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Abstract

For a bounded domain Ω ⊂ R
3 with Lipschitz boundary Γ and some relatively open Lipschitz subset 

Γt �= ∅ of Γ , we prove the existence of some c > 0, such that

c‖T ‖L2(Ω,R3×3) ≤ ‖symT ‖L2(Ω,R3×3) + ‖CurlT ‖L2(Ω,R3×3) (0.1)

holds for all tensor fields in H(Curl; Ω), i.e., for all square-integrable tensor fields T : Ω → R
3×3 with 

square-integrable generalized rotation Curl T : Ω → R
3×3, having vanishing restricted tangential trace 

on Γt . If Γt = ∅, (0.1) still holds at least for simply connected Ω and for all tensor fields T ∈ H(Curl; Ω)

which are L2(Ω)-perpendicular to so(3), i.e., to all skew-symmetric constant tensors. Here, both operations, 
Curl and tangential trace, are to be understood row-wise.

For compatible tensor fields T = ∇v, (0.1) reduces to a non-standard variant of the well known Korn’s 
first inequality in R3, namely

c‖∇v‖L2(Ω,R3×3) ≤ ‖sym∇v‖L2(Ω,R3×3)

for all vector fields v ∈ H1(Ω, R3), for which ∇vn, n = 1, . . . , 3, are normal at Γt . On the other hand, 
identifying vector fields v ∈ H1(Ω, R3) (having the proper boundary conditions) with skew-symmetric 
tensor fields T , (0.1) turns to Poincaré’s inequality since
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√
2c‖v‖L2(Ω,R3) = c‖T ‖L2(Ω,R3×3) ≤ ‖CurlT ‖L2(Ω,R3×3) ≤ 2‖∇v‖L2(Ω,R3).

Therefore, (0.1) may be viewed as a natural common generalization of Korn’s first and Poincaré’s inequality. 
From another point of view, (0.1) states that one can omit compatibility of the tensor field T at the expense 
of measuring the deviation from compatibility through Curl T . Decisive tools for this unexpected estimate 
are the classical Korn’s first inequality, Helmholtz decompositions for mixed boundary conditions and the 
Maxwell estimate.
© 2014 Published by Elsevier Inc.

Keywords: Korn’s inequality; Incompatible tensors; Maxwell’s equations; Helmholtz decomposition; Poincaré type 
inequalities; Tangential traces

1. Introduction

In this contribution we show that Korn’s first inequality can be generalized in some not so ob-
vious directions, namely to tensor fields which are not gradients. Our study is a continuation from 
[84,83,86,85] and here we generalize our results to weaker boundary conditions and domains of 
more complicated topology. For the proof of our main inequality (0.1) we combine techniques 
from electro-magnetic and elasticity theory, namely

(HD) Helmholtz’ decomposition,
(MI) the Maxwell inequality,
(KI) Korn’s inequality.

Since these three tools are crucial for our results we briefly look at their history. As pointed 
out in the overview [114], Helmholtz founded a comprehensive development in the theory of 
projections methods mostly applied in, e.g., electro-magnetic or elastic theory or fluid dynamics. 
His famous theorem HD, see Lemma 3, states, that any sufficiently smooth and sufficiently fast 
decaying vector field can be characterized by its rotation and divergence or can be decomposed 
into an irrotational and a solenoidal part. A first uniqueness result was given by Blumenthal 
in [8]. Later, Hilbert and Banach space methods have been used to prove similar and refined 
decompositions of the same type.

The use of inequalities is widespread in establishing existence and uniqueness of solutions of 
partial differential equations. Furthermore, often these inequalities ensure that the solution is in a 
more suitable space from a numerical view point than the solution space itself. Let Ω ⊂ R

3 be a 
bounded domain with Lipschitz continuous boundary Γ . Moreover, let Γt , Γn be some relatively 
open Lipschitz subsets of Γ with Γt ∪ Γn = Γ and Γt �= ∅. In potential theory use is made of 
Poincaré’s inequality, that is

‖u‖L2(Ω) ≤ cp‖∇u‖L2(Ω) (1.1)
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for all functions u ∈ ◦
H1(Γt ; Ω)1 with some constant cp > 0,2 to bound the scalar potential in 

terms of its gradient. In elasticity theory Korn’s first inequality in combination with Poincaré’s 
inequality, that is

(
c2
p + 1

)−1/2‖v‖H1(Ω) ≤ ‖∇v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω) (1.2)

for all vector fields v ∈ ◦
H1(Γt ; Ω) with some constant ck > 0, is needed for bounding the 

deformation of an elastic medium in terms of the symmetric strains, i.e., the symmetric part 
sym∇v = 1

2 (∇v + (∇v)�) of the Jacobian ∇v. In electro-magnetic theory the Maxwell inequal-
ity (see Lemma 1), that is

‖v‖L2(Ω) ≤ cm
(‖curlv‖L2(Ω) + ‖divv‖L2(Ω)

)
(1.3)

for all v ∈ ◦
H(curl; Γt , Ω) ∩ ◦

H(div; Γn, Ω) ∩ H(Ω)⊥ with some positive cm, is used to bound 
the electric and magnetic field in terms of the electric charge and current density, respec-
tively. Actually, this important inequality is just the continuity estimate of the corresponding 
electro–magneto static solution operator. It has different names in the literature, e.g., Friedrichs’, 
Gaffney’s or Poincaré type inequality [38,32].

It is well known that Korn’s and Poincaré’s inequalities are not equivalent. However, one main 
result of our paper is that both inequalities, i.e., (1.1), (1.2), can be inferred from the more general 
result (0.1), where (1.3) is used within the proof.

1.1. The Maxwell inequality

Concerning the MI (Lemma 1) in 1968 Leis [68] considered the boundary value problem of 
total reflection for the inhomogeneous and anisotropic Maxwell system as well in bounded as in 
exterior domains. For bounded domains Ω ⊂R

3 he was able to estimate the derivatives of vector 
fields v by the fields themselves, their divergence and their rotation in L2(Ω), i.e.,

c

3∑
n=1

‖∂nv‖L2(Ω) ≤ ‖v‖L2(Ω) + ‖curlv‖L2(Ω) + ‖divv‖L2(Ω), (1.4)

provided that the boundary Γ is sufficiently smooth and that ν × v|Γ = 0,3 i.e., the tangential 
trace of v vanishes at Γ . Of course, (1.4) implies

c‖v‖H1(Ω) ≤ ‖v‖L2(Ω) + ‖curlv‖L2(Ω) + ‖divv‖L2(Ω)

and thus by Rellich’s selection theorem the Maxwell compactness property (MCP), i.e.,

1 For exact definitions see Section 2.
2 In the following cp, ck, cm > 0 refer to the constants in Poincaré’s, Korn’s and in the Maxwell inequalities, respec-

tively.
3 ν denotes the outward unit normal at Γ and × respectively · the vector respectively scalar product in R3.
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X(Ω) := ◦
H(curl;Ω) ∩ H(div;Ω)

= {
v ∈ L2(Ω) : curlv ∈ L2(Ω), divv ∈ L2(Ω), ν × v|Γ = 0

}
is compactly embedded into L2(Ω), since X(Ω) is a closed subspace of the Sobolev–Hilbert 
space H1(Ω). However, (1.4), which is often called Friedrichs’ or Gaffney’s inequality, fails if 
smoothness of ∂Ω is not assumed. On the other hand, by a standard indirect argument the MCP 
implies the Maxwell inequality (1.3) for Γt = Γ . Hence, the compact embedding

X(Ω) ↪→ L2(Ω) (1.5)

is crucial for a solution theory suited for Maxwell’s equations as well as for the validity of the 
Maxwell estimate (1.3) or Lemma 1. But in the non-smooth case compactness of (1.5) cannot be 
proved by Rellich’s selection theorem. On the other hand, if (1.5) is compact, one obtains Fred-
holm’s alternative for time-harmonic/static Maxwell equations and the Maxwell inequality for 
bounded domains. For unbounded domains, e.g., exterior domains, (local) compactness implies 
Eidus’ limiting absorption and limiting amplitude principles and the corresponding weighted 
Maxwell inequalities [26–28,25]. These are the right and crucial tools for treating radiation 
problems, see the papers by Pauly [92,93,95,94,96,64] for the latest results. Therefore, Leis en-
couraged some of his students to deal with electro-magnetic problems, in particular with the 
MCP-question, see [99–104,112,122,126].

In 1969 Rinkens [112] (see also [69]) presented an example of a non-smooth domain where 
the embedding of X(Ω) into H1(Ω) is not possible. Another example had been found shortly 
later and is written down in a paper by Saranen [113].

Henceforth, there was a search for proofs which do not make use of an embedding of X(Ω)

into H1(Ω). In 1974 Weck [122] obtained a first and quite general result for ‘cone-like’ regions. 
Weck considered a generalization of Maxwell’s boundary value problem to Riemannian mani-
folds of arbitrary dimension N , going back to Weyl [125]. The cone-like regions have Lipschitz 
boundaries but maybe not the other way round. However, polygonal boundaries are covered by 
Weck’s result. In a joint paper by Picard, Weck and Witsch [104] Weck’s proof has been modified 
to obtain (1.5) even for domains which fail to have Lipschitz boundary.

Other proofs of (1.5) for Lipschitz domains have been given by Costabel [20] and We-
ber [120]. Costabel showed that X(Ω) is already embedded into the fractional Sobolev space 
H1/2(Ω). Weber’s proof has been modified by Witsch [126] to obtain the result for domains with 
Hölder continuous boundaries (with exponent p > 1/2). Finally, there is a quite elegant result 
by Picard [101] who showed that if the result holds for smooth boundaries it holds for Lips-
chitz boundaries as well. This result remains true even in the generalized case (for Riemannian 
manifolds).

In this paper we shall make use of a result by Jochmann [52] who allows a Lipschitz boundary 
Γ which is divided into two parts Γt and Γn by a Lipschitz curve and such that on Γt and Γn the 
mixed boundary conditions ν × v|Γt = 0 and ν · v|Γn = 0 respectively, hold. In his dissertation, 
Kuhn [63] has proved an analogous result for the generalized Maxwell equations on Riemannian 
manifolds, following Weck’s approach.

The well known Sobolev type space H(curl; Ω) has plenty of important and prominent ap-
plications, most of them in the comprehensive theory of Maxwell’s equations, i.e., in electro-
magnetic theory. Among others, we want to mention [68,67,69,99–103,122,124,126,120,121,
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92,93,95,94,64,97]. It is also used as a main tool for the analysis and discretization of Navier–
Stokes’ equations and in the numerical analysis of non-conforming finite element discretizations 
[43,41].

1.2. Korn’s inequality

Korn’s inequality gives the control of the L2(Ω)-norm of the gradient of a vector field by 
the L2(Ω)-norm of just the symmetric part of its gradient, under certain conditions. The most 
elementary variant of Korn’s inequality for Γt = Γ reads as follows: For any smooth vector field 
v : Ω → R

3 with compact support in Ω , i.e., v ∈ ◦
C∞(Ω),

‖∇v‖2
L2(Ω)

≤ 2‖sym∇v‖2
L2(Ω)

(1.6)

holds. This inequality is simply obtained by straight forward partial integration, see Appendix A, 
and dates back to Korn himself [61]. Moreover, it can be improved easily by estimating just the 
deviatoric part of the symmetric gradient (see Appendix A), that is

∀v ∈ ◦
H1(Ω)

1

2
‖∇v‖2

L2(Ω)
≤ ‖dev sym∇v‖2

L2(Ω)
≤ ‖sym∇v‖2

L2(Ω)
≤ ‖∇v‖2

L2(Ω)
. (1.7)

Here, we introduce generally the deviatoric part devT := T − 1
3 trT id as well as the symmetric 

and skew-symmetric parts symT := 1
2 (T + T �), skewT := 1

2 (T − T �) for quadratic matrix 
or tensor fields T . Note that T = symT + skewT and T = devT + 1

3 trT id hold and symT , 
skewT and devT , trT id are orthogonal in R3×3. Together with (component-wise) Poincaré’s 
inequality (1.1) for Γt = Γ , see [106], one arrives as in (1.2) for all v ∈ ◦

H1(Ω) at

(
c2
p + 1

)−1/2‖v‖H1(Ω) ≤ ‖∇v‖L2(Ω) ≤ √
2‖dev sym∇v‖L2(Ω) ≤ √

2‖sym∇v‖L2(Ω).

Then, Rellich’s selection theorem shows that the set of all 
◦
H1(Ω)-vector fields whose (deviatoric) 

symmetric gradients are bounded in L2(Ω) is (sequentially) compact in L2(Ω).
Let us mention that Arthur Korn (1870-1945) was a student of Henri Poincaré. Korn visited 

him in Paris before the turn of the 20th century and it was again Korn who wrote the obituary for 
Poincaré in 1912 [62]. It is also worth mentioning that Poincaré helped to introduce Maxwell’s 
electro-magnetic theory to French readers. The interesting life of the German-Jewish mathemati-
cian, physicist and inventor of telegraphy Korn is recalled in [72,105].

In general, Korn’s inequality involves an integral measure of shape deformation, i.e., a mea-
sure of the strain sym∇v, with which it is possible to control the distance of the deformation to 
some Euclidean motion or to control the H1(Ω)-norm or semi-norm.

Consider the kernel of the linear operator sym∇ : H1(Ω) ⊂ L2(Ω) → L2(Ω)

ker(sym∇) = RM := {
x �→ Ax + b : A ∈ so(3), b ∈ R

3}, (1.8)
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the space of all infinitesimal rigid displacements (motions) which consists of all affine linear 
transformations v for which ∇v = A ∈ so(3).4 Here, so(3) denotes the Lie-algebra of all (con-
stant) skew-symmetric (3 × 3)-matrices. Since the measure of strain sym∇v is invariant with 
respect to superposed infinitesimal rigid displacements, i.e., RM ⊂ ker(sym∇), one needs some 
linear boundary or normalization conditions in order to fix this Euclidean motion. E.g., using 
homogeneous Dirichlet boundary conditions one has (1.2). By normalization one gets

‖∇v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω) (1.9)

for all v ∈ H1(Ω) with ∇v⊥ so(3).5 Equivalently, one has for all v ∈ H1(Ω), e.g.,

‖∇v − A∇v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω), (1.10)

where the constant skew-symmetric tensor

A∇v := skew
∮
Ω

∇v dλ ∈ so(3),

∮
Ω

udλ := λ(Ω)−1
∫
Ω

udλ
(
λ : Lebesgue’s measure

)
,

is the L2(Ω)-orthogonal projection of ∇v onto so(3). For details we refer to Appendix A. 
Poincaré’s inequalities for vector fields by normalization read

‖v‖L2(Ω) ≤ cp‖∇v‖L2(Ω), ‖v‖H1(Ω) ≤ (
1 + c2

p

)1/2‖∇v‖L2(Ω) (1.11)

for all v ∈ H1(Ω) with v⊥ R3. Equivalently, one has for all v ∈ H1(Ω), e.g.,

‖v − av‖L2(Ω) ≤ cp‖∇v‖L2(Ω), ‖v − av‖H1(Ω) ≤ (
1 + c2

p

)1/2‖∇v‖L2(Ω), (1.12)

where the constant vector

av :=
∮
Ω

v dλ ∈ R
3

is the L2(Ω)-orthogonal projection of v onto R3. Combining (1.9) and (1.11) we obtain

(
1 + c2

p

)−1/2‖v‖H1(Ω) ≤ ‖∇v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω) (1.13)

for all v ∈ H1(Ω) with ∇v⊥ so(3) and v⊥ R3. Without these conditions one has

4 (1.8) easily follows from the simple observation that sym ∇v = 0 implies ∇v(x) = A(x) ∈ so(3). Taking the Curl on 
both sides gives Curl A = 0 and thus ∇A = 0. Hence, A must be a constant skew-symmetric matrix. Equivalently, one 
may use the well known representation for second derivatives ∂i∂j vk = ∂j (sym∇v)ik + ∂i (sym∇v)jk − ∂k(sym∇v)ij . 
Then, sym∇v = 0 implies that v is a first order polynomial. This representation formula for second derivatives of v in 
terms of derivatives of strain components can also serve as basis for a proof of Korn’s second inequality [17,24]. In this 
case one uses the lemma of Lions, see [16], i.e., for a Lipschitz domain u ∈ L2(Ω) if and only if u ∈ H−1(Ω) and 
∇u ∈ H−1(Ω).

5 ⊥ denotes orthogonality in L2(Ω), whose elements map into R, R3 or R3×3, respectively.
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(
1 + c2

p

)−1/2‖v − rv‖H1(Ω) ≤ ‖∇v − A∇v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω), (1.14)

for all v ∈ H1(Ω), where the rigid motion rv := A∇vξ + av − A∇vaξ ∈ RM with the identity 
function ξ(x) := id(x) = x reads

rv(x) := A∇vx +
∮
Ω

v dλ − A∇v

∮
Ω

x dλx.

Note that u := v − rv belongs to H1(Ω) with ∇u = ∇v − A∇v and satisfies ∇u⊥ so(3)

and u⊥ R3. Hence (1.13) holds for u. Moreover, we have for v ∈ H1(Ω)

rv = 0 ⇔ A∇v = 0 ∧ av = 0 ⇔ ∇v⊥ so(3) ∧ v⊥R
3.

See Appendix A for details. Conditions to eliminate some or all six rigid body modes (three 
infinitesimal rotations and three translations) comprise (see [3])

skew
∫
Ω

∇v dλ = 0, v|Γt = 0, ∇vn normal to Γt .

Korn’s inequality is the main tool in showing existence, uniqueness and continuous depen-
dence upon data in linearized elasticity theory and it has therefore plenty of applications in 
continuum mechanics [89,47]. One refers usually to [59–61] for first versions of Korn’s inequal-
ities. These original papers by Korn are, however, difficult to read nowadays and Friedrichs even 
claims that they are wrong [31]. In any case, in [61, p. 710(13)] Korn states that (in modern 
notation)

‖skew∇v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω)

holds for all vector fields v : Ω ⊂R
3 →R

3 having Hölder continuous first order derivatives and 
which satisfy

∫
Ω

v dλ = 0,

∫
Ω

skew∇v dλ = 0.

Note that this implies A∇v = 0 and av = 0 and hence rv = 0.
Let Γt �= ∅. By the classical Korn’s first inequality with homogeneous Dirichlet boundary 

condition we mean

∃ck > 0 ∀v ∈ ◦
H1(Γt ;Ω) ‖∇v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω)

or equivalently by Poincaré’s inequality (1.1)

∃ck > 0 ∀v ∈ ◦
H1(Γt ;Ω) ‖v‖H1(Ω) ≤ ck‖sym∇v‖L2(Ω),

see (1.2), whereas we say that the classical Korn’s second inequality holds if
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∃ck > 0 ∀v ∈ H1(Ω) ‖v‖H1(Ω) ≤ ck
(‖v‖L2(Ω) + ‖sym∇v‖L2(Ω)

)
.

Korn’s first inequality can be obtained as a consequence of Korn’s second inequality6 and the 
compactness of the embedding H1(Ω) ↪→ L2(Ω), i.e., Rellich’s selection theorem for H1(Ω). 
Thus, the main task for Korn’s inequalities is to show Korn’s second inequality. Korn’s second 
inequality in turn can be seen as a strengthened version of Gårding’s inequality requiring methods 
from Fourier analysis [44,45,53]. Very elegant and short proofs of Korn’s second inequality have 
been presented in [58,117] and by Fichera [29]. Fichera’s proof can be found in the appendix of 
Leis’ book [69]. Another short proof is based on strain preserving extension operators [88].

Both inequalities admit a natural extension to the Sobolev space W1,p(Ω) for Sobolev expo-
nents 1 < p < ∞. The first proofs have been given by Mosolov and Mjasnikov in [74,75] and by 
Ting in [118]. Note that Korn’s inequalities are wrong7 in W1,1(Ω), see [90]. New and simple 
counterexamples for W1,1(Ω) have been obtained in [19]. Friedrichs furnished the first8 modern 
proof of the above inequalities [31], see also [98,42,31,44,45,6,88,58,17,5,46,48,24]. A version 
of Korn’s inequality for sequences of gradient young measures has been obtained in [7].

Korn’s inequalities are also crucial in the finite element treatment of problems in solid me-
chanics with non-conforming or discontinuous Galerkin methods. Piecewise Korn’s inequalities 
subordinate to the mesh and involving jumps across element boundaries are investigated, e.g., in 
[10,70]. An interesting special case of Korn’s first inequality with non-standard boundary con-
ditions and for non-axi-symmetric domains with applications in statistical mechanics has been 
treated in [22].

Ciarlet [16,15,18] has shown how to extend Korn’s inequalities to curvilinear coordinates in 
Euclidean space which has applications in shell theory. It is possible to extend such general-
izations to more general Riemannian manifolds [13]. Korn’s inequalities for thin domains with 
uniform constants have been investigated, e.g., in [71,91].

Korn’s inequalities appear in the treatment of the Navier–Stokes model as well, since with the 
fluid velocity v in the Eulerian description the rate of the deformation tensor is given by sym∇v

which controls the viscous forces generated due to shearing motion. In this case, Korn’s inequal-
ity acts in a geometrically exact description of the fluid motion and not just for the approximated 
linearized treatment as in linearized elasticity.

1.3. Further generalizations of Korn’s inequalities

1.3.1. Poincaré–Korn type estimates
As already mentioned, it is well known that there are no W1,1(Ω)-versions of Korn’s inequal-

ities [90,19]. However, it is still possible to obtain a bound of the Lp(Ω)-norm of a vector field 
v even for p = 1 in terms of controlling the strain sym∇v in some sense.9 More precisely, let 
as usual BD(Ω) denote the space of bounded deformations, i.e., the space of all vector fields 

6 The ascription Korn’s first or second inequality is not universal. Friedrichs [31] refers to Korn’s inequality 
‖∇v‖L2(Ω)

≤ ck‖sym∇v‖L2(Ω)
in the first case if u|Γ = 0 and to the second case if skew

∫
Ω ∇v dλ vanishes. We follow 

the usage in [119, p. 54].
7 Korn’s inequalities are also wrong in W1,∞(Ω). E.g., consider the unit ball in R2 and the vector field

v(x) := ln |x|(x2,−x1).

8 The case N = 2 has already been proved by Friedrichs [30] in 1937.
9 And that is indeed the type of inequality a la Poincaré’s estimate that Korn intended to prove [61, p. 707].
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v ∈ L1(Ω) such that all components of the tensor (matrix) sym∇v (defined in the distributional 
sense) are measures with finite total variation. Then, the total variation measure of the distribution 
sym∇v for a vector field v ∈ L1(Ω) is defined by

|sym∇v|(Ω) := sup
Φ∈C̊1(Ω)

‖Φ‖L∞(Ω)≤1

∣∣〈v,Div symΦ〉Ω
∣∣

and |sym∇v|(Ω) = ‖sym∇v‖L1(Ω) holds if sym∇v ∈ L1(Ω). In [55,56] the inequalities

∃ck > 0 ∀v ∈ BD(Ω) inf
r∈RM

‖v − r‖L1(Ω) ≤ ck| sym∇v|(Ω),

∃ck > 0 ∀v ∈ Lp(Ω), sym∇v ∈ Lq(Ω) inf
r∈RM

‖v − r‖Lp(Ω) ≤ ck‖sym∇v‖Lq (Ω)

with

q ∈ [1,∞) \ {3}, p =
{

3q
3−q

, 1 ≤ q < 3

∞, q > 3

have been proved. In case the displacement v has vanishing trace on Γ one has a Poincaré–Korn 
type inequality for v ∈ BD(Ω) [116]

‖v‖L3/2(Ω) ≤ ck|sym∇v|(Ω).

The weaker inequality with L1(Ω)-term on the right hand side is already proved in [115, Th. 1]. 
Moreover, as shown in [116, Th. II.2.4] it is clear that BD(Ω) is compactly embedded into Lp(Ω)

for any 1 ≤ p < 3/2.
Considering Korn’s second inequality one obtains, again via Rellich’s selection theorem, the 

compact embedding of

S(Ω) := {
v ∈ L2(Ω) : sym∇v ∈ L2(Ω)

}
into L2(Ω) provided that the ‘regularity result’ S(Ω) ⊂ H1(Ω) holds, as already mentioned. In 
less regular domains, e.g., domains with cusps, Korn’s second inequality and the embedding 
S(Ω) ⊂ H1(Ω) may fail, for counterexamples see [123,40]. Weck [123] has shown that, how-
ever, compact embedding into L2(Ω), i.e., the elastic compactness property (ECP),10 that is, the 
embedding

S(Ω) ↪→ L2(Ω) (1.15)

is compact, still holds true, without the intermediate H1(Ω)-estimate. Therefore, once more by a 
usual indirect argument, also in irregular (bounded) domains one has always the estimate

‖v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω)

10 Here, we have the same situation as in the Maxwell case, see the MCP and the MI.
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for all v ∈ S(Ω) ∩S0(Ω)⊥, where S0(Ω) := {v ∈ S(Ω) : sym∇v = 0}. Note that S0(Ω) is finite 
dimensional11 due to the compact embedding (1.15). Moreover, we have RM ⊂ S0(Ω) and it is 
well known from the theory of distributions that even equality RM = S0(Ω) holds.

Extensions of Korn’s inequalities to non-smooth domains and weighted versions for un-
bounded domains can be found in [57,76,49,23,1,2]. Korn’s inequalities in Orlicz spaces are 
treated, e.g., in [35,9]. A reference for Korn’s inequality for perforated domains and homoge-
nization theory is [11].

1.3.2. Generalization to weaker strain measures
Also the second Korn’s inequality can be generalized by using the trace free infinitesimal 

deviatoric strain measure. It holds

‖v‖H1(Ω) ≤ ck
(‖v‖L2(Ω) + ‖dev sym∇v‖L2(Ω)

)
for all v ∈ H1(Ω). For proofs see [21,51,110,111,35,34,36]. This version has found applications 
for Cosserat models and perfect plasticity [37].

Another generalization concerns the situation, where a dislocation based motivated gener-
alized strain sym(∇vF−1

p ) is controlled. Such cases arise naturally when considering finite 
elasto-plasticity based on the multiplicative decomposition F = FeFp of the deformation gra-
dient into elastic and plastic parts [79,78] or in elasticity problems with structural changes [54,
80] and shell models [81]. In case of plasticity, Fp : Ω → R

3×3 is the plastic deformation related 
to pure dislocation motion. The first result under the assumptions that detFp ≥ μ > 0 and Fp is 
sufficiently smooth, i.e., Fp, F−1

p , CurlFp ∈ C1(Ω), has been given by Neff in [77]. In fact

‖v‖H1(Ω) ≤ ck
∥∥sym

(∇vF−1
p

)∥∥
L2(Ω)

(1.16)

holds for all v ∈ ◦
H1(Γt ; Ω) with ck depending on Fp . This inequality has been generalized 

to mere continuity and invertibility of Fp in [107], while it is also known that some sort of 
smoothness of Fp beyond L∞(Ω)-control is necessary, see [107,108,87,65,66].

1.3.3. Korn’s inequality and rigidity estimates
Recently, there has been a revived interest in so called rigidity results, which have a close 

connection to Korn’s inequalities. With the point-wise representation

dist2
(∇v(x), so(3)

) = inf
A∈so(3)

∣∣∇v(x) − A
∣∣2

= inf
A∈so(3)

(∣∣sym∇v(x)
∣∣2 + ∣∣skew∇v(x) − A

∣∣2)
= ∣∣sym∇v(x)

∣∣2
,

the infinitesimal rigidity result can be expressed as follows

dist
(∇v, so(3)

) = 0 ⇒ v ∈ RM. (1.17)

11 Compare with H(Ω) in (2.2).
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Korn’s first inequality can be seen as a qualitative extension of the infinitesimal rigidity result, 
that is, for 1 < p < ∞ there exist constants ck > 0 such that

min
A∈so(3)

‖∇v − A‖Lp(Ω) ≤ ck‖sym∇v‖Lp(Ω) = ck

(∫
Ω

distp
(∇v, so(3)

)
dλ

)1/p

holds for all v ∈ W1,p(Ω), see, e.g., [119]. As already seen in (1.10), in the Hilbert space case 
p = 2 the latter inequality can be made explicit with A = A∇v and in this form with A∇v = 0 it 
is given by Friedrichs [31, p. 446] and denoted as Korn’s inequality in the second case.

The nonlinear version of (1.17) is the classical Liouville rigidity result, see [14,109,111]. It 
states that if an elastic body is deformed in such a way that its deformation gradient is point-wise 
a rotation, then the body is indeed subject to a rigid motion. In mathematical terms we have for 
smooth maps ϕ, that if ∇ϕ ∈ SO(3)12 almost everywhere then ∇ϕ is constant, i.e.,

dist
(∇ϕ,SO(3)

) = 0 ⇒ ϕ(x) = Rx + b, R ∈ SO(3), b ∈R
3. (1.18)

The optimal quantitative version of Liouville’s rigidity result has been derived by Friesecke, 
James and Müller in [33]. We have

min
R∈SO(3)

(∫
Ω

distp(∇ϕ,R)dλ

)1/p

≤ ck

(∫
Ω

distp
(∇ϕ,SO(3)

)
dλ

)1/p

. (1.19)

As a consequence, if the deformation gradient is close to rotations, then it is in fact close to a 
unique rotation. A generalization to fracturing materials is stated in [12]. It is possible to infer a 
nonlinear Korn’s inequality from (1.19), i.e.,

‖∇ϕ − id‖L2(Ω) ≤ ck
∥∥(∇ϕ)�∇ϕ − id

∥∥
L2(Ω)

for all ϕ ∈ W1,4(Ω) with ϕ = id on Γ and det∇ϕ > 0, see [73] for more general statements. 
Another quantitative generalization of Liouville’s rigidity result is the following: For all differ-
entiable orthogonal tensor fields R : Ω → SO(3)

|∇R| ≤ c|CurlR| (1.20)

holds point-wise [82]. From (1.20) we may also recover (1.18) by assuming R = ∇ϕ. It extends 
the simple inequality for differentiable skew-symmetric tensor fields A : Ω → so(3)

|∇A| ≤ c|CurlA| (1.21)

to SO(3), i.e., to finite rotations [82].
After this introductory remarks we turn to the main part of our contribution.

12 SO(3) denotes the Lie-group of all (constant) orthogonal matrices with unit determinant.
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2. Definitions and preliminaries

Let Ω be a bounded domain in R3 with (strongly) Lipschitz boundary Γ := ∂Ω . Moreover, 
let Γt be a relatively open subset of Γ separated from Γn := ∂Ω \ Γt by a (strongly) Lipschitz 
curve. For details and exact definitions see [52]. We emphasize that these assumptions on the 
boundary and the interface are necessary to ensure the well-posedness of our problems with 
mixed boundary conditions.

2.1. Functions and vector fields

The usual Lebesgue spaces of square integrable functions, vector or tensor fields on Ω with 
values in R, R3 or R3×3, respectively, will be denoted by L2(Ω). Moreover, we introduce the 
standard Sobolev spaces

H(grad;Ω) = {
u ∈ L2(Ω) : gradu ∈ L2(Ω)

}
, grad = ∇,

H(curl;Ω) = {
v ∈ L2(Ω) : curlv ∈ L2(Ω)

}
, curl = ∇×,

H(div;Ω) = {
v ∈ L2(Ω) : divv ∈ L2(Ω)

}
, div = ∇,

of functions u or vector fields v, respectively. H(grad; Ω) is usually denoted by H1(Ω). Further-
more, we introduce their closed subspaces

◦
H(grad;Γt ,Ω) = ◦

H1(Γt ;Ω),
◦
H(curl;Γt ,Ω),

◦
H(div;Γn,Ω)

as completion under the respective graph norms of the scalar valued space 
◦
C∞(Γt , Ω) and the 

vector valued spaces 
◦
C∞(Γt , Ω), 

◦
C∞(Γn, Ω), where

◦
C∞(γ ;Ω) := {

u ∈ C∞(Ω) : dist(suppu,γ ) > 0
}
, γ ∈ {Γ,Γt ,Γn}.

In the latter Sobolev spaces, by Gauß’ theorem the usual homogeneous scalar, tangential and 
normal boundary conditions

u|Γt = 0, ν × v|Γt = 0, ν · v|Γn = 0

are generalized, where ν denotes the outward unit normal at Γ .13 If Γt = Γ (and Γn = ∅) resp. 
Γt = ∅ (and Γn = Γ ) we obtain the usual Sobolev-type spaces and write

◦
H(grad;Ω) = ◦

H1(Ω),
◦
H(curl;Ω), H(div;Ω) resp.

H(grad;Ω) = H1(Ω), H(curl;Ω),
◦
H(div;Ω).

We underline that due to the definitions of the weak boundary conditions we have the integration 
by parts formulas

13 Note that ν × v|Γt = 0 is equivalent to τ · v|Γt = 0 for all tangential vector fields τ at Γt .
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∀u ∈ ◦
H(grad;Γt ,Ω) ∀v ∈ ◦

H(div;Γn,Ω) 〈gradu,v〉L2(Ω) = −〈u,divv〉L2(Ω),

∀w ∈ ◦
H(curl;Γt ,Ω) ∀v ∈ ◦

H(curl;Γn,Ω) 〈curlw,v〉L2(Ω) = 〈w, curlv〉L2(Ω)

at our disposal. Furthermore, we need the spaces of irrotational or solenoidal vector fields

H(curl0;Ω) := {
v ∈ H(curl;Ω) : curlv = 0

}
,

◦
H(curl0;Γt ,Ω) := {

v ∈ ◦
H(curl;Γt ,Ω) : curlv = 0

}
,

H(div0;Ω) := {
v ∈ H(div;Ω) : divv = 0

}
,

◦
H(div0;Γn,Ω) := {

v ∈ ◦
H(div;Γn,Ω) : divv = 0

}
,

where the index 0 indicates vanishing curl or div, respectively. All these spaces are Hilbert 
spaces. In classical terms, e.g., a vector field v belongs to 

◦
H(curl0; Γt , Ω) resp. 

◦
H(div0; Γn, Ω), 

if

curlv = 0, ν × v|Γt = 0 resp. divv = 0, ν · v|Γn = 0.

In [52] the crucial compact embedding

◦
H(curl;Γt ,Ω) ∩ ◦

H(div;Γn,Ω) ↪→ L2(Ω) (2.1)

has been proved, which we refer to as Maxwell compactness property (MCP). The generalization 
to RN or even to Riemannian manifolds using the calculus of differential forms can be found in 
[63] or [50].

A first immediate consequence of (2.1) is that the space of so called ‘harmonic Dirichlet–
Neumann fields’

H(Ω) := ◦
H(curl0;Γt ,Ω) ∩ ◦

H(div0;Γn,Ω) (2.2)

is finite dimensional, since by (2.1) the unit ball is compact in H(Ω). In classical terms we have 
v ∈ H(Ω) if

curlv = 0, divv = 0, ν × v|Γt = 0, ν · v|Γn = 0.

By a usual indirect argument we achieve another immediate and important consequence:

Lemma 1 (Maxwell estimate for vector fields). There exists a positive constant cm, such that for 
all vector fields v in 

◦
H(curl; Γt , Ω) ∩ ◦

H(div; Γn, Ω) ∩H(Ω)⊥

‖v‖L2(Ω) ≤ cm
(‖curlv‖2

L2(Ω)
+ ‖divv‖2

L2(Ω)

)1/2
.

There are two options to get estimate on 
◦
H(curl; Γt , Ω) ∩ ◦

H(div; Γn, Ω).
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Corollary 2 (Maxwell estimate for vector fields). There exists a positive constant cm, such that 
for all vector fields v in 

◦
H(curl; Γt , Ω) ∩ ◦

H(div; Γn, Ω)

∥∥(id−π)v
∥∥

L2(Ω)
≤ cm

(‖curlv‖2
L2(Ω)

+ ‖divv‖2
L2(Ω)

)1/2
,

‖v‖L2(Ω) ≤ cm
(‖curlv‖2

L2(Ω)
+ ‖divv‖2

L2(Ω)
+ ‖πv‖2

L2(Ω)

)1/2
.

Here π : L2(Ω) → H(Ω) denotes the L2(Ω)-orthogonal projection onto Dirichlet–Neumann 
fields and can be expressed explicitly by

πv :=
L∑

�=1

〈
v, d�

〉
L2(Ω)

d�, ‖πv‖2
L2(Ω)

=
L∑

�=1

∣∣〈v, d�
〉
L2(Ω)

∣∣2
,

where L := dimH(Ω) and (d�)L�=1 is an L2(Ω)-orthonormal basis of H(Ω).

Here, we denote by ⊥ the orthogonal complement in L2(Ω). As shown in [52] as well we 
have

grad
◦
H(grad;Γt ,Ω)⊥ = ◦

H(div0;Γn,Ω), curl
◦
H(curl;Γn,Ω)⊥ = ◦

H(curl0;Γt ,Ω),

which implies

grad
◦
H(grad;Γt ,Ω) = ◦

H(div0;Γn,Ω)⊥, curl
◦
H(curl;Γn,Ω) = ◦

H(curl0;Γt ,Ω)⊥,

where the closures are taken in L2(Ω). Since

grad
◦
H(grad;Γt ,Ω) ⊂ ◦

H(curl0;Γt ,Ω), curl
◦
H(curl;Γn,Ω) ⊂ ◦

H(div0;Γn,Ω)

we obtain by the projection theorem the Helmholtz decompositions

L2(Ω) = grad
◦
H(grad;Γt ,Ω) ⊕ ◦

H(div0;Γn,Ω) = ◦
H(curl0;Γt ,Ω) ⊕ curl

◦
H(curl;Γn,Ω)

= grad
◦
H(grad;Γt ,Ω) ⊕H(Ω) ⊕ curl

◦
H(curl;Γn,Ω),

where ⊕ denotes the L2(Ω)-orthogonal sum. Using an indirect argument, the space
grad

◦
H(grad;Γt , Ω) is already closed by variants of Poincaré’s estimate, i.e.,

Γt �= ∅ : ∃cp > 0 ∀u ∈ ◦
H(grad;Γt ,Ω) ‖u‖L2(Ω) ≤ cp‖gradu‖L2(Ω),

Γt = ∅ : ∃cp > 0 ∀u ∈ H(grad;Ω) ∩R
⊥ ‖u‖L2(Ω) ≤ cp‖gradu‖L2(Ω), (2.3)

which are implied by the compact embeddings (Rellich’s selection theorems)

◦
H(grad;Γt ,Ω) ↪→ L2(Ω), H(grad;Ω) ↪→ L2(Ω). (2.4)

Analogously to Corollary 2 we also have for Γt = ∅ and all u ∈ H(grad; Ω)
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‖u − αu‖L2(Ω) ≤ cp‖gradu‖L2(Ω), αu := λ(Ω)−1〈u,1〉L2(Ω) =
∮
Ω

udλ ∈R,

‖u‖L2(Ω) ≤ cp
(‖gradu‖2

L2(Ω)
+ ‖αu‖2

L2(Ω)

)1/2
.

Interchanging Γt and Γn in the second equation of the latter Helmholtz decompositions and 
applying this Helmholtz decompositions to 

◦
H(curl; Γn, Ω) yields the refinement

curl
◦
H(curl;Γn,Ω) = curl

( ◦
H(curl;Γn,Ω) ∩ curl

◦
H(curl;Γt ,Ω)

)
.

Now, by Lemma 1 we see that curl
◦
H(curl; Γn, Ω) is closed as well. We have:

Lemma 3 (Helmholtz decompositions for vector fields). The orthogonal decompositions

L2(Ω) = grad
◦
H(grad;Γt ,Ω) ⊕ ◦

H(div0;Γn,Ω) = ◦
H(curl0;Γt ,Ω) ⊕ curl

◦
H(curl;Γn,Ω)

= grad
◦
H(grad;Γt ,Ω) ⊕H(Ω) ⊕ curl

◦
H(curl;Γn,Ω)

hold. Moreover, curl
◦
H(curl; Γn, Ω) = curl(

◦
H(curl; Γn, Ω) ∩ curl

◦
H(curl; Γt , Ω)).

2.2. Tensor fields

We extend our calculus to (3 × 3)-tensor (matrix) fields. For vector fields v with components 
in H(grad; Ω) and tensor fields T with rows in H(curl; Ω) resp. H(div; Ω), i.e.,

v =
[

v1
v2
v3

]
, vn ∈ H(grad;Ω), T =

[
T1

�
T2

�
T3

�

]
, Tn ∈ H(curl;Ω) resp. H(div;Ω)

we define

Gradv :=
[grad�v1

grad�v2
grad�v3

]
= Jv, CurlT :=

[ curl�T1
curl�T2
curl�T3

]
, DivT :=

[divT1
divT2
divT3

]
,

where Jv denotes the Jacobian of v and � the transpose. We note that v and DivT are vector 
fields, whereas T , CurlT and Gradv are tensor fields. The corresponding Sobolev spaces will be 
denoted by

H(Grad;Ω), H(Curl;Ω), H(Curl0;Ω), H(Div;Ω), H(Div0;Ω)

and

◦
H(Grad;Γt ,Ω),

◦
H(Curl;Γt ,Ω),

◦
H(Curl0;Γt ,Ω),

◦
H(Div;Γn,Ω),

◦
H(Div0;Γn,Ω).

Now, we present our three crucial tools to prove our main estimate. First we have obvious 
consequences from Lemmas 1 and 3:
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Corollary 4 (Maxwell estimate for tensor fields). The estimate

‖T ‖L2(Ω) ≤ cm
(‖CurlT ‖2

L2(Ω)
+ ‖DivT ‖2

L2(Ω)

)1/2

holds for all tensor fields T ∈ ◦
H(Curl; Γt , Ω) ∩ ◦

H(Div; Γn, Ω) ∩ (H(Ω)3)⊥. Furthermore, the 
analogue of Corollary 2 holds as well.

Here, T ∈H(Ω)3 if T � = [T1 T2 T3] with Tm ∈H(Ω) for m = 1, . . . , 3.

Corollary 5 (Helmholtz decomposition for tensor fields). The orthogonal decompositions

L2(Ω) = Grad
◦
H(Grad;Γt ,Ω) ⊕ ◦

H(Div0;Γn,Ω) = ◦
H(Curl0;Γt ,Ω) ⊕ Curl

◦
H(Curl;Γn,Ω)

= Grad
◦
H(Grad;Γt ,Ω) ⊕H(Ω)3 ⊕ Curl

◦
H(Curl;Γn,Ω)

hold. Moreover, Curl
◦
H(Curl; Γn, Ω) = Curl(

◦
H(Curl; Γn, Ω) ∩ Curl

◦
H(Curl; Γt , Ω)).

The third important tool is Korn’s first inequality and a variant which meets our needs is the 
next lemma.

Lemma 6 (Korn’s first inequality: standard version). There exists a constant ck,s > 0, such that 
the following hold:

(i) If Γt �= ∅ then

(
1 + c2

p

)−1/2‖v‖H1(Ω) ≤ ‖Gradv‖L2(Ω) ≤ ck,s‖sym Gradv‖L2(Ω) (2.5)

holds for all vector fields v ∈ ◦
H(Grad; Γt , Ω).

(ii) If Γt = ∅, then the inequalities (2.5) hold for all vector fields v ∈ H(Grad; Ω) with 
Gradv⊥ so(3) and v⊥ R3. Moreover, the second inequality of (2.5) holds for all vector fields 
v ∈ H(Grad; Ω) with Gradv⊥ so(3). For all v ∈ H(Grad; Ω)

(
1 + c2

p

)−1/2‖v − rv‖H1(Ω) ≤ ‖Gradv − AGrad v‖L2(Ω) ≤ ck,s‖sym Gradv‖L2(Ω) (2.6)

holds, where rv ∈ RM and AGrad v = Grad rv are given by rv(x) := AGrad vx + bv and

AGrad v := skew
∮
Ω

Gradv dλ ∈ so(3), bv :=
∮
Ω

v dλ − AGrad v

∮
Ω

x dλx ∈R
3.

We note v − rv ⊥ R3 and Grad(v − rv) = Gradv − AGrad v⊥ so(3).

Proof. As already mentioned in the introduction, the assertions are easy consequences of Korn’s 
second inequality and Rellich’s selection theorem for H1(Ω). �
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Remark 7. Note that AGrad v = πso(3) Gradv, where πso(3) : L2(Ω) → so(3) denotes the 
L2(Ω)-orthogonal projection onto so(3). Thus, the assertion

Grad(v − rv) = Gradv − AGrad v = (id−πso(3))Gradv⊥ so(3)

is trivial. Moreover, generally for T ∈ L2(Ω)

πso(3)T := AT := skew
∮
Ω

T dλ ∈ so(3) (2.7)

holds. Equivalent to (2.6) we have for all v ∈ H(Grad; Ω)

(
1 + c2

p

)−1/2‖v‖H1(Ω) ≤ (‖∇v‖2
L2(Ω)

+ ‖av‖2
L2(Ω)

)1/2

≤ ck
(‖sym∇v‖2

L2(Ω)
+ ‖AGrad v‖2

L2(Ω)
+ ‖av‖2

L2(Ω)

)1/2

≤ ck
(‖sym∇v‖2

L2(Ω)
+ ‖rv‖2

H1(Ω)

)1/2

with

av = πR3v :=
∮
Ω

v dλ ∈ R
3,

where πR3 : L2(Ω) → R
3 denotes the L2(Ω)-orthogonal projection onto R3. For details, we refer 

to Appendix A.

3. Main results

We start with generalizing Korn’s first inequality from gradient tensor fields to merely irrota-
tional tensor fields.

3.1. Extending Korn’s first inequality to irrotational tensor fields

Lemma 8. Let Γt �= ∅ and u ∈ H(grad; Ω) with gradu ∈ ◦
H(curl0; Γt , Ω). Then, u is constant on 

any connected component of Γt .

Proof. It is sufficient to show that u is locally constant. Let x ∈ Γt and B2r := B2r (x) be an 
open ball of radius 2r > 0 around x such that B2r is covered by a Lipschitz-chart domain and 
Γ ∩ B2r ⊂ Γt . Moreover, we pick some ϕ ∈ ◦

C∞(B2r ) with ϕ|Br = 1. Then

ϕ gradu ∈ ◦
H(curl;Ω ∩ B2r ).

Thus, the extension by zero v of ϕ gradu to B2r belongs to H(curl; B2r ). Hence,

v|Br ∈ H(curl0;Br).
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Fig. 1. Two ways to cut a sliceable domain into two (J = 2) subdomains. Roughly speaking, a domain is sliceable if it 
can be ‘cut’ into finitely many simply connected Lipschitz ‘pieces’ Ωj , i.e., any closed curve inside some piece Ωj is 
homotop to a point, that is, one has to cut all handles. Holes inside Ω are permitted since we are in 3D.

Since Br is simply connected, there exists a ũ ∈ H(grad; Br) with grad ũ = v in Br . In Br \ Ω

we have v = 0. Therefore, ũ|Br\Ω = c̃ with some c̃ ∈ R. Moreover, gradu = v = grad ũ holds 
in Br ∩ Ω , which yields u = ũ + c in Br ∩ Ω with some c ∈ R. Finally, u|Br∩Γt = c̃ + c is 
constant. �
Lemma 9 (Korn’s first inequality: tangential version). Let Γt �= ∅. There exists a constant 
ck,t ≥ ck,s , such that

‖Gradv‖L2(Ω) ≤ ck,t‖sym Gradv‖L2(Ω)

holds for all vector fields v ∈ H(Grad; Ω) with Gradv ∈ ◦
H(Curl0; Γt , Ω).

In classical terms, Gradv ∈ ◦
H(Curl0; Γt , Ω) means that the restricted tangential traces 

ν × gradvn|Γt vanish, i.e., gradvn = ∇vn, n = 1, . . . , 3, are normal at Γt . In other words, 
τ · ∇vn|Γt = 0 for all tangential vectors fields τ on Γt .

Proof. Let Γ̃ �= ∅ be a relatively open connected component of Γt . Applying Lemma 8 to each 
component of v, there exists a constant vector cv ∈ R

3 such that v−cv belongs to 
◦
H(Grad; Γ̃, Ω). 

Then, Lemma 6 (i) (with Γt = Γ̃ and a possibly larger ck,t ) completes the proof. �
Definition 10. Ω is called ‘sliceable’, if there exist J ∈ N and Ωj ⊂ Ω , j = 1, . . . , J , such that 
Ω \ (Ω1 ∪ . . . ∪ ΩJ ) is a nullset and for j = 1, . . . , J

(i) Ωj are open, disjoint and simply connected Lipschitz subdomains of Ω ,
(ii) Γt,j := intrel(Ωj ∩ Γt ) �= ∅, if Γt �= ∅.

Here, intrel denotes the interior with respect to the topology on Γ .

Remark 11. Assumptions of this type are not new, see e.g. [4, p. 836] or [5, p. 3]. From a 
practical point of view, all domains considered in applications are sliceable, but it is not clear 
whether every Lipschitz domain is already sliceable. (See Fig. 1.)
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Lemma 12 (Korn’s first inequality: irrotational version). Let Ω be sliceable. There exists 
ck ≥ ck,t > 0, such that the following inequalities hold:

(i) If Γt �= ∅, then for all tensor fields T ∈ ◦
H(Curl0; Γt , Ω)

‖T ‖L2(Ω) ≤ ck‖symT ‖L2(Ω). (3.1)

(ii) If Γt = ∅, then for all tensor fields T ∈ H(Curl0; Ω) there exists a piece-wise constant 
skew-symmetric tensor field A such that

‖T − A‖L2(Ω) ≤ ck‖symT ‖L2(Ω),

‖T ‖L2(Ω) ≤ ck
(‖symT ‖2

L2(Ω)
+ ‖A‖2

L2(Ω)

)1/2
.

(ii′) If Γt = ∅ and Ω is additionally simply connected, then (ii) holds with the uniquely deter-
mined constant skew-symmetric tensor field A := AT = πso(3)T given by (2.7). Moreover, 
T − AT ∈ H(Curl0; Ω) ∩ so(3)⊥ and AT = 0 if and only if T ⊥ so(3). Thus, (3.1) holds for 
all T ∈ H(Curl0; Ω) ∩ so(3)⊥.

Again we note that in classical terms a tensor T ∈ ◦
H(Curl0; Γt , Ω) is irrotational and the 

vector field T τ |Γt vanishes for all tangential vector fields τ at Γt .

Remark 13. Without proof the last part of the result Lemma 12 (ii′) has been used implicitly in 
[39]. The authors of [39] neglect the problems caused by non-simply connected domains. See 
also our discussion in [86].

Proof. Let Γt �= ∅. According to Definition 10 we decompose Ω into Ω1 ∪ . . . ∪ ΩJ .
Let T ∈ ◦

H(Curl0; Γt , Ω) and 1 ≤ j ≤ J . Then, the restriction Tj := T |Ωj
belongs to

H(Curl0; Ωj). Picking a sequence (T �) ⊂ ◦
C∞(Γt ; Ω) converging to T in H(Curl; Ω), we see 

that (T �|Ωj
) ⊂ ◦

C∞(Γt,j ; Ω) converges to Tj in H(Curl; Ωj). Thus, Tj ∈ ◦
H(Curl0; Γt,j , Ωj). 

By definition, each Ωj is simply connected. Therefore, there exist potential vector fields 
vj ∈ H(Grad; Ωj) with Gradvj = Tj . Lemma 9 yields for all j

‖Tj‖L2(Ωj ) ≤ ck,t,j‖symTj‖L2(Ωj )

with ck,t,j > 0. Summing up, we obtain

‖T ‖L2(Ω) ≤ ck‖symT ‖L2(Ω), ck := max
j=1,...,J

ck,t,j ,

which proves (i). Now, we assume Γt = ∅. Let T ∈ H(Curl0; Ω) and again let Ω be decomposed 
into Ω1 ∪ . . . ∪ ΩJ by Definition 10. Again, since every Ωj , j = 1, . . . , J , is simply connected 
and Tj ∈ H(Curl0; Ωj), there exist vector fields vj ∈ H(Grad; Ωj) with Gradvj =: Tj = T in Ωj . 
By Korn’s first inequality, Lemma 6 (ii), there exist positive ck,s,j and ATj

∈ so(3) with

‖Tj − ATj
‖L2(Ωj ) ≤ ck,s,j‖symTj‖L2(Ωj ), ATj

= skew
∮
Ω

Tj dλ = skew
∮
Ω

T dλ.
j j
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We define the piece-wise constant skew-symmetric tensor field A a.e. by A|Ωj
:= ATj

and set 
ck := maxj=1,...,J ck,s,j . Summing up gives (ii). We have also proved the first assertion of (ii′), 
since we do not have to slice if Ω is simply connected. The remaining assertion of (ii′) concern-
ing the projections are trivial, since πso(3) : L2(Ω) → so(3) is an L2(Ω)-orthogonal projector. 
We note that this can be seen also by direct calculations: To show that T − AT belongs to 
H(Curl0; Ω) ∩ so(3)⊥ we note AT ∈ H(Curl0; Ω) and compute for all A ∈ so(3) (compare 
with (A.8))

〈AT ,A〉L2(Ω) =
〈∫
Ω

T dλ,A

〉
R3×3

=
∫
Ω

〈T ,A〉R3×3 dλ = 〈T ,A〉L2(Ω).

Hence, AT = 0 implies T ⊥ so(3). On the other hand, setting A := AT shows that T ⊥ so(3) also 
implies AT = 0. �
3.2. The new inequality

From now on, we assume generally that Ω is sliceable. For tensor fields T ∈ H(Curl; Ω) we 
define the semi-norm ‖ | · ‖ | by

‖|T ‖|2 := ‖symT ‖2
L2(Ω)

+ ‖CurlT ‖2
L2(Ω)

. (3.2)

Our main result is presented in the following theorem.

Theorem 14. Let ĉ := max{√2ck, cm
√

1 + 2c2
k} and c̃ := √

2 max{ck, cm(1 + ck)} ≥ ĉ.

(i) If Γt �= ∅, then for all tensor fields T ∈ ◦
H(Curl; Γt , Ω)

‖T ‖L2(Ω) ≤ ĉ‖|T ‖|. (3.3)

(ii) If Γt = ∅, then for all tensor fields T ∈ H(Curl; Ω) there exists a piece-wise constant skew-
symmetric tensor field A, such that

‖T − A‖L2(Ω) ≤ c̃‖|T ‖|, ‖T ‖L2(Ω) ≤ √
2 max{c̃,1}(‖|T ‖|2 + ‖A‖2

L2(Ω)

)1/2
.

Note that, in general A /∈ H(Curl; Ω).
(ii′) If Γt = ∅ and Ω is additionally simply connected, then for all tensor fields T in H(Curl; Ω)

there exists a uniquely determined constant skew-symmetric tensor field A = AT ∈ so(3), 
such that

‖T − AT ‖L2(Ω) ≤ ĉ‖|T ‖|,
‖T ‖L2(Ω) ≤ √

2 max{ĉ,1}(‖|T ‖|2 + ‖AT ‖2
L2(Ω)

)1/2
,

‖T − AT ‖H(Curl;Ω) ≤ (
1 + ĉ2)1/2‖|T ‖|,

‖T ‖H(Curl;Ω) ≤ √
2
(
1 + ĉ2)1/2(‖|T ‖|2 + ‖AT ‖2

2

)1/2
.

L (Ω)
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and AT = πso(3)T is given by (2.7). Moreover, T −AT ∈ H(Curl; Ω) ∩ so(3)⊥ and AT = 0
if and only if T ⊥ so(3). Thus, (3.3) holds for all T ∈ H(Curl; Ω) ∩ so(3)⊥. Furthermore, 
AT can be represented by

AT = AR := πso(3)R = skew
∮
Ω

R dλ ∈ so(3),

where R denotes the Helmholtz projection of T onto H(Curl0; Ω) according to Corollary 5.

Proof. Let Γt �= ∅ and T ∈ ◦
H(Curl; Γt , Ω). According to Corollary 5 we orthogonally decom-

pose

T = R + S ∈ ◦
H(Curl0;Γt ,Ω) ⊕ Curl

◦
H(Curl;Γn,Ω).

Then, CurlS = CurlT and we observe that S belongs to

◦
H(Curl;Γt ,Ω) ∩ Curl

◦
H(Curl;Γn,Ω) = ◦

H(Curl;Γt ,Ω) ∩ ◦
H(Div0;Γn,Ω) ∩ (

H(Ω)3)⊥
.

Hence, by Corollary 4 we have

‖S‖L2(Ω) ≤ cm‖CurlT ‖L2(Ω). (3.4)

Then, by orthogonality, Lemma 12 (i) for R and (3.4) we obtain

‖T ‖2
L2(Ω)

= ‖R‖2
L2(Ω)

+ ‖S‖2
L2(Ω)

≤ c2
k‖symR‖2

L2(Ω)
+ ‖S‖2

L2(Ω)

≤ 2c2
k‖symT ‖2

L2(Ω)
+ (

1 + 2c2
k

)‖S‖2
L2(Ω)

and thus ‖T ‖2
L2(Ω)

≤ ĉ2‖ |T ‖ |2, which proves (i).
Now, let Γt = ∅ and T ∈ H(Curl; Ω). First, we show (ii′). We follow in close lines the first 

part of the proof. For the convenience of the reader, we repeat the previous arguments in this 
special case. According to Corollary 5 we orthogonally decompose

T = R + S ∈ H(Curl0;Ω) ⊕ Curl
◦
H(Curl;Ω).

Then, CurlS = CurlT and

S ∈ H(Curl;Ω) ∩ Curl
◦
H(Curl;Ω) = H(Curl;Ω) ∩ ◦

H(Div0;Ω) ∩ (
H(Ω)3)⊥

.

Again, by Corollary 4 we have (3.4). Note that AR ∈ H(Curl0; Ω) since AR ∈ so(3) is constant. 
Then, by orthogonality, Lemma 12 (ii′) applied to R and (3.4)

‖T − AR‖2
L2(Ω)

= ‖R − AR‖2
L2(Ω)

+ ‖S‖2
L2(Ω)

≤ c2
k‖symR‖2

L2(Ω)
+ ‖S‖2

L2(Ω)

≤ 2c2‖symT ‖2
2 + (

1 + 2c2)‖S‖2
2
k L (Ω) k L (Ω)
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and thus ‖T − AR‖2
L2(Ω)

≤ ĉ2‖ |T ‖ |2. We need to show AT = AR or equivalently AS = 0. For 

this, let A ∈ so(3) and S = CurlX with X ∈ ◦
H(Curl; Ω). Then

〈AS,A〉L2(Ω) =
〈∫
Ω

S dλ,A

〉
R3×3

= 〈CurlX,A〉L2(Ω) = 0.

By setting A := AS , we get AS = 0. The proof of (ii′) is complete, since all other remaining 
assertions are trivial. Finally, we show (ii). For this, we follow the proof of (ii′) up to the point, 
where AR came into play. Now, by Lemma 12 (ii) for R we get a piece-wise constant skew-
symmetric tensor A := AR . We note that in general A does not belong to H(Curl; Ω) anymore. 
Hence, we loose the L2(Ω)-orthogonality R − A⊥ S. But again, by Lemma 12 (ii) and (3.4)

‖T − A‖L2(Ω) ≤ ‖R − A‖L2(Ω) + ‖S‖L2(Ω) ≤ ck‖symR‖L2(Ω) + ‖S‖L2(Ω)

≤ ck‖symT ‖L2(Ω) + (1 + ck)‖S‖L2(Ω)

≤ ck‖symT ‖L2(Ω) + (1 + ck)cm‖CurlT ‖L2(Ω)

and thus ‖T − A‖L2(Ω) ≤ c̃‖ |T ‖ |, which proves (ii). �
As easy consequence we obtain:

Theorem 15. Let Γt �= ∅ resp. Γt = ∅ and Ω be simply connected. Then, on 
◦
H(Curl; Γt , Ω) resp. 

H(Curl; Ω) ∩ so(3)⊥ the norms ‖ · ‖H(Curl;Ω) and ‖ | · ‖ | are equivalent. In particular, ‖ | · ‖ | is a 
norm on 

◦
H(Curl; Γt , Ω) resp. H(Curl; Ω) ∩ so(3)⊥ and there exists a positive constant c, such 

that

c‖T ‖H(Curl;Ω) ≤ ‖|T ‖| = (‖symT ‖2
L2(Ω)

+ ‖CurlT ‖2
L2(Ω)

)1/2 ≤ ‖T ‖H(Curl;Ω)

holds for all T in 
◦
H(Curl; Γt , Ω) resp. H(Curl; Ω) ∩ so(3)⊥.

3.3. Consequences and relations to Korn and Poincaré

There are two immediate consequences of Theorem 14 and the inclusion

Grad
◦
H(Grad;Γt ,Ω) ⊂ ◦

H(Curl0;Γt ,Ω)

if the tensor field T is either irrotational or skew-symmetric.
For irrotational tensor fields T , i.e., CurlT = 0 or even T = Gradv, we obtain generalized 

versions of Korn’s first inequality. E.g., in the case Γt �= ∅ we get:

Corollary 16 (Korn’s first inequality). Let Γt �= ∅.

(i) ‖T ‖L2(Ω) ≤ ĉ‖symT ‖L2(Ω) holds for all tensor fields T ∈ ◦
H(Curl0; Γt , Ω).
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(ii) ‖Gradv‖L2(Ω) ≤ ĉ‖sym Gradv‖L2(Ω) holds for all vector fields v ∈ H(Grad; Ω) with 

Gradv ∈ ◦
H(Curl0; Γt , Ω).

(iii) ‖Gradv‖L2(Ω) ≤ ĉ‖sym Gradv‖L2(Ω) holds for all vector fields v ∈ ◦
H(Grad; Γt , Ω).

These are different generalized versions of Korn’s first inequality. (iii), i.e., the classical Ko-
rn’s first inequality from Lemma 6 (i), is implied by (ii), i.e., Lemma 9, which is implied by (i), 
i.e., Lemma 12 (i). We note ck,s ≤ ck,t ≤ ck ≤ ĉ and that in classical terms the boundary condi-
tion, e.g., in (ii), holds, if gradvn = ∇vn, n = 1, . . . , 3, are normal at Γt , which then extends (iii) 
through the weaker boundary condition.

For skew-symmetric tensors fields we get back Poincaré’s inequality. More precisely, we may 
identify a scalar function u with a skew-symmetric tensor field T , i.e.,

T := Tu :=
[ 0 0 u

0 0 0
−u 0 0

]
∼= u and hence CurlT =

[
∂2u −∂1u 0
0 0 0
0 −∂3u ∂2u

]
.

Now, CurlT is as good as gradu, see (1.21) and

ν × T |Γt =
⎡
⎣ν2u|Γt −ν1u|Γt 0

0 0 0
0 −ν3u|Γt ν2u|Γt

⎤
⎦ = 0 ⇔ u|Γt = 0.

E.g., in the case Γt �= ∅ we get by Theorem 14 (i):

Corollary 17 (Poincaré’s inequality). Let Γt �= ∅. For all special skew-symmetric tensor fields 
T = Tu in 

◦
H(Curl; Γt , Ω), i.e., for all functions u ∈ ◦

H(grad; Γt , Ω) with u ∼= T ,

‖u‖L2(Ω) ≤ ĉ‖gradu‖L2(Ω).

Proof. We have T ∈ ◦
H(Curl; Γt , Ω), if and only if u ∈ ◦

H(grad; Γt , Ω). Moreover,

2‖u‖2
L2(Ω)

= ‖T ‖2
L2(Ω)

≤ ĉ2‖CurlT ‖2
L2(Ω)

≤ 2ĉ2‖gradu‖2
L2(Ω)

holds. �
We note that the latter Corollary also remains true for general skew-symmetric tensor fields 

T ∈ ◦
H(Curl; Γt , Ω) and vector fields v ∈ ◦

H(Grad; Γt , Ω) with

T =
[ 0 −v1 v2

v1 0 −v3
−v2 v3 0

]
∼= v.

Remark 18. Let us consider the fundamental and generalized Poincaré inequality for differ-
ential forms, i.e., for all q = 0, . . . , 3 there exist constants cp,q > 0, such that for all q-forms

E ∈ ◦
Dq(Γt , Ω) ∩ ◦

�q(Γn, Ω) ∩Hq(Ω)⊥

‖E‖L2,q (Ω) ≤ cp,q

(‖dE‖L2,q+1(Ω) + ‖δE‖L2,q−1(Ω)

)
(3.5)
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Fig. 2. The three fundamental inequalities are implied by two. For the constants we have cp = cp,0, cm = cp,1
and ck, cp ≤ ĉ.

q 0 1 2 3

d grad curl div 0

δ 0 div − curl grad
◦
Dq (Γt ,Ω)

◦
H(grad;Γt ,Ω)

◦
H(curl;Γt ,Ω)

◦
H(div;Γt ,Ω) L2(Ω)

◦
�q(Γn,Ω) L2(Ω)

◦
H(div;Γn,Ω)

◦
H(curl;Γn,Ω)

◦
H(grad;Γn,Ω)

ι∗Γt
E E|Γt ν × E|Γt ν · E|Γt 0

�ι∗Γn
∗ E 0 ν · E|Γn −ν × (ν × E)|Γn E|Γn

Fig. 3. Identification table for q-forms and vector proxies in R
3.

holds. We note that the analogue of Corollary 2 holds as well. Here, E is a differential form 
of rank q and d, δ = ± ∗ d∗, ∗ denote the exterior derivative, co-derivative and Hodge’s star 
operator, respectively. Dq(Ω) is the Hilbert space of all L2,q(Ω) forms having weak exterior 
derivative in L2,q+1(Ω) and by 

◦
Dq(Γt , Ω) we denote the closure of smooth forms vanishing in 

a neighborhood of Γt with respect to the natural graph norm of Dq(Ω). The same construc-
tion is used to define the corresponding Hilbert spaces for the co-derivative �q(Ω). Moreover, 
we introduce Hq(Ω) := ◦

D
q

0(Γt , Ω) ∩ ◦
�

q

0(Γn, Ω), the finite-dimensional space of generalized 
Dirichlet–Neumann forms. In classical terms, we have

E ∈Hq(Ω) ⇔ dE = 0, δE = 0, ι∗Γt
E = 0, ι∗Γn

∗ E = 0,

where ιΓt : Γt ↪→ Γ ↪→ Ω denotes the canonical embedding.
Our new inequality, i.e., Theorem 14, together with the generalized Poincaré inequality (3.5)

imply the three well known fundamental inequalities, i.e.,

1. the Maxwell inequality, i.e., Lemma 1,
2. Poincaré’s inequality (2.3),
3. Korn’s inequality, i.e., Lemma 6 (i).

Fig. 2 illustrates this fact and Fig. 3 shows an identification table for q-forms and corresponding 
vector proxies.
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3.4. A generalization: media with structural changes

Let Γt �= ∅ throughout this subsection. We consider the case of media with structural changes, 
see [54,80]. To handle this case we use a result by Neff [77], later improved by Pompe [107], 
cf., (1.16). To apply the main result from [107], let Fp ∈ C0(Ω) be a (3 × 3)-matrix field sat-
isfying detFp ≥ μ with some μ > 0. Then, there exists a constant ck,s,Fp > 0, such that for all 

v ∈ ◦
H(Grad; Γt , Ω)

‖Gradv‖L2(Ω) ≤ ck,s,Fp

∥∥sym(Gradv Fp)
∥∥

L2(Ω)
. (3.6)

For tensor fields T ∈ H(Curl; Ω) we define the semi-norm ‖ | · ‖ |Fp by

‖|T ‖|2Fp
:= ∥∥sym(T Fp)

∥∥2
L2(Ω)

+ ‖CurlT ‖2
L2(Ω)

. (3.7)

Furthermore, there exists a constant cFp > 0 such that for all T ∈ L2(Ω)

‖T Fp‖L2(Ω) ≤ cFp‖T ‖L2(Ω).

Let us first generalize Lemma 9.

Lemma 19 (Generalized Korn’s first inequality: tangential version). There exists a constant 
ck,t,Fp ≥ ck,s,Fp , such that the inequality

‖Gradv‖L2(Ω) ≤ ck,t,Fp

∥∥sym(GradvFp)
∥∥

L2(Ω)

holds for all vector fields v ∈ H(Grad; Ω) with Gradv ∈ ◦
H(Curl0; Γt , Ω).

Proof. The proof is identical with the one of Lemma 9 using (3.6) instead of Lemma 6 (i). �
We can generalize Lemma 12.

Lemma 20 (Generalized Korn’s inequality: irrotational version). There exists a constant
ck,Fp ≥ ck,t,Fp , such that the inequality

‖T ‖L2(Ω) ≤ ck,Fp

∥∥sym(T Fp)
∥∥

L2(Ω)

holds for all tensor fields T ∈ ◦
H(Curl0; Γt , Ω).

Proof. The proof is identical with the one of Lemma 12 (i) using Lemma 19 instead of 
Lemma 9. �

Finally, we get:
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Theorem 21. Let ĉFp := max{√2ck,Fp , cm
√

1 + 2c2
k,Fp

c2
Fp

}. There exists c > 0 such that for all 

T ∈ ◦
H(Curl; Γt , Ω)

‖T ‖L2(Ω) ≤ ĉFp‖|T ‖|Fp , ‖T ‖H(Curl;Ω) ≤ c‖|T ‖|Fp .

Proof. It is sufficient to prove the first estimate. Let T ∈ ◦
H(Curl; Γt , Ω). Again, we follow in 

close lines the proof of Theorem 14 (i). With the same notations and using Lemma 20 instead of 
Lemma 12 (i) we see

‖T ‖2
L2(Ω)

= ‖R‖2
L2(Ω)

+ ‖S‖2
L2(Ω)

≤ c2
k,Fp

∥∥sym(RFp)
∥∥2

L2(Ω)
+ ‖S‖2

L2(Ω)

≤ 2c2
k,Fp

∥∥sym(T Fp)
∥∥2

L2(Ω)
+ 2c2

k,Fp

∥∥sym(SFp)
∥∥2

L2(Ω)
+ ‖S‖2

L2(Ω)

≤ 2c2
k,Fp

∥∥sym(T Fp)
∥∥2

L2(Ω)
+ (

1 + 2c2
k,Fp

c2
Fp

)‖S‖2
L2(Ω)

and thus ‖T ‖2
L2(Ω)

≤ ĉ2
Fp

‖ |T ‖ |2Fp
. �

3.5. More generalizations

Finally we note that there are a lot more generalizations. In future contributions we will also 
prove versions of our estimates

• in Lp(Ω) spaces (possibly just for p near to 2),
• in unbounded domains, like exterior domains,
• for domains Ω ⊂R

N (using differential forms),
• with inhomogeneous (restricted) tangential traces,
• concerning the deviatoric part of a tensor.

3.6. Conjectures

In view of one of the estimates which we have proved in this contribution, i.e., Theo-
rem 14 (ii′), and the rigidity estimate (1.19) we speculate that

min
R∈SO(3)

∫
Ω

distp(T ,R)dλ ≤ c
p
k

∫
Ω

(
distp

(
T ,SO(3)

) + |CurlT |p)
dλ

may hold for some 1 < p < ∞.14

A result in Garroni et al. [39, Th. 9] states that for Ω ⊂R
2 having Lipschitz boundary15 there 

exists c > 0 such that

‖T ‖L2(Ω) ≤ c
(‖symT ‖L2(Ω) + |CurlT |(Ω)

)
(3.8)

14 ∫
Ω distp(T , SO(3)) dλ gives an Lp(Ω)-control of T for free, contrary to our infinitesimal version, Theorem 14 (ii′).

15 The authors assume implicitly that Ω is sliceable and probably simply connected.
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holds for all T ∈ L1(Ω) with AT = 0 and AT from (2.7). Here, the term |CurlT |(Ω) de-
notes the total variation measure of the Curl-operator. However, the employed methods are
restricted to the two-dimensional case since decisive use is made of the crucial R2-identity 
curl(v1, v2) = div(−v2, v1), see our discussion in [86].

In view of the inequality (3.8) we conjecture that for a sliceable (and maybe simply connected) 
domain Ω ⊂R

N there exists c > 0 such that

‖T ‖LN/(N−1)(Ω) ≤ c
(‖symT ‖L2(Ω) + |CurlT |(Ω)

)
(3.9)

holds for all T ∈ L1(Ω) with AT = 0, where CurlT is the natural generalization of the 
Curl-operator to higher dimensions, see [85]. This conjecture is based on the observation, that 
for N = 3 and T already skew-symmetric one cannot be better than the well-known Poincaré–
Wirtinger inequality in BV(Ω), i.e.,

‖u − αu‖LN/(N−1)(Ω) ≤ c|∇u|(Ω), αu := πRu =
∮
Ω

udλ ∈ R.

The relevance of the latter for (3.9) is clear by taking into account that for skew-symmetric ma-
trices T , CurlT can be interchanged with all partial derivatives, see inequality (1.21). However, 
new methods have to be developed to tackle this problem.
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Appendix A. Korn’s first inequalities

We will note some simple and standard estimates which occur in the context of Korn’s first 
inequality for a domain Ω ⊂ R

N , N ≥ 2. For a quadratic matrix T and α ∈ R we define the 
deviatoric part by

devα T := T − α trT id .

Then we have (point wise)

|devα T |2 = |T |2 − cα|trT |2, cα := α(2 − Nα) ∈ (−∞,1/N ],

and the orthogonality 〈dev1/N T , trT id〉 = 0 as well as

|T |2 = |symT |2 + |skewT |2, |symT |2 = |devα symT |2 + cα|trT |2.

Hence |symT |, |skewT | ≤ |T |. For α ∈ I := (0, 2/N) we see cα > 0. Moreover, cα attains its 
maximum at α = 1/N , that is c1/N = 1/N . This yields |trT | ≤ √

N |symT | and for α ∈ Ī also 
|devα symT | ≤ |symT |. On the other hand, for α ∈ R \ I we have |symT | ≤ |devα symT |.
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Let v be a vector field in H1(Ω). Then (point wise)

tr sym∇v = tr∇v = divv, |skew∇v|2 = 1

2
|curlv|2

and therefore

|∇v|2 = |sym∇v|2 + 1

2
|curlv|2, |sym∇v|2 = |devα sym∇v|2 + cα|divv|2.

Moreover, we have

1√
2
|curlv|, |sym∇v| ≤ |∇v|, |divv| ≤ √

N |sym∇v|

and for α ∈ Ī

|devα sym∇v| ≤ |sym∇v|.
For α ∈ R \ Ī we see |sym∇v| ≤ |devα sym∇v| and |divv| ≤ |devα sym∇v|/√−cα , where the 
first inequality holds even for α ∈R \ I .

A.1. Korn’s first inequality with full Dirichlet boundary condition

A proof of Korn’s first inequality with full Dirichlet boundary condition, i.e.,

∀v ∈ ◦
H1(Ω)

1√
2
‖∇v‖L2(Ω) ≤ ‖dev 1

N
sym∇v‖L2(Ω) ≤ ‖sym∇v‖L2(Ω) ≤ ‖∇v‖L2(Ω)

(A.1)

is trivial. One just needs point wise relations and the formula

〈∂nvm, ∂mvn〉L2(Ω) = 〈∂mvm, ∂nvn〉L2(Ω),

which holds for all v ∈ ◦
C∞(Ω) by integration by parts and hence for all v ∈ ◦

H1(Ω). Then for 
v ∈ ◦

H1(Ω)

‖sym∇v‖2
L2(Ω)

= 1

4

N∑
n,m=1

‖∂nvm + ∂mvn‖2
L2(Ω)

= 1

2

N∑
n,m=1

(‖∂nvm‖2
L2(Ω)

+ 〈∂nvm, ∂mvn〉L2(Ω)

)

= 1

2

(‖∇v‖2
L2(Ω)

+ ‖divv‖2
L2(Ω)

)
,

‖sym∇v‖2
L2(Ω)

≥ ‖dev 1
N

sym∇v‖2
L2(Ω)

= ‖sym∇v‖2
L2(Ω)

− 1

N
‖divv‖2

L2(Ω)

≥ 1‖∇v‖2
2 + N − 2‖divv‖2

2 ≥ 1‖∇v‖2
2 .
2 L (Ω) 2N L (Ω) 2 L (Ω)
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Nevertheless, we show another simple proof and some more related estimates. By twofold 
integration by parts and −� = curl curl− grad div we obtain the elementary formula

‖∇v‖2
L2(Ω)

= ‖curlv‖2
L2(Ω)

+ ‖divv‖2
L2(Ω)

for all smooth vector fields v ∈ ◦
C∞(Ω) and hence for all v ∈ ◦

H1(Ω). Let v ∈ ◦
H1(Ω). Then by 

sym∇v⊥ skew∇v

‖sym∇v‖2
L2(Ω)

= ‖∇v‖2
L2(Ω)

− 1

2
‖curlv‖2

L2(Ω)
= 1

2

(‖∇v‖2
L2(Ω)

+ ‖divv‖2
L2(Ω)

)
= 1

2
‖curlv‖2

L2(Ω)
+ ‖divv‖2

L2(Ω)

holds. Furthermore, ‖devα sym∇v‖2
L2(Ω)

= ‖sym∇v‖2
L2(Ω)

−cα‖divv‖2
L2(Ω)

shows for all α ∈R

‖devα sym∇v‖2
L2(Ω)

= 1

2
‖∇v‖2

L2(Ω)
+

(
1

2
− cα

)
‖divv‖2

L2(Ω)

≥ 1

2
‖∇v‖2

L2(Ω)
+ N − 2

2N
‖divv‖2

L2(Ω)
,

‖devα sym∇v‖2
L2(Ω)

= 1

2
‖curlv‖2

L2(Ω)
+ (1 − cα)‖divv‖2

L2(Ω)

≥ 1

2
‖curlv‖2

L2(Ω)
+ N − 1

N
‖divv‖2

L2(Ω)
,

‖devα sym∇v‖2
L2(Ω)

= (1 − 2cα)‖sym∇v‖2
L2(Ω)

+ cα‖∇v‖2
L2(Ω)

≥ N − 2

N
‖sym∇v‖2

L2(Ω)
+ cα‖∇v‖2

L2(Ω)
,

‖devα sym∇v‖2
L2(Ω)

= (1 − cα)‖sym∇v‖2
L2(Ω)

+ cα

2
‖curlv‖2

L2(Ω)

≥ N − 1

N
‖sym∇v‖2

L2(Ω)
+ cα

2
‖curlv‖2

L2(Ω)
,

where we note

cα = 1

N
− c̃α,

1

2
− cα = N − 2

2N
+ c̃α, 1 − 2cα = N − 2

N
+ c̃α,

1 − cα = N − 1

N
+ c̃α, c̃α := N

(
α − 1

N

)2

.

Finally,

‖curlv‖L2(Ω),‖divv‖L2(Ω) ≤ ‖∇v‖L2(Ω),

1√ ‖∇v‖L2(Ω),‖divv‖L2(Ω) ≤ ‖sym∇v‖L2(Ω),

2
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1√
2
‖∇v‖L2(Ω),

√
N − 1

N
‖divv‖L2(Ω) ≤ ‖devα sym∇v‖L2(Ω) ∀α ∈R,

‖devα sym∇v‖L2(Ω) ≤ √
1 − cα‖sym∇v‖L2(Ω) ∀α ∈R \ I,

‖sym∇v‖L2(Ω) ≤ 1√
1 − cα

‖devα sym∇v‖L2(Ω) ∀α ∈ Ī.

Therefore, for all α ∈ Ī we obtain for v ∈ ◦
H1(Ω)

1√
2
‖∇v‖L2(Ω) ≤ ‖devα sym∇v‖L2(Ω) ≤ ‖sym∇v‖L2(Ω) ≤ ‖∇v‖L2(Ω),

especially for α = 1/N ∈ I we get (A.1).

A.2. Korn’s first inequality without boundary condition

By Rellich’s selection theorem for H1(Ω), Korn’s second inequality and normalization one 
gets

‖∇v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω) (A.2)

for all v ∈ ◦
H1(Γt ; Ω) if Γt �= ∅ as well as for all v ∈ H1(Ω) with ∇v⊥ so(3) (if Γt = ∅). We will 

concentrate on the second case. Equivalently, one has for all v ∈ H1(Ω)

∥∥(id−πso(3))∇v
∥∥

L2(Ω)
≤ ck‖sym∇v‖L2(Ω),

‖∇v‖L2(Ω) ≤ ck
(‖sym∇v‖2

L2(Ω)
+ ‖πso(3)∇v‖2

L2(Ω)

)1/2
. (A.3)

Here πso(3) : L2(Ω) → so(3) denotes the L2(Ω)-orthogonal projection onto so(3) and can be 
expressed explicitly by

πso(3)T :=
3∑

�=1

〈
T ,A�

〉
L2(Ω)

A�, ‖πso(3)T ‖2
L2(Ω)

=
3∑

�=1

∣∣〈T ,A�
〉
L2(Ω)

∣∣2
,

where (A�)3
�=1 is an L2(Ω)-orthonormal basis of so(3). Note that (λ(Ω)1/2A�)3

�=1 is also an 
R

3×3-orthonormal basis of so(3) and thus we have the representation

πso(3)T =
3∑

�=1

〈
skew

∫
Ω

T dλ,A�

〉
R3×3

A� = skew
∮
Ω

T dλ =: AT ∈ so(3).

Poincaré’s inequality for vector fields by normalization reads

‖v‖L2(Ω) ≤ cp‖∇v‖L2(Ω) (A.4)

for all v ∈ H1(Ω) with v⊥ R3. Equivalently, one has for all v ∈ H1(Ω)
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∥∥(id−πR3)v
∥∥

L2(Ω)
≤ cp‖∇v‖L2(Ω), ‖v‖L2(Ω) ≤ cp

(‖∇v‖2
L2(Ω)

+ ‖πR3v‖2
L2(Ω)

)1/2

(A.5)

and hence

∥∥(id−πR3)v
∥∥

H1(Ω)
≤ (

1 + c2
p

)1/2‖∇v‖L2(Ω),

‖v‖H1(Ω) ≤ (
1 + c2

p

)1/2(‖∇v‖2
L2(Ω)

+ ‖πR3v‖2
L2(Ω)

)1/2
.

Here πR3 : L2(Ω) → R
3 denotes the L2(Ω)-orthogonal projection onto R3 and can be expressed 

explicitly by

πR3v :=
3∑

�=1

〈
v, e�

〉
L2(Ω)

e�, ‖πR3v‖2
L2(Ω)

=
3∑

�=1

∣∣〈v, e�
〉
L2(Ω)

∣∣2
,

where (e�)3
�=1 is an L2(Ω)-orthonormal basis of R3. Note that (λ(Ω)1/2e�)3

�=1 is also an 
R

3-orthonormal basis of R3 and thus we have the representation

πR3v =
3∑

�=1

〈∫
Ω

v dλ, e�

〉
R3

e� =
∮
Ω

v dλ =: av ∈R
3.

Combining (A.2) and (A.4) we obtain

(
1 + c2

p

)−1/2‖v‖H1(Ω) ≤ ‖∇v‖L2(Ω) ≤ ck‖sym∇v‖L2(Ω) (A.6)

for all v ∈ H1(Ω) with ∇v⊥ so(3) and v⊥ R3. Without these conditions one has

(
1 + c2

p

)−1/2∥∥(id−πRM)v
∥∥

H1(Ω)
≤ ∥∥(id−πso(3))∇v

∥∥
L2(Ω)

≤ ck‖sym∇v‖L2(Ω),(
1 + c2

p

)−1/2‖v‖H1(Ω) ≤ (‖∇v‖2
L2(Ω)

+ ‖πR3v‖2
L2(Ω)

)1/2

≤ ck
(‖sym∇v‖2

L2(Ω)
+ ‖πso(3)∇v‖2

L2(Ω)
+ ‖πR3v‖2

L2(Ω)

)1/2

≤ ck
(‖sym∇v‖2

L2(Ω)
+ ‖πRMv‖2

H1(Ω)

)1/2
, (A.7)

for all v ∈ H1(Ω), where πRM : H1(Ω) → RM is defined by

πRMv := (πso(3)∇v)ξ + πR3

(
v − (πso(3)∇v)ξ

) = πR3v + (id−πR3)
(
(πso(3)∇v)ξ

)
with the identity function ξ(x) := id(x) = x. We note

πso(3)∇v = A∇v = skew
∮
Ω

∇v dλ ∈ so(3), πR3v = av =
∮
Ω

v dλ ∈R
3,

πRMv = rv := A∇vξ + av − A∇vaξ ∈ RM, ∇πRMv = ∇rv = A∇v = πso(3)∇v ∈ so(3).
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Note that u := (id−πRM)v = v − rv belongs to H1(Ω) and satisfies

∇u = (id−πso(3))∇v⊥ so(3), u = (id−πR3)
(
v − (πso(3)∇v)ξ

)⊥R
3.

Hence (A.6) holds for u. Moreover, we have for v ∈ H1(Ω)

πRMv = 0 ⇔ πso(3)∇v = 0 ∧ πR3v = 0 ⇔ ∇v⊥ so(3) ∧ v⊥R
3.

This can also be seen be elementary calculations: For all A ∈ so(3) and all a ∈R
3 we have

〈A∇v,A〉L2(Ω) =
〈∫
Ω

∇v dλ,A

〉
R3×3

=
∫
Ω

〈∇v,A〉R3×3 dλ = 〈∇v,A〉L2(Ω),

〈rv, a〉L2(Ω) =
〈∫
Ω

rv dλ, a

〉
R3

=
〈
A∇v

∫
Ω

ξ dλ + λ(Ω)(av − A∇vaξ ), a

〉
R3

=
〈∫
Ω

v dλ,a

〉
R3

= 〈v, a〉L2(Ω). (A.8)

Thus ∇u⊥ so(3) and u⊥ R3. This shows also that ∇v⊥ so(3) and v⊥ R3 if we have rv = 0. On 
the other hand, if v ∈ H1(Ω) with ∇v⊥ so(3) and v⊥ R3, then rv = 0 because A∇v = 0 by setting 
A := A∇v ∈ so(3) and then av = 0 by setting a := av = rv .
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