4.17. Define

H3 := gradΩc

[
N(divΩc

gradΩc
) ∩ {φ | gradΩc

φ ∈ H⊥L2(Ωc)
D,Ωc

}
]
⊆ L2(Ωc)3.

Then H3 is a closed subspace of L2(Ωc)3 and for U ∈ H2 we have that χΩc
U ∈ H3.

Proof. Obviously, H3 is a subspace of L2(Ωc)3. For proving the closedness of H3, 
let (φn)n∈N be a sequence in N(divΩc

gradΩc
) ∩
{
φ | gradΩc

φ ∈ H⊥L2(Ωc)
D,Ωc

}
such that 

gradΩc
φn → u for some u ∈ L2(Ωc)3. Since R(gradΩc

) is closed by Assumption 4.8 we 
infer that u = gradΩc

φ for some φ ∈ D(gradΩc
). Since gradΩc

φn ∈ N(divΩc
) for each 

n ∈ N it follows by the closedness of N(divΩc
) that also u = gradΩc

φ ∈ N(divΩc
); that 

is, φ ∈ N(divΩc
gradΩc

). Finally, since H⊥
D,Ωc

is closed and gradΩc
φn ∈ H⊥L2(Ωc)

D,Ωc
for 

each n ∈ N, the same holds for u = gradΩc
φ. Summarising, we have shown that u ∈ H3

and thus, H3 is closed.
Take now U ∈ H2. In particular, U ∈ N( ˚curl) = R( ˚grad) by (22), and hence, U = ˚gradψ

for some ψ ∈ D( ˚grad). By Assumption 4.3 it follows that φ := χΩc
ψ ∈ D(gradΩc

) and

gradΩc
φ = χΩc

˚gradψ = χΩc
U.

Moreover, since U ∈ H2, it follows by Lemma 4.14 that gradΩc
φ = χΩc

U ∈ N(divΩc
) ∩

H⊥L2(Ωc)
D,Ωc

which shows that χΩc
U ∈ H3. �

In the following, we consider the operator

Z : H2 → H3

U �→ χΩc
U.



JID:YJFAN AID:108847 /FLA [m1L; v1.297] P.31 (1-45)
D. Pauly et al. / Journal of Functional Analysis ••• (••••) •••••• 31
Lemma 4.18. The operator Z is one-to-one.

Proof. Let U ∈ H2 with ZU = χΩc
U = 0. Since U = 0 on Ωc and U ∈ N( ˚curl), we infer 

by Assumption 4.8 that U ∈ N( ˚curlΩ\Ωc
). Moreover, by the definition of H2 we get that 

U ∈ N(divΩ\Ωc
) ∩H⊥L2(Ω\Ωc)

D,Ω\Ωc
and thus,

U ∈ N( ˚curlΩ\Ωc
) ∩N(divΩ\Ωc

) ∩H⊥L2(Ω\Ωc)

D,Ω\Ωc
= HD,Ω\Ωc

∩H⊥L2(Ω\Ωc)

D,Ω\Ωc
= {0}. �

Lemma 4.19. The operator Z is onto.

Proof. Let W ∈ H3. Then, by definition, W ∈ N(divΩc
) ∩ H⊥L2(Ωc)

D,Ωc
and there is φ ∈

D(gradΩc
) with

W = gradΩc
φ.

By (23) there is ψ ∈ D( ˚grad) such that φ = χΩc
ψ. Note that by Poincaré’s inequality, 

R( ˚gradΩ\Ωc
) is a closed subspace of L2(Ω\Ωc). Denoting the orthogonal projector onto 

R( ˚gradΩ\Ωc
) by PR( ˚gradΩ\Ωc

), we consider

−PR( ˚gradΩ\Ωc
)χΩ\Ωc

˚gradψ ∈ R( ˚gradΩ\Ωc
),

and thus, we find θ ∈ D( ˚gradΩ\Ωc
) with

˚gradΩ\Ωc
θ = −PR( ˚gradΩ\Ωc

)χΩ\Ωc

˚gradψ.

We set

ψ̃ := ψ + θ ∈ D( ˚grad)

and obtain

χΩ\Ωc

˚gradψ̃ = χΩ\Ωc

˚gradψ + ˚gradΩ\Ωc
θ

= (1 − PR( ˚gradΩ\Ωc
))χΩ\Ωc

˚gradψ

∈ R( ˚gradΩ\Ωc
)⊥L2(Ω\Ωc) = N(divΩ\Ωc

). (30)

Finally, we note that

HD,Ω\Ωc
⊆ N( ˚curlΩ\Ωc

) = N( ˚curl) ∩ L2(Ω \ Ωc) = R( ˚grad) ∩ L2(Ω \ Ωc) ⊆ R( ˚grad),

where we have used Assumption 4.8 for the first equality and (22) for the second equality. 
Hence, HD,Ω\Ω is a closed subspace of R( ˚grad). We now define
c
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U := P
H

⊥
R( ˚grad)

D,Ω\Ωc

˚gradψ̃

and obtain

U ∈ H⊥R( ˚grad)

D,Ω\Ωc
= H⊥L2(Ω)

D,Ω\Ωc
∩R( ˚grad) =

(
H⊥L2(Ω\Ωc)

D,Ω\Ωc
⊕ L2(Ωc)

)
∩R( ˚grad).

Thus, in particular, U ∈ N( ˚curl) and χΩ\Ωc
U ∈ H⊥L2(Ω\Ωc)

D,Ω\Ωc
. Moreover,

U − ˚gradψ̃ ∈ HD,Ω\Ωc
⊆ N(divΩ\Ωc

)

and thus, in particular U − ˚gradψ̃ = 0 on L2(Ωc) and

χΩ\Ωc
U = χΩ\Ωc

(U − ˚gradψ̃) + χΩ\Ωc

˚gradψ̃ ∈ N(divΩ\Ωc
),

where we have used (30). On the other hand, we have

χΩc
U = χΩc

˚gradψ̃

= χΩc
˚gradψ + χΩc

˚gradθ

= gradΩc
χΩc

ψ

= gradΩc
φ

= W ∈ N(divΩc
) ∩H⊥L2(Ωc)

D,Ωc
,

and thus, U ∈ H2 with ZU = W . This completes the proof. �
Now we are able to prove Proposition 4.16.

Proof of Proposition 4.16. Since Z : H2 → H3 is continuous, one-to-one and onto, it 
follows that Z−1 : H3 → H2 is continuous as well by the closed graph theorem. Thus, 
the assertion follows with k1 := ‖Z−1‖. �

We are finally in the position to prove inequality (11) and, therefore, to complete the 
proof of Proposition 4.10.

Lemma 4.20. There is a positive constant c0 such that we have

c0 |U |2 ≤
∣∣∣σ1/2U

∣∣∣2 +
∣∣∣ ˚curlU

∣∣∣2 (31)

for all U ∈ D
(

˚curl
)
∩H0.
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Proof. By the positive definiteness of σ̃, see Assumption 4.3, we obtain for all U ∈
D( ˚curl) ∩H0

c∗
∣∣χΩc

U
∣∣2 +

∣∣∣ ˚curlU
∣∣∣2 ≤

∣∣∣σ1/2U
∣∣∣2 +

∣∣∣ ˚curlU
∣∣∣2

for some c∗ > 0. Thus, the desired estimate follows if we can show that there is c > 0
such that for all U ∈ D( ˚curl) ∩H0

c |U |2 ≤
∣∣χΩc

U
∣∣2 +

∣∣∣ ˚curlU
∣∣∣2 .

We shall employ the above decomposition (26) so that U = U0 + U1 + U2 with 

U0 ∈ R
(
curlμ− 1

2

)
, Uk ∈ Hk, k ∈ {1, 2}. We compute using (28), Lemma 4.16, and 

Lemma 4.15

|U |2 = |U0|2 + |U1|2 + |U2|2

≤ k2
0

∣∣∣ ˚curlU0

∣∣∣2 + k2
1
∣∣χΩc

U2
∣∣2 + |U1|2

≤ k2
0

∣∣∣ ˚curlU0

∣∣∣2 + max
{
1, k2

1
} ∣∣χΩc

(U1 + U2)
∣∣2

≤ k2
0

∣∣∣ ˚curlU0

∣∣∣2 + 2 max
{
1, k2

1
} ∣∣χΩc

(U0 + U1 + U2)
∣∣2 +

+2 max
{
1, k2

1
} ∣∣χΩc

U0
∣∣2 ,

≤ k2
0

∣∣∣ ˚curlU0

∣∣∣2 + 2 max
{
1, k2

1
} ∣∣χΩc

(U0 + U1 + U2)
∣∣2 +

+2 max
{
1, k2

1
}
|U0|2 ,

≤ k2
0
(
1 + 2 max

{
1, k2

1
}) ∣∣∣ ˚curlU0

∣∣∣2 +

+2 max
{
1, k2

1
} ∣∣χΩc

(U0 + U1 + U2)
∣∣2 ,

≤ max
{
2, 2k2

1, k
2
0
(
1 + 2 max

{
1, k2

1
})}(∣∣∣ ˚curlU

∣∣∣2 +
∣∣χΩc

U
∣∣2)

Thus we see that the estimate (31) holds for

c0 = min {1, c∗}

with

c∗ = 1
max {2, 2k2

1, k
2
0 (1 + 2 max {1, k2

1})}
. �

We shall summarise the findings of this section as follows.
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Theorem 4.21. Let Ω ⊆ R3 be open with connected boundary. Assume Assumptions 4.3, 
4.6, 4.8 to be in effect. Then for every F ∈ H�,0 (R, D(C∗

0 )′) (with C0 := μ−1/2 ˚curl|H0) 
there is a unique (weak) solution U ∈ H�,0

(
R, D

(
˚curl
))

∩H�,0 (R, H0) of

(
∂0σ + curlμ−1 ˚curl

)
U = F.

Moreover the solution operator S : H�,0 (R, D(C∗
0 )′) → H�,0

(
R, D

(
˚curl
))

is continuous 

(| · |�,0,1 denotes the norm of H�,0

(
R, D

(
˚curl
))

) and causal in the sense that

∣∣χ]−∞,a]SF
∣∣
�,0,1 ≤ C1

∣∣χ]−∞,a]F
∣∣
�,0,−1

for some positive C1 uniformly in a ∈ R and F ∈ H�,0 (R, D(C∗
0 )′) as long as � ∈ ]0,∞[

is sufficiently large.

Proof. The result follows from Theorem 3.10 in conjunction with Proposition 4.10. �
Remark 4.22. There are two famous engineering type approaches, which have inspired 
a number of mathematical investigations, see e.g. [19,18,5,1] and the literature quoted 
there. In engineering lingo they are frequently referred to (by a slight abuse of language, 
turning adhoc names of variables into constant names) as the A-ϕ approach and the 
T -Ω approach, where two variants of a vector potential construction come into play. Our 
approach is designed precisely to avoid these constructions, which are actually adding 
complexity to an already sufficiently complex topic. A crucial assumption in the ap-
plication of these approaches is that the current density source term J is supposed 
to be divergence-free,5 which, apart from requiring additional regularity of J , excludes 
perfectly reasonable current densities, say J = Ie3, if I is not completely constant in 
direction e3. In contrast, we are here considering the eddy current problem directly by 
solving

∂0σe + curlμ−1 curl e = −J

with a general square-integrable right-hand side (with an exponential weight in the time 
direction) with only the obvious constraint that J is required to be in the closure of the 
range of ∂0σ + curlμ−1 curl. We emphasise that the present approach allows to recover 
the original unknowns, see Remark 4.11.

5 A divergence-free condition is also imposed in the existence result in [32]. We detail the potential 
formulation in the discussion here. What is said on the divergence condition, however, also applies to the 
time-harmonic setting focused on in [32].
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5. An extended system formulation for the pre-Maxwell system

For numerical purposes the construction of H0 is not particularly comfortable. We 
therefore want to propose an alternative formulation in the spirit of the extended Maxwell 
system [24,34,31], which in the context of numerical investigations is of so-called saddle-
point form. In fact, the key is to formulate belonging to H⊥

0 with the help of belonging 
to the kernel of certain differential operators. We therefore hope that the proposed refor-
mulation might shed some light on possible numerical implementations of the considered 
model. Quite recently, this method has been applied to homogenisation problems, see 
[43].

Throughout this section, we assume Ω to be open and bounded with connected bound-
ary. Moreover, let the Assumptions 4.3, 4.6, 4.8 be in effect. Moreover, we shall rather 
focus on μ = 1. We need to impose an additional assumption for this section:

Assumption 5.1. Assume that

D
(

˚grad
)

=
{
ψ ∈ D (gradR3) |ψ = 0 on R3 \ Ω

}
as well as

D( ˚gradΩ\Ωc
) = {ψ ∈ D( ˚grad) |ψ = 0 on Ωc}.

Remark 5.2. The latter assumption holds for instance, if Ω and Ωc satisfy the segment 
property.

Amending the system in question by an equation in H
⊥L2(Ω)
0 suitably leads to⎛⎜⎜⎝

(
∂0σ + curl ˚curl 0

0 0

) (
0

�
gradΩ\Ωc

)
(

0
�

divΩ\Ωc

)
0

⎞⎟⎟⎠
with 

(
H0 ⊕H

⊥L2(Ω)
0

)
⊕ L2(Ω \ Ωc, R) as underlying Hilbert space. Here we have

�
gradΩ\Ωc

: D(
�

gradΩ\Ωc
) ⊆ L2(Ω \ Ωc,R) → H

⊥L2(Ω)
0

ϕ �→ ˚gradϕ

with

D

(
�

gradΩ\Ωc

)
=
{
χ

Ω\Ωc
ϕ
∣∣ϕ ∈ D

(
˚grad
)
, ϕ constant on Ωc

}
.

To fit our scheme we let here
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�
divΩ\Ωc

:= −
�

grad
∗

Ω\Ωc
.

A reason for the introduction of these new operators is the following lemma.

Lemma 5.3. It is

HD,Ω\Ωc
= R

(
�

gradΩ\Ωc

)
�R

(
˚gradΩ\Ωc

)
.

Proof. Let

Φ ∈ HD,Ω\Ωc
⊆ N( ˚curlΩ\Ωc

)

and by extension by zero Φ ∈ N (curlR3). Thus

Φ = gradψ

in L2,loc (R3,R3) for some weakly differentiable ψ. Since Φ = 0 on R3 \
(
Ω \ Ωc

)
we have 

that ψ is constant on each component of R3 \
(
Ω \ Ωc

)
. Adjusting this constant to be 

zero on the unbounded part R3 \ Ω of R3 \
(
Ω \ Ωc

)
we get a ψ̂ ∈ D (gradR3) with ψ̂

constant on Ωc, ψ̂ = 0 on R3 \ Ω and

Φ = gradR3 ψ̂.

By Assumption 5.1 we know that

D
(

˚grad
)

=
{
ψ ∈ D (gradR3) |ψ = 0 on R3 \ Ω

}
.

Thus,

Φ =
�

gradΩ\Ωc
ψ̂.

Since also divΩ\Ωc
Φ = 0 we have indeed shown that

HD,Ω\Ωc
⊆ R

(
�

gradΩ\Ωc

)
∩N(divΩ\Ωc

)

= R

(
�

gradΩ\Ωc

)
∩R

(
˚gradΩ\Ωc

)⊥L2(Ω\Ωc) = R

(
�

gradΩ\Ωc

)
�R

(
˚gradΩ\Ωc

)
.

Let now Φ =
�

gradΩ\Ωc
ψ̂ for some ψ̂ ∈ D(

�
gradΩ\Ωc

) and divΩ\Ωc
Φ = 0. Let ψ0 ∈

D( ˚grad) an extension of ψ̂|Ωc
such that ψ0 is constant in a neighbourhood of Ωc. Then, 

in particular, ψ̂ − ψ0 vanishes on Ωc, and so by Assumption 5.1

ψ̂ − ψ0 ∈ D
(

˚gradΩ\Ω

)
.

c
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We have by construction that

divΩ\Ωc

�
gradΩ\Ωc

ψ̂ = divΩ\Ωc
Φ = 0

and so

divΩ\Ωc

˚gradΩ\Ωc

(
ψ̂ − ψ0

)
= − divΩ\Ωc

�
gradΩ\Ωc

ψ0.

Next, we first note that

˚gradΩ\Ωc

(
ψ̂ − ψ0

)
∈ N

(
˚curlΩ\Ωc

)
.

Since also 
�

gradΩ\Ωc
ψ0 ∈ N

(
curlΩ\Ωc

)
∩N( ˚curl) and since 

�
gradΩ\Ωc

ψ0 actually vanishes 
in a neighbourhood of Ωc we also have

�
gradΩ\Ωc

ψ0 ∈ N
(

˚curlΩ\Ωc

)
.

Thus,

Φ =
�

gradΩ\Ωc

(
ψ̂
)

= ˚gradΩ\Ωc

(
ψ̂ − ψ0

)
+

�
gradΩ\Ωc

ψ0 ∈ N
(

˚curlΩ\Ωc

)
and so

Φ ∈ HD,Ω\Ωc
.

This yields the converse inclusion. �
The latter lemma particularly implies

H
⊥L2(Ω)
0 = N

(
˚curlΩ\Ωc

)
= R

(
˚gradΩ\Ωc

)
⊕HD,Ω\Ωc

= R

(
�

gradΩ\Ωc

)
,

where we have used Lemma 4.14 for the first equality. Since, according to the projection 
theorem, the canonical embedding(

ιH0 ιH⊥
0

)
: H0 ⊕H

⊥L2(Ω)
0 → L2(Ω,R3)(
x0
x1

)
�→ x0 + x1
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is unitary we have its adjoint(
ι∗H0

ι∗
H⊥

0

)
: L2 (Ω,R3)→ H0 ⊕H

⊥L2(Ω)
0

as the inverse. Thus, we may consider equivalently

W

⎛⎜⎜⎝
(
∂0σ + curl ˚curl 0

0 0

) (
0

�
gradΩ\Ωc

)
(

0
�

divΩ\Ωc

)
0

⎞⎟⎟⎠W ∗ =

=

⎛⎝ ∂0σ + curl ˚curl
�

gradΩ\Ωc�
divΩ\Ωc

0

⎞⎠
now on L2 (Ω,R3)⊕ L2 (Ω \ Ωc,R

)
as underlying Hilbert space with the unitary map

W =

⎛⎝ ( ιH0 ιH⊥
0

)
0(

0H0 0H⊥
0

)
1

⎞⎠ .

Thus, we are led to discuss equations of the form⎛⎝ ∂0σ + curl ˚curl
�

gradΩ\Ωc�
divΩ\Ωc

0

⎞⎠(E

p

)
=
(
f

0

)
.

From this “saddle point formulation” we can recover E as the solution of

∂0σE + curl ˚curlE = ι∗H0
f. (32)

Indeed, we have the following result.

Theorem 5.4. Assume Ω to be open and bounded with connected boundary. Moreover, let 
the Assumptions 4.3, 4.6, 4.8, and 5.1 be in effect. Then the (closure of the) operator

⎛⎜⎜⎝
(
∂0σ + curl ˚curl 0

0 0

) (
0

�
gradΩ\Ωc

)
(

0
�

divΩ\Ωc

)
0

⎞⎟⎟⎠
is continuously invertible in H�,0(R, H0 ⊕ H⊥

0 ⊕ L2 (Ω \ Ωc,R
)
) for sufficiently large 

� > 0.
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Proof. Note that since Ω is open and bounded, we infer by Poincaré’s inequality that 

R
(

˚grad
)

is closed. This implies that R
(

�
gradΩ\Ωc

)
is closed as well as the range 

R

(
�

divΩ\Ωc

)
of its adjoint − 

�
divΩ\Ωc

. This makes

⎛⎝ 0
�

gradΩ\Ωc�
divΩ\Ωc

0

⎞⎠

continuously invertible on R
(

�
gradΩ\Ωc

)
⊕R

(
�

divΩ\Ωc

)
. Moreover, it is a consequence 

of the above lemma that

R

(
�

gradΩ\Ωc

)
= H

⊥L2(Ω)
0 .

Furthermore, since ˚grad is injective, we infer that

N

(
�

gradΩ\Ωc

)
= {0},

which, thus, implies that

R

(
�

divΩ\Ωc

)
= L2 (Ω \ Ωc,R

)
.

Hence, we infer the claim of the theorem by the well-posedness result from Theo-
rem 4.21. �

The solution (E, p) of the extended system now yields indeed a solution E of the 
pre-Maxwell system (32). If f ∈ H0 we have of course f = PH0f and p = 0.

Remark 5.5. For numerical purposes approximations of the equation 
�

divΩ\Ωc
E = 0 would 

be based on its ‘weak’ form

〈
�

gradΩ\Ωc
ψ|E

〉
L2
(
Ω\Ωc,R3

) = 0,

so that E could be approximated in suitable finite-dimensional subspaces of D
(

˚curl
)
.
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6. Justification of the pre-Maxwell system

We conclude our considerations with a justification of the pre-Maxwell system; that 
is, the degenerate eddy current problem,6 as an approximation of Maxwell’s system 
(including the displacement current). The system of Maxwell’s equations reads as

∂0εE + σE − curl H = −J,

∂0μH + ˚curlE = K,

where K denotes a magnetic source term (perhaps induced by initial data for H) and 
ε ∈]0, ∞[. Throughout, let � ≥ 1. The question is if and in which sense do the solutions 
converge to the solutions of the degenerate eddy current problem as ε tends to 0. For 
this transition we restrict our attention to current densities J in the correct subspace for 
the limit problem ε = 0; that is,

J ∈ H�,0(R, H0).

Again, as before, we shall assume that Ω is open, bounded with connected boundary. 
Furthermore, we shall assume throughout that the Assumptions 4.3, 4.6, 4.8 are in effect. 
We shall furthermore note that a standard application of Theorem 2.1 leads to

S̃ε :=

⎛⎝(∂0

(
ε 0
0 μ

)
+
(
σ 0
0 0

)
+
(

0 − curl
˚curl 0

))⎞⎠−1

∈ L(H�,k(R;L2(Ω,R6)))

for every � > 0 and k ∈ Z. Here and in the following we use | · |�,k,0 as the notation 
for the norm corresponding to the Hilbert space inner product induced by 〈 · | · 〉�,k,0 :=〈
∂k
0 · |∂k

0 ·
〉
�,0,0. H�,k

(
R, L2(Ω,R6)

)
denotes the Hilbert space obtained by completion 

of D(∂k
0 ). We denote

S0 :=
(
∂0σ + curlμ−1 ˚curl

)−1
∈ L(H�,0(R, H0), H�,0(R, D( ˚curl))

for some fixed sufficiently large � > 0. Furthermore, we define for all ε > 0

Sε := π1S̃ε,

where π1(E, H) = E reads off the first three components of a 6-component vector field. 
Assuming

curlμ−1∂−1
0 K ∈ H�,k

(
R, L2 (Ω,R3))

6 For the non-degenerate eddy current problem this has been given in the current functional analytical 
setting in [21,42] in both the autonomous and non-autonomous cases, respectively.
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the simple substitution

H = μ−1∂−1
0 K − μ−1 ˚curl∂−1

0 E

leads to Sε(J, K) = E being the unique solution of

∂0εE + σE + curlμ−1 ˚curl∂−1
0 E = −J + curlμ−1∂−1

0 K.

By a slight abuse of notation, we shall view Sε as a mapping from H�,0(R; L2(Ω, R3)) into 
itself. Thus, instead of Sε(J, K) we shall write Sε(−J + curlμ−1∂−1

0 K). This provides a 
second order formulation, which we actually can compare with the degenerate equation. 
Due to the particular structure of the right-hand side, we furthermore remark here that 
f = −J + curlμ−1∂−1

0 K takes values in H0 if and only if J does. The main result of this 
section reads as follows.

Theorem 6.1. For all k ∈ Z and f ∈ H�,k(R; H0) we have

|Sεf − S0f |�,k−2,0 → 0

as ε → 0.

Before proving this result, we provide the following auxiliary result.

Lemma 6.2. For all k ∈ Z, we have

sup
ε>0

‖Sε‖H�,k(R,H0)→H�,k−2(R,H0) < ∞.

Proof. Let f ∈ H�,k+1(R, H0), ε > 0. Then E = Sεf satisfies

∂0εE + σE + curlμ−1 ˚curl∂−1
0 E = f.

We shall now separate this equation into the parts in H0 and H⊥
0 separately. Denoting (

E0
E1

)
=
(

ι∗H0
E

ι∗
H⊥

0
E

)
, we obtain

∂0εE0 + σE0 + curlμ−1 ˚curl∂−1
0 E0 = ι∗H0

f,

∂0εE1 = 0,

where we have used that f ∈ H0. By the second equation we have

∂0εE1 = 0
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and thus, continuous invertibility of ∂0 implies E1 = 0. Testing the equation for E0 with 
E0, we deduce

�
∣∣∣ε1/2E0

∣∣∣2
�,k,0

+
∣∣∣σ1/2E0

∣∣∣2
�,k,0

+
〈

˚curlE0|μ−1∂−1
0

˚curlE0

〉
�,k,0

= 〈E0|f〉�,k,0 ≤ |E0|�,k−1,0 |f |�,k+1,0 .

Using ∣∣∣σ1/2E0

∣∣∣
�,k−1,0

≤ 1
�

∣∣∣σ1/2E0

∣∣∣
�,k,0

,

and 〈
˚curlE0|μ−1∂−1

0
˚curlE0

〉
�,k,0

=
〈
∂0∂

−1
0

˚curlE0|μ−1∂−1
0

˚curlE0

〉
�,k,0

= �
∣∣∣∂−1

0 μ−1/2 ˚curlE0

∣∣∣2
�,k,0

= �
∣∣∣μ−1/2 ˚curlE0

∣∣∣2
�,k−1,0

we infer

�2
∣∣∣σ1/2E0

∣∣∣2
�,k−1,0

+ �
∣∣∣μ−1/2 ˚curlE0

∣∣∣2
�,k−1,0

≤ |E0|�,k−1,0|f |�,k+1,0.

On the other hand we know by (31) that∣∣∣σ1/2E0

∣∣∣2
�,k−1,0

+
∣∣∣μ−1/2 ˚curlE0

∣∣∣2
�,k−1,0

≥ c0 |E0|2�,k−1,0

for some c0 ∈ ]0,∞[. Thus, as � ≥ 1 we have

c0 |E0|2�,k−1,0 ≤ |E0|�,k−1,0 |f |�,k+1,0 .

Consequently, we have the uniform estimate

c0 |E0|�,k−1,0 ≤ |f |�,k+1,0 ,

which yields

sup
ε>0

‖Sε‖H�,k(R,H0)→H�,k−2(R,H0) = sup
ε>0

‖Sε‖H�,k+1(R,H0)→H�,k−1(R,H0) ≤
1
c0

. �
Proof of Theorem 6.1. For ε > 0 and f ∈ H�,k+1(R, H0) we find

Sεf − S0f = Sε

(
S−1

0 − S−1
ε

)
S0f

= Sεε∂0S0f
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and so

|Sεf − S0f |�,k−2,0 (33)

= |Sεε∂0S0f |�,k−2,0

≤ ‖Sε‖H�,k(R,H0)→H�,k−2(R,H0) |ε∂0S0f |�,k,0
≤ ε‖Sε‖H�,k(R,H0)→H�,k−2(R,H0) |S0∂0f |�,k,0
≤ ε‖Sε‖H�,k(R,H0)→H�,k−2(R,H0)‖S0‖H�,k(R,H0)→H�,k(R,H0) |∂0f |�,k,0
≤ ε‖Sε‖H�,k(R,H0)→H�,k−2(R,H0)‖S0‖H�,k−1(R,H0)→H�,k−1(R,H0) |f |�,k+1,0 .

By Lemma 6.2, we deduce that

|Sεf − S0f |�,k−2,0
ε→0→ 0

for every f ∈ H�,k+1 (R, H0). By density of H�,k+1 (R, H0) in H�,k (R, H0) and uniform 
boundedness of (Sε)ε≥0 it follows that

|Sεf − S0f |�,k−2,0
ε→0→ 0

for all f ∈ H�,k (R, H0), which is the desired convergence result. �
Remark 6.3. The justification of the eddy-current model as the low electric permittivity 
limit of the classical Maxwell system is performed in [32, Theorem 2.5] with a focus on 
the frequency domain for fixed frequency. The quantitative estimate is of the order O(ε)
as ε → 0. The estimates and derivations described in the proof above provide the same 
quantitative nature for fixed frequency (see the estimates in (33)). Since the above result 
covers the full time line (and thus all frequencies) simultaneously some time regularity 
loss has to be expected if one wants to keep the same order of ε. Indeed, also in [32, 
proof of Theorem 2.5] the frequency dependence of the quantitative estimate suggests a 
(time) regularity loss if one wants to keep the derived quantitative estimate for the full 
space-time problem (note the ω2 in [32, proof of Theorem 2.5]). Furthermore, this effect 
has been observed in the context of Maxwell’s equations in [21,42]. A similar observation 
can be made for approximations in quantitative homogenisation theory: Whereas for 
fixed frequencies one obtains optimal quantitative estimates [9,10], the estimates for the 
full space-time problem experience a loss of derivatives if one wants to retain the same 
quantitative behaviour, see [44,13]. It is possible to accommodate for this regularity loss 
with an analogue of Littlewood–Paley type spaces, see [9].

References

[1] R. Albanese, G. Rubinacci, Formulation of the eddy-current problem, IEE Proc. A - Phys. Sci., 
Meas. Instrum., Manag. Educ. 137 (1) (1990) 16–22.

http://refhub.elsevier.com/S0022-1236(20)30390-6/bib2FFA7C993B7E9E4930230F734D894415s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib2FFA7C993B7E9E4930230F734D894415s1


JID:YJFAN AID:108847 /FLA [m1L; v1.297] P.44 (1-45)
44 D. Pauly et al. / Journal of Functional Analysis ••• (••••) ••••••
[2] A. Alonso-Rodríguez, P. Fernandes, A. Valli, The time-harmonic eddy-current problem in general 
domains: solvability via scalar potentials, in: Computational Electromagnetics, Kiel, 2001, in: Lect. 
Notes Comput. Sci. Eng., vol. 28, Springer, Berlin, 2003, pp. 143–163.

[3] A. Alonso-Rodríguez, P. Fernandes, A. Valli, Weak and strong formulations for the time-harmonic 
eddy-current problem in general multi-connected domains, Eur. J. Appl. Math. 14 (4) (2003) 
387–406.

[4] A. Alonso-Rodríguez, P. Fernandes, A. Valli, Voltage and current excitation for time-harmonic 
eddy-current problems, SIAM J. Appl. Math. 68 (5) (2008) 1477–1494.

[5] L. Arnold, B. Harrach, A unified variational formulation for the parabolic-elliptic eddy current 
equations, SIAM J. Appl. Math. 72 (2) (2012) 558–576.

[6] S. Bauer, D. Pauly, M. Schomburg, The Maxwell compactness property in bounded weak Lipschitz 
domains with mixed boundary conditions, SIAM J. Math. Anal. 48 (4) (2016) 2912–2943.

[7] A. Bossavit, Computational Electromagnetism. Variational Formulations, Complementarity, Edge 
Elements, Academic Press, Orlando, FL, 1998.

[8] Y. Bourgault, Y. Coudière, C. Pierre, Existence and uniqueness of the solution for the bidomain 
model used in cardiac electrophysiology, Nonlinear Anal., Real World Appl. 10 (1) (2009) 458–482.

[9] K. Cherednichenko, M. Waurick, Resolvent estimates in homogenisation of periodic problems of 
fractional elasticity, J. Differ. Equ. 264 (6) (2018) 3811–3835.

[10] S. Cooper, M. Waurick, Fibre homogenisation, J. Funct. Anal. 276 (11) (2019) 3363–3405.
[11] H.K. Dirks, Quasi-stationary fields for microelectronic applications, Electr. Eng. 79 (2) (1996) 

145–155.
[12] E. Francini, G. Franzina, S. Vessella, Existence and regularity for eddy current system with nons-

mooth conductivity, SIAM J. Math. Anal. 52 (2) (2020) 2134–2157.
[13] S. Franz, M. Waurick, Resolvent estimates and numerical implementation for the homogenisation 

of one-dimensional periodic mixed type problems, Z. Angew. Math. Mech. 98 (7) (2018) 1284–1294.
[14] S. Franz, S. Trostorff, M. Waurick, Numerical methods for changing type systems, IMA J. Numer. 

Anal. 39 (2) (2019) 1009–1038.
[15] P. Hajłasz, P. Koskela, H. Tuominen, Sobolev embeddings, extensions and measure density condi-

tion, J. Funct. Anal. 254 (5) (2008) 1217–1234.
[16] P.W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 

147 (1–2) (1981) 71–88.
[17] S. Koch, T. Weiland, Different types of quasistationary formulations for time domain simulations, 

Radio Sci. 46 (5) (2011).
[18] S. Lohrengel, S. Nicaise, Analysis of eddy current formulations in two-dimensional domains with 

cracks, ESAIM: Math. Model. Numer. Anal. 49 (1) (2015) 141–170.
[19] S. Nicaise, Existence results for the A − φ magnetodynamic formulation of the Maxwell system, 

Appl. Anal. 94 (5) (2015) 863–878.
[20] S. Nicaise, F. Tröltzsch, A coupled Maxwell integrodifferential model for magnetization processes, 

Math. Nachr. 287 (4) (2014) 432–452.
[21] D. Pauly, R. Picard, A note on the justification of the eddy current model in electrodynamics, Math. 

Methods Appl. Sci. 40 (18) (2017) 7104–7109.
[22] D. Pauly, M. Waurick, The index of some mixed order Dirac-type operators and generalised 

Dirichlet-Neumann tensor fields, arXiv :2005 .07996, 2020.
[23] R. Picard, On the boundary value problems of electro- and magnetostatics, Proc. R. Soc. Edinb., 

Sect. A, Math. 92 (1982) 165–174.
[24] R. Picard, On the low frequency asymptotics in electromagnetic theory, J. Reine Angew. Math. 354 

(1984) 50–73.
[25] R. Picard, A structural observation for linear material laws in classical mathematical physics, Math. 

Methods Appl. Sci. 32 (14) (2009) 1768–1803.
[26] R. Picard, An elementary Hilbert space approach to evolutionary partial differential equations, 

Rend. Ist. Mat. Univ. Trieste 42 (2010) 185–204.
[27] R. Picard, Mother operators and their descendants, J. Math. Anal. Appl. 403 (1) (2013) 54–62.
[28] R. Picard, D. McGhee, Partial Differential Equations, A Unified Hilbert Space Approach, vol. 55, 

de Gruyter, Berlin, 2011.
[29] R. Picard, N. Weck, K.-J. Witsch, Time-harmonic Maxwell equations in the exterior of perfectly 

conducting, irregular obstacles, Analysis, München 21 (3) (2001) 231–263.
[30] R. Picard, S. Trostorff, M. Waurick, M. Wehowski, On non-autonomous evolutionary problems, J. 

Evol. Equ. 13 (4) (2013) 751–776.

http://refhub.elsevier.com/S0022-1236(20)30390-6/bib617877EC7E352D17F2D4F8C8C65F9C73s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib617877EC7E352D17F2D4F8C8C65F9C73s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib617877EC7E352D17F2D4F8C8C65F9C73s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib1FCBB2351581B957A395410C92D9CA04s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib1FCBB2351581B957A395410C92D9CA04s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib1FCBB2351581B957A395410C92D9CA04s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib157244121E7EDDECC2B4C3909B5092CAs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib157244121E7EDDECC2B4C3909B5092CAs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib7051910A8B847858DA08D069988B5DE2s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib7051910A8B847858DA08D069988B5DE2s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib0D19343C7E34966ECC91F68A7FC3F9FBs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib0D19343C7E34966ECC91F68A7FC3F9FBs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib1DEA5246D780910BAC1DAFBBC3D785D3s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib1DEA5246D780910BAC1DAFBBC3D785D3s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib9A4E9275EFE974528D784F7D114A040Fs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib9A4E9275EFE974528D784F7D114A040Fs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibB7D11159B43CB1A4976E16261FBD7A54s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibB7D11159B43CB1A4976E16261FBD7A54s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib83C4EE514723FD826AF9AB69CE50B9A3s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib8FBFB48758AA3788EBDC0C68CAD1AF83s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib8FBFB48758AA3788EBDC0C68CAD1AF83s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib15E26D71C1EE52C6569DC14E740F1529s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib15E26D71C1EE52C6569DC14E740F1529s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib0760BB70F6E57B934BF0866935AC14F7s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib0760BB70F6E57B934BF0866935AC14F7s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib6F1E278BD055E11813E006224EE7B886s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib6F1E278BD055E11813E006224EE7B886s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib6631E709C9CB11390FBED1629AA267BEs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib6631E709C9CB11390FBED1629AA267BEs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibC34B13503A99504F580116D7EFBA2BCBs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibC34B13503A99504F580116D7EFBA2BCBs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibA7CCE103392C617448BC319F3989C06Cs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibA7CCE103392C617448BC319F3989C06Cs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib560E338FC29710A10D760782A87814CCs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib560E338FC29710A10D760782A87814CCs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib6868F8B9BBF87BA65BF6F362EA5A3341s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib6868F8B9BBF87BA65BF6F362EA5A3341s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib7748509288A2BC7B916B4AB9DD3E1942s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib7748509288A2BC7B916B4AB9DD3E1942s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib8E6A1247ADF914EFA6A87897A5BFF67Es1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib8E6A1247ADF914EFA6A87897A5BFF67Es1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibB4A16D642B211E223B88875F1C02FFE2s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibB4A16D642B211E223B88875F1C02FFE2s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibA27C53DDF5B9C7BE6A0C1C14675ECAEEs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibA27C53DDF5B9C7BE6A0C1C14675ECAEEs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibEDCAA086F984C30E957935263814D232s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibEDCAA086F984C30E957935263814D232s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibD23072D977435539B44035F16462F53Es1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibD23072D977435539B44035F16462F53Es1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib390A0E04110EF46235A80766E43B1D13s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib390A0E04110EF46235A80766E43B1D13s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib911AF9A40D98F724B8089C105A19449As1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib2EEF5D96309C9DAAB1860A0A351B7B1Fs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib2EEF5D96309C9DAAB1860A0A351B7B1Fs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib5B7128F40E986EEEC8FDB3E386E1EC9Es1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib5B7128F40E986EEEC8FDB3E386E1EC9Es1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibD3DFA27E9A1B673986FAC834AEEC729As1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibD3DFA27E9A1B673986FAC834AEEC729As1


JID:YJFAN AID:108847 /FLA [m1L; v1.297] P.45 (1-45)
D. Pauly et al. / Journal of Functional Analysis ••• (••••) •••••• 45
[31] R. Picard, S. Trostorff, M. Waurick, On a connection between the Maxwell system, the extended 
Maxwell system, the Dirac operator and gravito-electromagnetism, Math. Methods Appl. Sci. 40 (2) 
(2017) 415–434.

[32] A.A. Rodríguez, P. Fernandes, A. Valli, Eddy Current Approximation of Maxwell Equations, MS&A. 
Modeling, Simulation and Applications, vol. 4, Springer-Verlag Italia, Milan, 2010.

[33] C. Seifert, S. Trostorff, M. Waurick, Evolutionary equations, 23rd Internetseminar, https://www .
mat .tuhh .de /veranstaltungen /isem23/, 2020, https://arxiv .org /abs /2003 .12403.

[34] M. Taskinen, S. Vänskä, Current and charge integral equation formulations and Picard’s extended 
Maxwell system, IEEE Trans. Antennas Propag. 55 (12) (2007) 3495–3503.

[35] R. Touzani, J. Rappaz, Mathematical Models for Eddy Currents and Magnetostatics, Scientific 
Computation, Springer, Dordrecht, 2014.

[36] S. Trostorff, An alternative approach to well-posedness of a class of differential inclusions in Hilbert 
spaces, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (15) (2012) 5851–5865.

[37] S. Trostorff, Well-posedness for a general class of differential inclusions, Technical report, TU Dres-
den, 2018, arXiv :1808 .00224, J. Differ. Equ. 268 (11) (2020) 6489–6516.

[38] S. Trostorff, M. Waurick, A note on elliptic type boundary value problems with maximal monotone 
relations, Math. Nachr. 287 (13) (2014) 1545–1558.

[39] M. Waurick, Homogenization of a class of linear partial differential equations, Asymptot. Anal. 
82 (3–4) (2013) 271–294.

[40] M. Waurick, A note on causality in Banach spaces, Indag. Math., New Ser. 26 (2) (2015) 404–412.
[41] M. Waurick, On non-autonomous integro-differential-algebraic evolutionary problems, Math. Meth-

ods Appl. Sci. 38 (4) (2015) 665–676.
[42] M. Waurick, On the continuous dependence on the coefficients of evolutionary equations, Habilita-

tion thesis, TU Dresden, 2016.
[43] M. Waurick, Nonlocal H-convergence, Calc. Var. Partial Differ. Equ. 57 (6) (2018).
[44] M. Waurick, On operator norm convergence in time-dependent homogenisation problems, PAMM 

18 (2018), https://doi .org /10 .1002 /pamm .201800009.

http://refhub.elsevier.com/S0022-1236(20)30390-6/bib6CB381CAAF8241CD550D24B0A53CE54Bs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib6CB381CAAF8241CD550D24B0A53CE54Bs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib6CB381CAAF8241CD550D24B0A53CE54Bs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibFABD7291655C494D53EB460F124B26E1s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibFABD7291655C494D53EB460F124B26E1s1
https://www.mat.tuhh.de/veranstaltungen/isem23/
https://www.mat.tuhh.de/veranstaltungen/isem23/
https://arxiv.org/abs/2003.12403
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibF57F206345FC3F03A2AFF6D5A0AC9469s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibF57F206345FC3F03A2AFF6D5A0AC9469s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib80094AF577D18DA031F495BC04EFE26As1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib80094AF577D18DA031F495BC04EFE26As1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibDF795E774ACD659E1CCBD4DCA8F4CA60s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibDF795E774ACD659E1CCBD4DCA8F4CA60s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib281C625715C64D5EFFE6946E03551181s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib281C625715C64D5EFFE6946E03551181s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib74DA3433724E04F38E4A833F42D18D5Cs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib74DA3433724E04F38E4A833F42D18D5Cs1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibC7FEED33A74C6C3723A3286FD1795F47s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibC7FEED33A74C6C3723A3286FD1795F47s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibFA40B56FBD30BEEC812081387288912Es1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib238DF69CC333D159936F45D84F8EDD15s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib238DF69CC333D159936F45D84F8EDD15s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib40D0E871396A0FBCBF48B384955ACFA0s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bib40D0E871396A0FBCBF48B384955ACFA0s1
http://refhub.elsevier.com/S0022-1236(20)30390-6/bibF69BBBC4245B6DE0FD47FF2F211AF78Es1
https://doi.org/10.1002/pamm.201800009

	On a class of degenerate abstract parabolic problems and applications to some eddy current models
	1 Introduction
	2 A brief introduction to evo-systems
	3 A class of degenerate abstract parabolic equations
	4 Application to a degenerate evo-system associated with the eddy current problem
	5 An extended system formulation for the pre-Maxwell system
	6 Justification of the pre-Maxwell system
	References


