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Abstract: The results of this contribution are derived in the framework of functional type a posteriori error
estimates. The error is measured in a combined norm which takes into account both the primal and dual
variables denotedby x and y, respectively.Ourfirstmain result is an error equality for all equations of the class
A∗Ax + x = f or in mixed formulation A∗y + x = f , Ax = y, where the exact solution (x, y) is in D(A) × D(A∗).
Here A is a linear, densely defined and closed (usually a differential) operator and A∗ its adjoint. In this paper
we deal with very conforming mixed approximations, i.e., we assume that the approximation (x̃, ỹ) belongs
to D(A) × D(A∗). In order to obtain the exact global error value of this approximation one only needs the
problem data and the mixed approximation itself, i.e., we have the equality

|x − x̃|2 + |A(x − x̃)|2 + |y − ỹ|2 + |A∗(y − ỹ)|2 = M(x̃, ỹ),

whereM(x̃, ỹ) := |f − x̃ − A∗ ỹ|2 + |ỹ − Ax̃|2 contains only known data. Our second main result is an error es-
timate for all equations of the class A∗Ax + ix = f or in mixed formulation A∗y + ix = f , Ax = y, where i is the
imaginary unit. For this problem we have the two-sided estimate

√2
√2 + 1

Mi(x̃, ỹ) ≤ |x − x̃|2 + |A(x − x̃)|2 + |y − ỹ|2 + |A∗(y − ỹ)|2 ≤
√2

√2 − 1
Mi(x̃, ỹ),

where Mi(x̃, ỹ) := |f − ix̃ − A∗ ỹ|2 + |ỹ − Ax̃|2 contains only known data. We will point out a motivation for
the study of the latter problems by time discretizations or time-harmonic ansatz of linear partial differential
equations and we will present an extensive list of applications including the reaction-diffusion problem and
the eddy current problem.
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1 Introduction
The results presented in this paper are based on the conception of functional type a posteriori error control.
Often these type of estimates are valid for any conforming approximation and contain only global constants.
In the case of the class of problems studied in this paper the results do not contain even global constants, just
fixed numbers. For a detailed exposition see the books by Repin, Neittaanmäki, and Mali [7, 8, 12].
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In this paper we will consider only conforming approximations, and we will measure the error of our
approximations in a combined norm, which includes the error of both the primal and the dual variable. This
is especially useful for mixed methods where one calculates an approximation for both the primal and dual
variables, see, e.g., the book of Brezzi and Fortin [3]. We call this approximation pair a mixed approximation.
We note here that we consider more regular mixed approximations than in [3]. This regularity can always be
achieved by post-processing techniques.

To the best of our knowledge functional a posteriori error estimates for combined norms were first
exposed in the paper [14], where Repin, Sauter, and Smolianski present two-sided estimates bounding the
error by the same quantity from below and from above aside from basic and global Poincaré type constants
and some special numbers. They studied real-valued elliptic problems of the type A∗αAx = f given in mixed
formulation A∗y = f , αAx = y.

The first class of problems we study in the paper at hand is the linear equation

(A∗α2A + α1)x = f

presented in the mixed formulation
A∗y + α1x = f, α2Ax = y, (1.1)

where α1, α2 are linear, self-adjoint, and uniformly positive topological isomorphisms (continuous with con-
tinuous inverse) on two complex Hilbert spaces H1 and H2, and A : D(A) ⊂ H1 → H2 is a linear, densely de-
fined, and closed operator with adjoint operator A∗ : D(A∗) ⊂ H2 → H1. Throughout this paper we will refer
to the class of problems represented by (1.1) as ‘Case I’ in section headings. Our first main result is Theorem
2.5 and it shortly reads as the functional a posteriori error equality

|x − x̃|2H1 ,α1 + |A(x − x̃)|2H2 ,α2 + |y − ỹ|2H2 ,α−12
+ |A∗(y − ỹ)|2H1 ,α−11

= |f − α1 x̃ − A∗ ỹ|2H1 ,α−11
+ |ỹ − α2Ax̃|2H2 ,α−12

being valid for any conforming mixed approximation pair (x̃, ỹ) ∈ D(A) × D(A∗) of the exact solution pair
(x, y) ∈ D(A) × D(A∗). In the purely real case this result can also be derived as a special case of the very general
result [8, (7.2.14)] in the context of the dual variational technique. However, we prove this result here by
elementary methods in a general Hilbert space setting. Our results hold then also for the complex case. The
equality for the purely real reaction-diffusion equation (A = ∇, A∗ = −div), was found also by Cai and Zhang
[4, Remark 6.12] and has been used for error indication of the primal variable.

The second class of problems we study in this paper is the linear equation

(A∗α2A + iωα1)x = f

presented in the mixed formulation

A∗y + iωα1x = f, α2Ax = y, (1.2)

whereω ∈ ℝ \ {0}. Throughout this paperwewill refer to the class of problems represented by (1.2) as ‘Case II’
in section headings. Our second main result is Theorem 2.13 and it shortly reads as the two-sided functional
a posteriori error estimate

√2
√2 + 1

(|f − iωα1 x̃ − A∗ ỹ|2H1 ,(|ω|α1)−1
+ |ỹ − α2Ax̃|2H2 ,α−12

)

≤ |x − x̃|2H1 ,|ω|α1 + |A(x − x̃)|2H2 ,α2 + |y − ỹ|2H2 ,α−12
+ |A∗(y − ỹ)|2H1 ,(|ω|α1)−1

≤
√2

√2 − 1
(|f − iωα1 x̃ − A∗ ỹ|2H1 ,(|ω|α1)−1

+ |ỹ − α2Ax̃|2H2 ,α−12
)

being valid for any conforming mixed approximation pair (x̃, ỹ) ∈ D(A) × D(A∗) of the exact solution pair
(x, y) ∈ D(A) × D(A∗). We note that the square root of the ratio of the upper bound and lower bound is al-
ways 1 +√2 < 2.42, so the estimate gives reliable information of the combined error value. To the best of our
knowledge this result is new.
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Amotivation to study these problems comes from time-dependent PDEs. For many problems, if the time-
derivative is discretized with ‘finite differences’, e.g., the backward Euler scheme, then on each time-step one
solves a static problem of the type (1.1). On the other hand, many time-dependent problems, e.g., the eddy
current problem, can be approximated by a series resp. sum of static complex-valued problems of the kind
(1.2) by using multifrequency analysis, e.g., Fourier transformation. We elaborate on this in Section 2.4.

The paper is organized as follows. In Section 2 we derive our main results in an abstract Hilbert space
setting. In Section 3 we show applications of the general results to several partial differential equations.

2 Results in the General Setting
In this section we derive our main results in an abstract Hilbert space setting, which allows for mixed bound-
ary conditions as well as coefficients for the case, where the underlying problem is a PDE.

Let H1 and H2 be two complex Hilbert spaces with the inner products ⟨ ⋅ , ⋅ ⟩H1 and ⟨ ⋅ , ⋅ ⟩H2 , respectively.
The right-hand side f belongs to H1. Let A : D(A) ⊂ H1 → H2 be a densely defined and closed linear operator
and A∗ : D(A∗) ⊂ H2 → H1 its adjoint. We note A∗∗ = A and

⟨Aφ, ψ⟩H2 = ⟨φ,A∗ψ⟩H1 for all φ ∈ D(A), ψ ∈ D(A∗). (2.1)

Equipped with the natural graph norms, D(A) and D(A∗) are Hilbert spaces. Furthermore, we introduce two
linear, self-adjoint, and positive topological isomorphisms α1 : H1 → H1 and α2 : H2 → H2. Especially, there
exists a c > 0 such that

c−1|φ|2H1
≤ ⟨α1φ, φ⟩H1 ≤ c|φ|2H1

for all φ ∈ H1,

and the corresponding holds for α2. In case the underlying problem is a PDE, the operators α1 and α2 describe
material properties, and are often called material coefficients, giving the constitutive laws.

For any inner product and corresponding norm we introduce weighted counterparts with sub-index
notation. As an example, for elements from H1 we define a new inner product ⟨ ⋅ , ⋅ ⟩H1 ,α1 := ⟨α1 ⋅ , ⋅ ⟩H1

and a new induced norm | ⋅ |H1 ,α1 . Note that in Section 2.2 we slightly abuse this notation: We also utilize
⟨ ⋅ , ⋅ ⟩H1 ,ωα1 = ⟨ωα1 ⋅ , ⋅ ⟩H1 , where ω ̸= 0 is possibly a negative real number. Clearly, this sesquilinear form
neither defines an inner product nor a norm, if ω is negative.

2.1 Case I: Error Equality for Coefficients α1 and α2

Extending the sub-index notation,we define forφ ∈ D(A) andψ ∈ D(A∗)newweighted norms onD(A),D(A∗)
and on the product space D(A) × D(A∗) by

|φ|2D(A),α1 ,α2 := |φ|2H1 ,α1 + |Aφ|2H2 ,α2 ,

|ψ|2D(A∗),α−11 ,α
−1
2
:= |ψ|2H2 ,α−12

+ |A∗ψ|2H1 ,α−11
,

‖(φ, ψ)‖2 := |φ|2D(A),α1 ,α2 + |ψ|2D(A∗),α−11 ,α
−1
2
.

By the Lax–Milgram lemma (or by Riesz’ representation theorem) we get immediately:

Lemma 2.1. The (primal) variational problem

⟨Ax,Aφ⟩H2 ,α2 + ⟨x, φ⟩H1 ,α1 = ⟨f, φ⟩H1 for all φ ∈ D(A)

admits a unique solution x ∈ D(A) satisfying |x|D(A),α1 ,α2 ≤ |f|H1 ,α−11 . Moreover, yx := α2Ax belongs to D(A
∗) and

A∗yx = f − α1x. Hence, the strong and mixed formulations

A∗α2Ax + α1x = f, (2.2)
A∗yx + α1x = f, α2Ax = yx (2.3)

hold with (x, yx) ∈ D(A) × (D(A∗) ∩ α2R(A)).

Authenticated | dirk.pauly@uni-due.de author's copy
Download Date | 12/21/17 12:08 PM



612 | I. Anjam and D. Pauly, Functional A Posteriori Error Equalities

To get the dual problem, we multiply the first equation of (2.3) by A∗ψ with ψ ∈ D(A∗) taking the right
weighted scalar product and use yx = α2Ax ∈ D(A∗). We obtain

⟨A∗yx ,A∗ψ⟩H1 ,α−11 + ⟨α1x,A∗ψ⟩H1 ,α−11 = ⟨f,A∗ψ⟩H1 ,α−11 .

Since x ∈ D(A), we have

⟨α1x,A∗ψ⟩H1 ,α−11 = ⟨x,A∗ψ⟩H1 = ⟨Ax, ψ⟩H2 = ⟨yx , ψ⟩H2 ,α−12 .

Again by the Lax–Milgram lemma, we get the following result.

Lemma 2.2. The (dual) variational problem

⟨A∗y,A∗ψ⟩H1 ,α−11 + ⟨y, ψ⟩H2 ,α−12 = ⟨f,A∗ψ⟩H1 ,α−11 for all ψ ∈ D(A∗) (2.4)

admits a unique solution y ∈ D(A∗) satisfying |y|D(A∗),α−11 ,α
−1
2

≤ |f|H1 ,α−11 . Moreover, y = yx holds and thus y
even belongs to D(A∗) ∩ α2R(A) with x and yx from Lemma 2.1. Furthermore, α−11 (A∗y − f) ∈ D(A) with
Aα−11 (A∗y − f) = −α−12 y.

Proof. We just have to show that yx ∈ D(A∗) solves (2.4). But this follows directly since, for all ψ ∈ D(A∗),

⟨A∗yx ,A∗ψ⟩H1 ,α−11 = −⟨x,A∗ψ⟩H1 + ⟨f,A∗ψ⟩H1 ,α−11

= −⟨Ax, ψ⟩H2 + ⟨f,A∗ψ⟩H1 ,α−11 = −⟨yx , ψ⟩H2 ,α−12 + ⟨f,A∗ψ⟩H1 ,α−11 .

Hence yx = y and A∗∗ = A completes the proof.

Remark 2.3. We know that |x|D(A),α1 ,α2 ≤ |f|H1 ,α−11 and |y|D(A∗),α−11 ,α
−1
2

≤ |f|H1 ,α−11 . It is indeed notable that

‖(x, y)‖ = |f|H1 ,α−11

holds, which follows immediately by y = α2Ax and

|f|2H1 ,α−11
= |A∗α2Ax + α1x|2H1 ,α−11
= |A∗y|2H1 ,α−11

+ |α1x|2H1 ,α−11
+ 2ℜ⟨A∗α2Ax, α1x⟩H1 ,α−11⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=⟨A∗α2Ax,x⟩H1

= |A∗y|2H1 ,α−11
+ |x|2H1 ,α1 + 2ℜ⟨α2Ax,Ax⟩H2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=|Ax|2H2 ,α2
= ‖(x, y)‖2.

Thus the solution operator
L : H1 → D(A) × D(A∗), f Ü→ (x, y)

(equipped with the proper weighed norms) has norm |L| = 1, i.e., L is an isometry.

By the latter remark the combined norm on D(A) × D(A∗) yields an isometry. This motivates the usage of the
combined norm also for error estimates. As it turns out, we even obtain error equalities. First we show that
an error equality follows directly from the isometry property of Remark 2.3 if the approximation of the primal
variable x is regular enough.

Theorem 2.4. Let (x, y) ∈ D(A) × D(A∗) be the exact solution of (2.3). Let x̃ ∈ D(A) have additional regularity
so that ỹ = α2Ax̃ ∈ D(A∗). Then, for the mixed approximation (x̃, ỹ) we have

‖(x, y) − (x̃, ỹ)‖2 = I(x̃, ỹ) (2.5)

and the normalized counterpart
‖(x, y) − (x̃, ỹ)‖2

‖(x, y)‖2
=

I(x̃, ỹ)
|f|2H1 ,α−11

, (2.6)

where
I(x̃, ỹ) := |f − α1 x̃ − A∗ ỹ|2H1 ,α−11

.
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Proof. Since x̃ is very regular, especially ỹ = α2Ax̃ ∈ D(A∗), the pair (x̃, ỹ) is the exact solution of the problem

A∗ ỹ + α1 x̃ =: ̃f , α2Ax̃ = ỹ,

i.e., we have L( ̃f ) = (x̃, ỹ). Then (2.5) is given directly by Remark 2.3:

‖(x, y) − (x̃, ỹ)‖2 = ‖L(f − ̃f )‖2 = |f − ̃f |2H1 ,α−11
,

since L is linear. The estimate (2.6) follows by Remark 2.3 as well.

Satisfying the high regularity property required in Theorem 2.4 may not be convenient for practical calcula-
tions. The next result, the first main result of the paper, holds for less regular approximations.

Theorem 2.5. Let (x, y), (x̃, ỹ) ∈ D(A) × D(A∗) be the exact solution of (2.3) and any conforming approxima-
tion, respectively. Then

‖(x, y) − (x̃, ỹ)‖2 = M(x̃, ỹ) (2.7)

and the normalized counterpart
‖(x, y) − (x̃, ỹ)‖2

‖(x, y)‖2
=
M(x̃, ỹ)
|f|2H1 ,α−11

(2.8)

hold, where
M(x̃, ỹ) := |f − α1 x̃ − A∗ ỹ|2H1 ,α−11

+ |ỹ − α2Ax̃|2H2 ,α−12
.

Proof. Using (2.2) and inserting 0 = α2Ax − y, we get by (2.1)

M(x̃, ỹ) = |α1x − α1 x̃ + A∗y − A∗ ỹ|2H1 ,α−11
+ |ỹ − y + α2Ax − α2Ax̃|2H2 ,α−12

= |x − x̃|2H1 ,α1 + |A∗(y − ỹ)|2H1 ,α−11
+ 2ℜ⟨α1(x − x̃),A∗(y − ỹ)⟩H1 ,α−11

+ |ỹ − y|2H2 ,α−12
+ |A(x − x̃)|2H2 ,α2 + 2ℜ⟨ỹ − y, α2A(x − x̃)⟩H2 ,α−12

= |x − x̃|2D(A),α1 ,α2 + |y − ỹ|2D(A∗),α−11 ,α
−1
2

+ 2ℜ⟨x − x̃,A∗(y − ỹ)⟩H1 − 2ℜ⟨A(x − x̃), y − ỹ⟩H2

= ‖(x, y) − (x̃, ỹ)‖2.

Equation (2.8) follows by the isometry property in Remark 2.3, completing the proof.

We note that the isometry property, i.e., ‖(x, y)‖ = |f|H1 ,α−11 , can be seen by inserting (x̃, ỹ) = (0, 0) into (2.7)
as well. The result of Theorem 2.4 can also be seen from Theorem 2.5.

Remark 2.6. In the purely real case, where the Hilbert spaces are over ℝ and all objects are real valued,
Theorem 2.5 can also be deduced as a special case of [8, (7.2.14)]. The equality for the purely real reaction-
diffusion equation (A = ∇,A∗ = −div), was found also by Cai and Zhang in [4, Remark 6.12].

Corollary 2.7. Theorem 2.5 provides the well-known a posteriori error estimates for the primal and dual
problems.
(i) For any x̃ ∈ D(A) it holds

|x − x̃|2D(A),α1 ,α2 = min
ψ∈D(A∗)

M(x̃, ψ) = M(x̃, y).

(ii) For any ỹ ∈ D(A∗) it holds

|y − ỹ|2D(A∗),α−11 ,α
−1
2

= min
φ∈D(A)

M(φ, ỹ) = M(x, ỹ).

Proof. We just have to estimate

|x − x̃|2D(A),α1 ,α2 ≤ ‖(x, y) − (x̃, ỹ)‖2 = M(x̃, ỹ)

and note that the left-hand side does not depend on ỹ ∈ D(A∗). Setting ψ := ỹ ∈ D(A∗), we get

|x − x̃|2D(A),α1 ,α2 ≤ inf
ψ∈D(A∗)

M(x̃, ψ).
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But for ψ = y ∈ D(A∗) we seeM(x̃, y) = |x − x̃|2D(A),α1 ,α2 , which proves (i). Analogously, we estimate

|y − ỹ|2D(A∗),α−11 ,α
−1
2

≤ ‖(x, y) − (x̃, ỹ)‖2 = M(x̃, ỹ)

and note that the left-hand side does not depend on x̃ ∈ D(A). Setting φ := x̃ ∈ D(A), we get

|y − ỹ|2D(A∗),α−11 ,α
−1
2

≤ inf
φ∈D(A)

M(φ, ỹ).

But for φ = x ∈ D(A) we seeM(x, ỹ) = |y − ỹ|2D(A∗),α−11 ,α
−1
2
, which shows (ii).

Remark 2.8. (i) Since y⊥α−12 N(A
∗) by (2.4), we immediately get y ∈ α2R(A) by the Helmholtz decomposition

H2 = N(A∗) ⊕α−12 α2R(A).

(ii) If α−11 f ∈ D(A), we have z := α
−1
1 A∗y ∈ D(A), and the strong and mixed formulations of (2.4) read

Aα−11 A∗y + α−12 y = Aα−11 f,
Az + α−12 y = Aα−11 f, α−11 A∗y = z.

Then for all φ ∈ D(A) we have

⟨Az,Aφ⟩H2 ,α2 + ⟨z, φ⟩H1 ,α1 = −⟨y,Aφ⟩H2 + ⟨z, φ⟩H1 ,α1 + ⟨Aα−11 f,Aφ⟩H2 ,α2

= ⟨Aα−11 f,Aφ⟩H2 ,α2

and hence z ∈ (D(A) ∩ α−11 R(A∗)) ⊂ D(A) is the unique solution of this variational problem. Furthermore,
α2(Az − Aα−11 f) ∈ D(A∗) andA∗α2(Az − Aα−11 f) = −α1z. If α2Aα−11 f belongs to D(A∗), this yields α2Az ∈ D(A∗)
and the strong equation

A∗α2Az + α1z = A∗α2Aα−11 f.

2.2 Case II: Two-Sided Error Estimate for Coefficients iωα1 and α2

In the following we assume ω ∈ ℝ \ {0}. Using the sub-index notation, we define for φ ∈ D(A) and ψ ∈ D(A∗)
new weighted norms on D(A), D(A∗) as well as on the product space D(A) × D(A∗) by

|φ|2D(A),|ω|α1 ,α2 = |φ|2H1 ,|ω|α1 + |Aφ|2H2 ,α2 ,

|ψ|2D(A∗),(|ω|α1)−1 ,α−12
= |ψ|2H2 ,α−12

+ |A∗ψ|2H1 ,(|ω|α1)−1
,

|||(φ, ψ)|||2 := |φ|2D(A),|ω|α1 ,α2 + |ψ|2D(A∗),(|ω|α1)−1 ,α−12
.

By the Lax–Milgram lemma we get immediately:

Lemma 2.9. The (primal) variational problem

⟨Ax,Aφ⟩H2 ,α2 + i⟨x, φ⟩H1 ,ωα1 = ⟨f, φ⟩H1 for all φ ∈ D(A) (2.9)

admits a unique solution x ∈ D(A) satisfying |x|D(A),|ω|α1 ,α2 ≤ √2|f|H1 ,(|ω|α1)−1 . Moreover, yx := α2Ax belongs to
D(A∗) and A∗yx = f − iωα1x. Hence, the strong and mixed formulations

A∗α2Ax + iωα1x = f, (2.10)
A∗yx + iωα1x = f, α2Ax = yx (2.11)

hold with (x, yx) ∈ D(A) × (D(A∗) ∩ α2R(A)).

To get the dual problem, we multiply the first equation of (2.11) by A∗ψ with ψ ∈ D(A∗) taking the right
weighted scalar product and use yx = α2Ax ∈ D(A∗). We obtain

⟨A∗yx ,A∗ψ⟩H1 ,(ωα1)−1 + ⟨iωα1x,A∗ψ⟩H1 ,(ωα1)−1 = ⟨f,A∗ψ⟩H1 ,(ωα1)−1 .
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Since x ∈ D(A), it holds

⟨iωα1x,A∗ψ⟩H1 ,(ωα1)−1 = i⟨x,A∗ψ⟩H1 = i⟨Ax, ψ⟩H2 = i⟨yx , ψ⟩H2 ,α−12 ,

and we get again by the Lax–Milgram lemma (see Lemma 2.2) the following result.

Lemma 2.10. The (dual) variational problem

⟨A∗y,A∗ψ⟩H1 ,(ωα1)−1 + i⟨y, ψ⟩H2 ,α−12 = ⟨f,A∗ψ⟩H1 ,(ωα1)−1 for all ψ ∈ D(A∗) (2.12)

admits a unique solution y ∈ D(A∗) satisfying |y|D(A∗),(|ω|α1)−1 ,α−12 ≤ √2|f|H1 ,(|ω|α1)−1 . Moreover, y = yx holds and
thus y belongs to D(A∗) ∩ α2R(A) with x and yx from Lemma 2.9. Furthermore, (ωα1)−1(A∗y − f) ∈ D(A) with
A(ωα1)−1(A∗y − f) = −iα−12 y.

Remark 2.11. We know that

|x|D(A),|ω|α1 ,α2 ≤ √2|f|H1 ,(|ω|α1)−1 and |y|D(A∗),(|ω|α1)−1 ,α−12 ≤ √2|f|H1 ,(|ω|α1)−1 . (2.13)

It is indeed notable that
|f|2H1 ,(|ω|α1)−1

= |A∗y|2H1 ,(|ω|α1)−1
+ |x|2H1 ,|ω|α1 (2.14)

and
|f|H1 ,(|ω|α1)−1 ≤ |||(x, y)||| ≤ √2|f|H1 ,(|ω|α1)−1 (2.15)

hold. The identity (2.14) follows immediately by y = α2Ax and

|f|2H1 ,(|ω|α1)−1
= |A∗α2Ax + iωα1x|2H1 ,(|ω|α1)−1

= |A∗y|2H1 ,(|ω|α1)−1
+ |iωα1x|2H1 ,(|ω|α1)−1

+ 2ℜ⟨A∗α2Ax, iωα1x⟩H1 ,(|ω|α1)−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=−i signω⟨A∗α2Ax,x⟩H1

= |A∗y|2H1 ,(|ω|α1)−1
+ |x|2H1 ,|ω|α1 − 2ℜ(i signω⟨α2Ax,Ax⟩H2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0
.

The lower bound in (2.15) follows from (2.14). The upper bound in (2.15) is seen as follows: First we take
(2.9) with φ = x and (2.12) with ψ = y, and obtain

|Ax|2H2 ,α2 + iω|x|
2
H1 ,α1 = ⟨f, x⟩H1 ,

ω−1|A∗y|2H1 ,α−11
+ i|y|2H2 ,α−12

= ⟨f,A∗y⟩H1 ,(ωα1)−1 .

Taking the norm of both sides, we obtain

|Ax|4H2 ,α2 + |ω|2|x|4H1 ,α1 = |⟨f, x⟩H1 |
2,

|ω|−2|A∗y|4H1 ,α−11
+ |y|4H2 ,α−12

= |⟨f,A∗y⟩H1 ,(ωα1)−1 |
2,

showing

1
√2

|x|2D(A),|ω|α1 ,α2 ≤ |f|H1 ,(|ω|α1)−1 |x|H1 ,|ω|α1 ,

1
√2

|y|2D(A∗),(|ω|α1)−1 ,α−12
≤ |f|H1 ,(|ω|α1)−1 |A

∗y|H1 ,(|ω|α1)−1 .

From these inequalities we can derive the estimates (2.13) for x and y separately. Moreover, by summing up
and (2.14), we get

1
√2

|||(x, y)|||2 ≤ |f|H1 ,(|ω|α1)−1(|x|H1 ,|ω|α1 + |A∗y|H1 ,(|ω|α1)−1)

≤ |f|H1 ,(|ω|α1)−1
√2√|x|2H1 ,|ω|α1 + |A∗y|2H1 ,(|ω|α1)−1

= √2|f|2H1 ,(|ω|α1)−1
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and we have the upper bound in (2.15). Thus the norm of the solution operator

Li : H1 → D(A) × D(A∗), f Ü→ (x, y)

(equipped with the proper weighted norms) satisfies 1 ≤ |Li| ≤ √2. Hence Li is ‘almost’ an isometry.
We also note that the upper bound in (2.15) is sharp: LetH1 = H2, A := A∗ := id,ω := 1 and α1 := α2 := 1.

Then x = y, (1 + i)x = f and |||(x, y)|||2 = 4|x|2H1
= 2|f|2H1

.

The latter remark motivates the usage of the combined norm also for error estimates. First we show that a
two-sided error estimate follows directly from Remark 2.11, if the approximation of the primal variable x is
regular enough.

Theorem 2.12. Let (x, y) ∈ D(A) × D(A∗) be the exact solution of (2.11). Let x̃ ∈ D(A) have additional regular-
ity so that ỹ = α2Ax̃ ∈ D(A∗). Then, for the mixed approximation (x̃, ỹ) we have

Ii(x̃, ỹ) ≤ |||(x, y) − (x̃, ỹ)|||2 ≤ 2Ii(x̃, ỹ) (2.16)

and the normalized counterpart

1
2 ⋅

Ii(x̃, ỹ)
|f|2H1 ,(|ω|α1)−1

≤
|||(x, y) − (x̃, ỹ)|||2

|||(x, y)|||2
≤ 2 Ii(x̃, ỹ)

|f|2H1 ,(|ω|α1)−1
, (2.17)

where
Ii(x̃, ỹ) := |f − iωα1 x̃ − A∗ ỹ|2H1 ,(|ω|α1)−1

.

Proof. Since x̃ is very regular, especially ỹ = α2Ax̃ ∈ D(A∗), the pair (x̃, ỹ) is the exact solution of the problem

A∗ ỹ + iωα1 x̃ =: ̃f , α2Ax̃ = ỹ,

i.e., we have Li( ̃f ) = (x̃, ỹ). Then (2.16) is given directly by Remark 2.11:

|f − ̃f |2H1 ,(|ω|α1)−1
≤ |||(x, y) − (x̃, ỹ)|||2 = |||Li(f − ̃f )|||2 ≤ 2|f − ̃f |2H1 ,(|ω|α1)−1

.

Estimate (2.17) follows by Remark 2.11 as well.

The square root of the ratio of the bounds in (2.16) is always √2 < 1.42. The square root of the ratio of the
bounds in (2.17) is always 2. However, satisfying the high regularity property required in Theorem 2.12 may
not be convenient for practical calculations. The next result, the second main result of the paper, holds for
less regular approximations.

Theorem 2.13. Let (x, y), (x̃, ỹ) ∈ D(A) × D(A∗) be the exact solution of (2.11) and any conforming approxi-
mation, respectively. Then

√2
√2 + 1

Mi(x̃, ỹ) ≤ |||(x, y) − (x̃, ỹ)|||2 ≤
√2

√2 − 1
Mi(x̃, ỹ) (2.18)

and the normalized counterpart
√2

2(√2 + 1)
⋅

Mi(x̃, ỹ)
|f|2H1 ,(|ω|α1)−1

≤
|||(x, y) − (x̃, ỹ)|||2

|||(x, y)|||2
≤

√2
√2 − 1

⋅
Mi(x̃, ỹ)

|f|2H1 ,(|ω|α1)−1
(2.19)

hold, where
Mi(x̃, ỹ) := |f − iωα1 x̃ − A∗ ỹ|2H1 ,(|ω|α1)−1

+ |ỹ − α2Ax̃|2H2 ,α−12
.

Proof. Using (2.10) and inserting 0 = α2Ax − y, we get

Mi(x̃, ỹ) = |iωα1x − iωα1 x̃ + A∗y − A∗ ỹ|2H1 ,(|ω|α1)−1
+ |ỹ − y + α2Ax − α2Ax̃|2H2 ,α−12

= |x − x̃|2H1 ,|ω|α1 + |A∗(y − ỹ)|2H1 ,(|ω|α1)−1
+ 2ℜ⟨iωα1(x − x̃),A∗(y − ỹ)⟩H1 ,(|ω|α1)−1

+ |ỹ − y|2H2 ,α−12
+ |A(x − x̃)|2H2 ,α2 + 2ℜ⟨ỹ − y, α2A(x − x̃)⟩H2 ,α−12

= |x − x̃|2D(A),|ω|α1 ,α2 + |y − ỹ|2D(A∗),(|ω|α1)−1 ,α−12
+ 2 signωℜ⟨i(x − x̃),A∗(y − ỹ)⟩H1 − 2ℜ⟨A(x − x̃), y − ỹ⟩H2 . (2.20)
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The last two terms in (2.20) can be written as (for brevity we use the notation e := x − x̃ and h := y − ỹ)

2 signωℜ(i⟨e,A∗h⟩H1 ) − 2ℜ⟨Ae, h⟩H2

= −2 signω ℑ⟨e,A∗h⟩H1 − 2ℜ⟨Ae, h⟩H2

≥ −2|ℑ⟨e,A∗h⟩H1 | − 2|ℜ⟨Ae, h⟩H2 |

= −(|ℑ⟨e,A∗h⟩H1 | + |ℜ⟨e,A∗h⟩H1 |⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤√2|⟨e,A∗h⟩H1 |

+ |ℑ⟨Ae, h⟩H2 | + |ℜ⟨Ae, h⟩H2 |⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≤√2|⟨Ae,h⟩H2 |

)

≥ −√2(|⟨e,A∗h⟩H1 | + |⟨Ae, h⟩H2 |)

≥ −√2(|e|H1 ,|ω|α1 |A∗h|H1 ,(|ω|α1)−1 + |Ae|H2 ,α2 |h|H2 ,α−12 )

≥ −√2( 1
2δ |e|

2
H1 ,|ω|α1 +

δ
2 |A

∗h|2H1 ,(|ω|α1)−1
+

1
2δ |Ae|

2
H2 ,α2 +

δ
2 |h|

2
H2 ,α−12

), (2.21)

for all δ > 0. One can repeat these calculations by estimating from above, and arrive at

2 signωℜ(i⟨e,A∗h⟩H1 ) − 2ℜ⟨Ae, h⟩H2

≤ √2( 1
2δ |e|

2
H1 ,|ω|α1 +

δ
2 |A

∗h|2H1 ,(|ω|α1)−1
+

1
2δ |Ae|

2
H2 ,α2 +

δ
2 |h|

2
H2 ,α−12

). (2.22)

Together (2.20)–(2.22) give

(1 −√2 1
2δ )|x − x̃|

2
D(A),|ω|α1 ,α2 + (1 −√2 δ2)|y − ỹ|

2
D(A∗),(|ω|α1)−1 ,α−12

≤ Mi(x̃, ỹ), (2.23)

(1 +√2 1
2δ )|x − x̃|

2
D(A),|ω|α1 ,α2 + (1 +√2 δ2)|y − ỹ|

2
D(A∗),(|ω|α1)−1 ,α−12

≥ Mi(x̃, ỹ). (2.24)

Estimate (2.18) follows by setting δ = 1 in (2.23) and (2.24). Estimate (2.19) follows by property (2.15) in
Remark 2.11, completing the proof.

The square root of the ratio of the upper and lower bound in (2.18) is always 1 +√2 < 2.42. The square root
of the ratio of the bounds of the normalized counterpart (2.19) is always 2 +√2 < 3.42. We can conclude that
the bounds are close to each other and give reliable information of the error of a mixed approximation.

Theorem 2.14. From the proof of Theorem 2.13 we can deduce the following a posteriori error estimates for the
primal and dual problems.
(i) For any x̃ ∈ D(A) it holds

|x − x̃|2D(A),|ω|α1 ,α2 ≤ 2Mi(x̃, ψ) for all ψ ∈ D(A∗).

(ii) For any ỹ ∈ D(A∗) it holds

|y − ỹ|2D(A∗),(|ω|α1)−1 ,α−12
≤ 2Mi(φ, ỹ) for all φ ∈ D(A).

Proof. Estimate (i) follows from (2.23) by setting δ = √2, and (ii) from (2.23) by setting δ = 1/√2.

Remark 2.15. (i) Since y⊥α−12 N(A
∗) by (2.12), we immediately get y ∈ α2R(A) by the Helmholtz decom-

position
H2 = N(A∗) ⊕α−12 α2R(A).

(ii) If (ωα1)−1f ∈ D(A), we have z := (ωα1)−1A∗y ∈ D(A), and the strong andmixed formulations of (2.12)
read

A(ωα1)−1A∗y + iα−12 y = A(ωα1)−1f,
Az + iα−12 y = A(ωα1)−1f, (ωα1)−1A∗y = z.

Then for all φ ∈ D(A) we have

⟨Az,Aφ⟩H2 ,α2 + i⟨z, φ⟩H1 ,ωα1 = −i⟨y,Aφ⟩H2 + i⟨z, φ⟩H1 ,ωα1 + ⟨A(ωα1)−1f,Aφ⟩H2 ,α2

= ⟨A(ωα1)−1f,Aφ⟩H2 ,α2
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and hence z ∈ (D(A) ∩ α−11 R(A∗)) ⊂ D(A) is the unique solution of this variational problem. Furthermore,
α2(Az − A(ωα1)−1f) ∈ D(A∗) and A∗α2(Az − Aα−11 f) = −iωα1z. If α2A(ωα1)−1f belongs to D(A∗), this yields
α2Az ∈ D(A∗) and the strong equation

A∗α2Az + iωα1z = A∗α2A(ωα1)−1f.

2.3 Error Indication Properties for PDEs

In this section we assume that the underlying problem is a PDE such that A and A∗ are differential operators
and the Hilbert spaces are scalar-, vector-, or tensor-valued L2-spaces, i.e., H1 = L2(Ω) and H2 = L2(Ω). Here
Ω ⊂ ℝd, d ≥ 1, is a domain.

Let T denote a discretization of the domain Ω into a mesh of non-overlapping elements T. Note that
we assume ⋃T∈T T = Ω, i.e., in particular that the boundary of Ω is exactly represented by the mesh. This
is necessary in order to have conforming approximations in the first place: They must satisfy exactly the
imposed boundary conditions.

Aside from global error values we are also interested in estimating the error distribution in the mesh T.
In the following we use the previously derived error equality and error estimate to define error indicators and
study their properties.

Case I. We define the following error indicator based on the equality of Theorem 2.5:

ηT(x̃, ỹ) := √|f − α1 x̃ − A∗ ỹ|2L2(T),α−11
+ |ỹ − α2Ax̃|2L2(T),α−12 .

The error indicator ηT will indicate the exact error distribution

eT(x̃, ỹ) := √|x − x̃|2L2(T),α1 + |A(x − x̃)|2L2(T),α2 + |y − ỹ|2L2(T),α−12
+ |A∗(y − ỹ)|2L2(T),α−11

.

In the following we use
η := √ ∑

T∈T
η2T and e := √ ∑

T∈T
e2T .

The error indicator η should satisfy the following properties:
(i) The indicator η must satisfy the global relation c η ≤ e ≤ c η with some constants c > 0 and c > 0. The

constant c is often called the global efficiency constant, and c the global reliability constant. If c or an
upper bound of it is known, the indicator can be used to provide a stopping criterion for adaptive com-
putations.

(ii) The local indicator ηT must satisfy cTηT ≤ eT in all elements T inTwith some constants cT > 0, which are
often called the local efficiency constants. If cT are of the samemagnitude, the indicator is then appropri-
ate for estimating the error distribution in themesh, and can then be used for adaptivemesh-refinement.
It is desirable that the constants c, c and cT are not dependent on the problem data or the mesh. If the

constants c and c are known, they give a good idea of the quality of the indicator η in a global context. It
is also desirable that the local constants cT are known for all elements T. The closer the values are to c, the
better.

Note that η(x̃, ỹ) = M(x̃, ỹ)1/2 = e(x̃, ỹ), so according to Theorem 2.5 the first property is satisfied with
constants c = c = 1. This is the best case possible.

We show the second property of local efficiency by using (2.2) and inserting 0 = α2Ax − y into ηT :

ηT(x̃, ỹ)2 = |α1x − α1 x̃ + A∗y − A∗ ỹ|2L2(T),α−11 + |ỹ − y + α2Ax − α2Ax̃|2L2(T),α−12
≤ 2(|x − x̃|2L2(T),α1 + |A∗(y − ỹ)|2L2(T),α−11 + |ỹ − y|2L2(T),α−12 + |A(x − x̃)|2L2(T),α2),

which gives us
1
√2

ηT(x̃, ỹ) ≤ eT(x̃, ỹ).
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The indicator η then satisfies the second property with the constant cT = 1/√2 > 0.7 for all elements T ∈ T.
This constant is rather sharp, since c = c = 1. This means that η provides a good error indicator for guiding
mesh-adaptive methods for mixed approximations.

Case II. We define the following error indicator based on the estimate of Theorem 2.13:

ηi,T(x̃, ỹ) := √|f − iωα1 x̃ − A∗ ỹ|2L2(T),(|ω|α1)−1 + |ỹ − α2Ax̃|2L2(T),α−12 .

The error indicator ηi,T will indicate the exact error distribution

ei,T(x̃, ỹ) := √|x − x̃|2L2(T),|ω|α1 + |A(x − x̃)|2L2(T),α2 + |y − ỹ|2L2(T),α−12
+ |A∗(y − ỹ)|2L2(T),(|ω|α1)−1 .

In the following we use
ηi := √ ∑

T∈T
η2i,T and ei := √ ∑

T∈T
e2i,T .

Note that ηi(x̃, ỹ) = Mi(x̃, ỹ)1/2, so according to Theorem 2.13 the first property is satisfied with constants

c = √ √2
√2 + 1

> 0.76 and c = √ √2
√2 − 1

< 1.85,

with ratio 1 +√2 < 2.42.
We show the second property of local efficiency by using (2.10) and inserting 0 = α2Ax − y into ηi,T :

ηi,T(x̃, ỹ)2 = |iωα1x − iωα1 x̃ + A∗y − A∗ ỹ|2L2(T),(|ω|α1)−1 + |ỹ − y + α2Ax − α2Ax̃|2L2(T),α−12
≤ 2(|x − x̃|2L2(T),|ω|α1 + |A∗(y − ỹ)|2L2(T),(|ω|α1)−1 + |ỹ − y|2L2(T),α−12 + |A(x − x̃)|2L2(T),α2),

which gives us
1
√2

ηi,T(x̃, ỹ) ≤ ei,T(x̃, ỹ).

The indicator ηi then satisfies the second property with the constant cT = 1/√2 > 0.7 for all elements T ∈ T.
This constant is again rather sharp, since 0.76 < c < c < 1.85. This means that ηi provides a good error indi-
cator for guiding mesh-adaptive methods for mixed approximations.

2.4 Motivation: Error Control for Time-Dependent PDEs

As mentioned in the introduction, a motivation to study a posteriori error estimation for the two classes of
problems considered in this paper comes from time-dependent partial differential equations, more precisely
from their time discretizations or from assuming that they are time-harmonic.

Case I. A main application of our error equality of Theorem 2.5 might be that equations of the type

A∗α2Ax + α1x = f (2.25)

naturally occur in many types of time discretizations, e.g., for linear parabolic heat type equations or linear
hyperbolic wave propagation type equations.

Let us consider the linear parabolic heat type equation

(∂t + A∗A)x = f, (2.26)

generalizing the most prominent example of the heat equation

(∂t − ∆)u = (∂t − div∇)u = g
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with appropriate boundary and initial conditions. A standard implicit time discretization for (2.26) is, e.g.,
the backward Euler scheme, yielding

δ−1n (xn − xn−1) + A∗Axn = fn , δn := tn − tn−1,

and hence (2.25) is recovered by

A∗Axn + δ−1n xn = ̃fn := fn − δ−1n xn−1.

We note that our arguments extend to ‘all’ practically used time discretizations. Functional a posteriori error
estimates for parabolic equations can be found, e.g., in [8, 12].

A large class of linear wave propagation models, like electromagnetics or acoustics, have the structure

(∂tΛ−1 +M)[
x
y
] = [

g
h
] , M = [

0 −A∗

A 0
] , Λ = [

λ1 0
0 λ2

] (2.27)

or more explicit
∂tλ−11 x − A∗y = g, ∂tλ−12 y + Ax = h (2.28)

completed by appropriate initial conditions. Often the material is assumed to be time-independent, i.e., Λ
does not depend on time. In this case iΛM is self-adjoint in the proper Hilbert spaces and the solution theory
follows immediately by the spectral theorem (variation in constant formula) or by semigroup theory. We note
that formally the second-order wave equation

(∂2t − (ΛM)2) [
x
y
] = [

g̃
h̃
] := (∂t − ΛM)Λ [

g
h
] , (ΛM)2 = [

−λ1A∗λ2A 0
0 −λ2Aλ1A∗]

holds, i.e., component-wise

(∂2t + λ1A∗λ2A)x = g̃, (∂2t + λ2Aλ1A∗)y = h̃.

Hence the linear hyperbolic wave type equation

(∂2t + A∗A)x = f (2.29)

pops up, generalizing the most prominent example of the wave equation

(∂2t − ∆)u = (∂2t − div∇)u = j

with appropriate boundary and initial conditions. A standard implicit time discretization for (2.28) is, e.g.,
the backward Euler scheme, i.e.,

δ−1n λ−11 (xn − xn−1) − A∗yn = gn , δ−1n (yn − yn−1) + λ2Axn = λ2hn .

Hence, we obtain, e.g., for xn,

A∗λ2Axn + δ−2n λ−11 xn = fn := A∗(λ2hn + δ−1n yn−1) + δ−2n λ−11 xn−1 + δ
−1
n gn

provided that λ2hn ∈ D(A∗). Therefore (2.25) holds for xn with, e.g., α1 = δ−2n λ−11 and α2 = λ2. Of course, a
similar equation holds for yn as well. We note that our arguments extend to ‘all’ practically used time dis-
cretizations. Functional a posteriori error estimates for wave equations can be found in [11, 13].

Case II. A main application of our two-sided error estimate of Theorem 2.13 might be that equations of the
type

A∗α2Ax + iωα1x = f (2.30)

naturally occur for time-harmonic problems, e.g., for time-harmonicMaxwell equations.Maxwell’s equations
are hyperbolic and read

∂tD − rotH = J = j + σE, divD = ρ, D = ϵE,
∂tB + rot E = 0, div B = 0, B = μH
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with appropriate boundary and initial conditions. These equations can be written in the style of (2.27) as

(∂t [
ϵ 0
0 μ

] + [
0 − rot
rot 0

] − [
σ 0
0 0

])[
E
H
] = [

j
0
] .

Let us assume that ϵ, μ and σ are independent of time. Then, formally, we have

∂2t ϵE = rot μ−1∂tB + ∂t j + ∂tσE = − rot μ−1 rot E + ∂tJ,
∂2t μH = − rot ϵ−1∂tD = − rot ϵ−1 rotH − rot ϵ−1J,

i.e., we get the wave equations

(∂2t + ϵ−1 rot μ−1 rot)E = ∂tϵ−1J, (∂2t + μ−1 rot ϵ−1 rot)H = −μ−1 rot ϵ−1J

as another example of (2.29). The eddy current model neglects time variations of the electric field, i.e., as-
sumes ∂tD = ∂tϵE = 0, and hence leads to the parabolic equation

σ∂tE = − rot μ−1∂tB − F = rot μ−1 rot E − F, F := ∂t j,

i.e.,
−σ∂tE + rot μ−1 rot E = F.

A time-harmonic ansatz leads to
rot μ−1 rot Ẽ + iωσẼ = F̃

as a prominent example of (2.30) for which our results are stated in Section 3.2.

3 Applications
In this sectionwewill discuss some standard applications. LetΩ ⊂ ℝd, d ≥ 1, be a bounded Lipschitz domain
with boundary Γ. Moreover, let ΓD be an open subset of Γ and ΓN := Γ \ ΓD its complement. We will denote by
n the outward unit normal of the boundary Γ. We note that our results extend to unbounded domainswithout
any changes.

We denote by ⟨ ⋅ , ⋅ ⟩L2 and | ⋅ |L2 the inner product and the norm in L2 for scalar-, vector- andmatrix-valued
functions. Throughout this sectionwewill not indicate thedependence onΩ in our notations of the functional
spaces.

For the first application, the reaction-diffusion problem, we repeat all the results of Section 2. For the rest
of the applications we will repeat only the main results of Theorems 2.5 and 2.13 for the sake of brevity.

3.1 Reaction-Diffusion

We define the usual Sobolev spaces

H1 := {φ ∈ L2 | ∇φ ∈ L2}, D := {ψ ∈ L2 | divψ ∈ L2},

and the spaces
H1ΓD

:= C∞ΓD

H1

, DΓN
:= C∞ΓN

D
,

were C∞ΓD
resp. C∞ΓN

is the space of smooth test functions resp. vector fields having supports bounded away
from ΓD resp. ΓN. These are Hilbert spaces equipped with the graph norms denoted by | ⋅ |H1 , | ⋅ |D, respectively.
Table 1 shows the relation to the notation of Section 2. We note that indeed D(A∗) = DΓN

holds for Lipschitz
domains, see, e.g., [2, 5]. Relation (2.1) reads now

⟨∇φ, ψ⟩L2 = −⟨φ, divψ⟩L2 for all φ ∈ H1ΓD
, ψ ∈ DΓN

.
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α1 α2 A A∗ H1 H2 D(A) D(A∗)

ρ α ∇ −div L2 L2 H1ΓD DΓN

Table 1. Relation to the notation of Section 2.

Case I. Find the scalar potential u ∈ H1 such that

{{{
{{{
{

−div α∇u + ρ u = f in Ω,
u = 0 on ΓD,

n ⋅ α∇u = 0 on ΓN.
(3.1)

The quadratic diffusion matrix α ∈ L∞ is symmetric, real valued, and uniformly positive definite. The real-
valued reaction coefficient ρ ≥ ρ0 > 0 belongs to L∞ and the source f to L2. The dual variable for this problem
is the flux p = α∇u ∈ D. The mixed formulation of (3.1) reads: Find (u, p) ∈ H1ΓD

× DΓN
such that

− div p + ρ u = f, α∇u = p in Ω. (3.2)

The primal and dual variational problems are: Find (u, p) ∈ H1ΓD
× DΓN

such that

⟨∇u, ∇φ⟩L2 ,α + ⟨u, φ⟩L2 ,ρ = ⟨f, φ⟩L2 for all φ ∈ H1ΓD
,

⟨div p, divψ⟩L2 ,ρ−1 + ⟨p, ψ⟩L2 ,α−1 = −⟨f, divψ⟩L2 ,ρ−1 for all ψ ∈ DΓN
.

Considering the norms, we have

|u|2H1 ,ρ,α = |u|2L2 ,ρ + |∇u|2L2 ,α ,

|p|2D,ρ−1 ,α−1 = |p|2L2 ,α−1 + |div p|2L2 ,ρ−1 ,

‖(u, p)‖2 = |u|2H1 ,ρ,α + |p|2D,ρ−1 ,α−1 .

Now Remark 2.3, Theorem 2.4, Theorem 2.5, and Corollary 2.7 read:

Remark 3.1. We note |u|H1 ,ρ,α ≤ |f|L2 ,ρ−1 and |p|D,ρ−1 ,α−1 ≤ |f|L2 ,ρ−1 and indeed

‖(u, p)‖ = |f|L2 ,ρ−1 .

The solution operator L : L2 → H1ΓD
× DΓN

, f Ü→ (u, p) is an isometry, i.e. |L| = 1.

Theorem 3.2. Let (u, p) ∈ H1ΓD
× DΓN

be the exact solution of (3.2). Let ũ ∈ H1ΓD
and p̃ = α∇ũ ∈ DΓN

. Then, for the
mixed approximation (ũ, p̃) we have

‖(u, p) − (ũ, p̃)‖2 = Ird(ũ, p̃),
‖(u, p) − (ũ, p̃)‖2

‖(u, p)‖2
=
Ird(ũ, p̃)
|f|2L2 ,ρ−1

,

where Ird(ũ, p̃) = |f − ρ ũ + div p̃|2L2 ,ρ−1 .

Theorem 3.3. Let (u, p), (ũ, p̃) ∈ H1ΓD
× DΓN

be the exact solution of (3.2) and any approximation, respectively.
Then

‖(u, p) − (ũ, p̃)‖2 = Mrd(ũ, p̃),
‖(u, p) − (ũ, p̃)‖2

‖(u, p)‖2
=
Mrd(ũ, p̃)
|f|2L2 ,ρ−1

hold, whereMrd(ũ, p̃) = |f − ρ ũ + div p̃|2L2 ,ρ−1 + |p̃ − α∇ũ|2L2 ,α−1 .

Corollary 3.4. Theorem 3.3 provides the well-known a posteriori error estimates for the primal and dual
problems.
(i) For any ũ ∈ H1ΓD

it holds
|u − ũ|2H1 ,ρ,α = min

ψ∈DΓN

Mrd(ũ, ψ) = Mrd(ũ, p).
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(ii) For any p̃ ∈ DΓN
it holds

|p − p̃|2D,ρ−1 ,α−1 = min
φ∈H1

ΓD

Mrd(φ, p̃) = Mrd(u, p̃).

Error indication properties of Section 2.3 hold as well:

Remark 3.5. Let T denote a discretization of the domain Ω into a mesh of non-overlapping elements T such
as described in Section 2.3. We define the following error indicator using the functional of Theorem 3.3:

ηT(ũ, p̃) := √|f − ρ ũ + div p̃|2L2(T),ρ−1 + |p̃ − α∇ũ|2L2(T),α−1 , η := √ ∑
T∈T

η2T .

The error indicator η will indicate the exact error distribution

eT(x̃, ỹ) := √|u − ũ|2H1(T),ρ,α + |p − p̃|2D(T),ρ−1 ,α−1 , e := √ ∑
T∈T

e2T .

As shown in Section 2.3, the global reliability constant, global efficiency constant, and the local efficiency
constants are

c = 1, c = 1, cT =
1
√2

> 0.7 for all T ∈ T,

respectively.

Related results and numerical tests for exterior domains can be found in, e.g., [6, 9].

Case II. Find the scalar potential u ∈ H1 such that

{{{
{{{
{

−div α∇u + iωρ u = f in Ω,
u = 0 on ΓD,

n ⋅ α∇u = 0 on ΓN,
(3.3)

where α, ρ, and f are as before, and ω ∈ ℝ \ {0}. The dual variable for this problem is the flux p = α∇u ∈ D.
The mixed formulation of (3.3) reads: Find (u, p) ∈ H1ΓD

× DΓN
such that

− div p + iωρ u = f, α∇u = p in Ω. (3.4)

Considering the norms, we have

|u|2H1 ,|ω|ρ,α = |u|2L2 ,|ω|ρ + |∇u|2L2 ,α ,

|p|2D,(|ω|ρ)−1 ,α−1 = |p|2L2 ,α−1 + |div p|2L2 ,(|ω|ρ)−1 ,

|||(u, p)|||2 = |u|2H1 ,|ω|ρ,α + |p|2D,(|ω|ρ)−1 ,α−1 .

The primal and dual variational problems are: Find (u, p) ∈ H1ΓD
× DΓN

such that

⟨∇u, ∇φ⟩L2 ,α + i⟨u, φ⟩L2 ,ωρ = ⟨f, φ⟩L2 for all φ ∈ H1ΓD
,

⟨div p, divψ⟩L2 ,(ωρ)−1 + i⟨p, ψ⟩L2 ,α−1 = −⟨f, divψ⟩L2 ,(ωρ)−1 for all ψ ∈ DΓN
.

Now Remark 2.11, Theorem 2.12, Theorem 2.13, and Theorem 2.14 read:

Remark 3.6. We note |u|H1 ,|ω|ρ,α ≤ √2|f|L2 ,(|ω|ρ)−1 and |p|D,(|ω|ρ)−1 ,α−1 ≤ √2|f|L2 ,(|ω|ρ)−1 and indeed

|f|L2 ,(|ω|ρ)−1 ≤ |||(u, p)||| ≤ √2|f|L2 ,(|ω|ρ)−1 .

The norm of the solution operator Li : L2 → H1ΓD
× DΓN

, f Ü→ (u, p) then satisfies 1 ≤ |Li| ≤ √2.

Theorem 3.7. Let (u, p) ∈ H1ΓD
× DΓN

be the exact solution of (3.2). Let ũ ∈ H1ΓD
and p̃ = α∇ũ ∈ DΓN

. Then, for the
mixed approximation (ũ, p̃) we have

Ii,rd(ũ, p̃) ≤ |||(u, p) − (ũ, p̃)|||2 ≤ 2Ii,rd(ũ, p̃)
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and
1
2 ⋅

Ii,rd(ũ, p̃)
|f|2L2 ,(|ω|ρ)−1

≤
|||(u, p) − (ũ, p̃)|||2

|||(u, p)|||2
≤ 2 Ii,rd(ũ, p̃)

|f|2L2 ,(|ω|ρ)−1
,

where Ii,rd(ũ, p̃) = |f − iωρ ũ + div p̃|2L2 ,(|ω|ρ)−1 .

Theorem 3.8. Let (u, p), (ũ, p̃) ∈ H1ΓD
× DΓN

be the exact solution of (3.4) and any approximation, respectively.
Then

√2
√2 + 1

Mi,rd(ũ, p̃) ≤ |||(u, p) − (ũ, p̃)|||2 ≤
√2

√2 − 1
Mi,rd(ũ, p̃)

and
√2

2(√2 + 1)
⋅
Mi,rd(ũ, p̃)
|f|2L2 ,(|ω|ρ)−1

≤
|||(u, p) − (ũ, p̃)|||2

|||(u, p)|||2
≤

√2
√2 − 1

⋅
Mi,rd(ũ, p̃)
|f|2L2 ,(|ω|ρ)−1

hold, whereMi,rd(ũ, p̃) = |f − iωρ ũ + div p̃|2L2 ,(|ω|ρ)−1 + |p̃ − α∇ũ|2L2 ,α−1 .

Theorem 3.9. We have the following a posteriori error estimates for the primal and dual problems.
(i) For any ũ ∈ H1ΓD

it holds
|u − ũ|2H1 ,|ω|ρ,α ≤ 2Mi,rd(ũ, ψ) for all ψ ∈ DΓN

.

(ii) For any p̃ ∈ DΓN
it holds

|p − p̃|2D,(|ω|ρ)−1 ,α−1 ≤ 2Mi,rd(φ, p̃) for all φ ∈ H1ΓD
.

The error indication properties of Section 2.3 hold as well:

Remark 3.10. Let T denote a discretization of the domain Ω into amesh of non-overlapping elements T such
as described in Section 2.3. We define the following error indicator using the functional of Theorem 3.8:

ηi,T(ũ, p̃) := √|f − iωρ ũ + div p̃|2L2(T),(|ω|ρ)−1 + |p̃ − α∇ũ|2L2(T),α−1 , ηi := √ ∑
T∈T

η2i,T .

The error indicator ηi will indicate the exact error distribution

ei,T(x̃, ỹ) := √|u − ũ|2H1(T),|ω|ρ,α + |p − p̃|2D(T),(|ω|ρ)−1 ,α−1 , ei := √ ∑
T∈T

e2i,T .

As shown in Section 2.3, the global reliability constant, global efficiency constant, and the local efficiency
constants are

c = √ √2
√2 − 1

< 1.85, c = √ √2
√2 + 1

> 0.76, cT =
1
√2

> 0.7 for all T ∈ T,

respectively.

3.2 Maxwell Type Problems (3D)

Let d = 3. We need the Sobolev spaces

R := {Φ ∈ L2 | rotΦ ∈ L2}, RΓD
:= C∞ΓD

R
, RΓN

:= C∞ΓN

R
.

Table 2 shows the relation to the notation of Section 2. We note that indeed D(A∗) = RΓN
holds for Lipschitz

domains, see, e.g., [2, 5]. Relation (2.1) reads now

⟨rotΦ, Ψ⟩L2 = ⟨Φ, rotΨ⟩L2 for all Φ ∈ RΓD
, Ψ ∈ RΓN

.
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α1 α2 A A∗ H1 H2 D(A) D(A∗)

ϵ, σ μ−1 rot rot L2 L2 RΓD RΓN

Table 2. Relation to the notation of Section 2.

Case I: A Maxwell Type Problem. The problem reads: Find the electric field E ∈ R such that

{{{
{{{
{

rot μ−1 rot E + ϵE = J in Ω,
n × E = 0 on ΓD,

n × μ−1 rot E = 0 on ΓN.
(3.5)

We assume that the magnetic permeability μ and the electric permittivity ϵ are symmetric, real-valued, and
uniformly positive definite matrices from L∞. The electric current J belongs to L2. The dual variable for
this problem is the magnetic field H = μ−1 rot E ∈ R. The mixed formulation of (3.5) reads as follows: Find
(E, H) ∈ RΓD

× RΓN
such that

rotH + ϵE = J, μ−1 rot E = H in Ω. (3.6)

Considering the norms, we have

|E|2R,ϵ,μ−1 = |E|2L2 ,ϵ + |rot E|2L2 ,μ−1 ,

|H|2R,ϵ−1 ,μ = |H|2L2 ,μ + |rotH|2L2 ,ϵ−1 ,

‖(E, H)‖2 = |E|2R,ϵ,μ−1 + |H|2R,ϵ−1 ,μ .

Now Theorem 2.5 reads:

Theorem 3.11. Let (E, H), (Ẽ, H̃) ∈ RΓD
× RΓN

be the exact solution of (3.6)andanyapproximation, respectively.
Then

‖(E, H) − (Ẽ, H̃)‖2 = Mec(Ẽ, H̃),
‖(E, H) − (Ẽ, H̃)‖2

‖(E, H)‖2
=
Mec(Ẽ, H̃)
|J|2L2 ,ϵ−1

hold, whereMec(Ẽ, H̃) = |J − ϵẼ − rot H̃|2L2 ,ϵ−1 + |H̃ − μ−1 rot Ẽ|2L2 ,μ.

Earlier results for eddy current and static Maxwell problems can be found in [1, 10].

Case II: Eddy-Current. The problem reads: Find the electric field E ∈ R such that

{{{
{{{
{

rot μ−1 rot E + iωσE = J in Ω,
n × E = 0 on ΓD,

n × μ−1 rot E = 0 on ΓN,
(3.7)

where μ and J are as before, the conductivity σ is a symmetric, real-valued, and uniformly positive definite
matrix from L∞, and ω ∈ ℝ \ {0}. The dual variable for this problem is the magnetic field H = μ−1 rot E ∈ R.
The mixed formulation of (3.7) reads: Find (E, H) ∈ RΓD

× RΓN
such that

rotH + iωσE = J, μ−1 rot E = H in Ω. (3.8)

Considering the norms, we have

|E|2R,|ω|σ,μ−1 = |E|2L2 ,|ω|σ + |rot E|2L2 ,μ−1 ,

|H|2R,(|ω|σ)−1 ,μ = |H|2L2 ,μ + |rotH|2L2 ,(|ω|σ)−1 ,

|||(E, H)|||2 = |E|2R,|ω|σ,μ−1 + |H|2R,(|ω|σ)−1 ,μ .

Now Theorem 2.13 reads:
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Theorem 3.12. Let (E, H), (Ẽ, H̃) ∈ RΓD
× RΓN

be the exact solution of (3.8)andanyapproximation, respectively.
Then

√2
√2 + 1

Mi,ec(Ẽ, H̃) ≤ |||(E, H) − (Ẽ, H̃)|||2 ≤
√2

√2 − 1
Mi,ec(Ẽ, H̃)

and
√2

2(√2 + 1)
⋅
Mi,ec(Ẽ, H̃)
|J|2L2 ,(|ω|σ)−1

≤
|||(E, H) − (Ẽ, H̃)|||2

|||(E, H)|||2
≤

√2
√2 − 1

⋅
Mi,ec(Ẽ, H̃)
|J|2L2 ,(|ω|σ)−1

hold, whereMi,ec(Ẽ, H̃) = |J − iωσẼ − rot H̃|2L2 ,(|ω|σ)−1 + |H̃ − μ−1 rot Ẽ|2L2 ,μ.

3.3 Maxwell Type Problems (2D)

Let d = 2. In the following we simply indicate the changes compared to the previous section. First, we have
to understand the double rot as ∇⊥ rot, where

rot E := divQE = ∂1E2 − ∂2E1, ∇⊥H := Q∇H = [
∂2H
−∂1H

] , Q := [
0 1
−1 0

] ,

and E ∈ R is a vector field and H ∈ H1 a scalar function. In the literature, the operator ∇⊥ is often called co-
gradient or vector rotation ⃗rot as well. Also μ is scalar. Table 3 shows the relation to the notation of Section 2.
Relation (2.1) reads now

⟨rotΦ, ψ⟩L2 = ⟨Φ, ∇⊥ψ⟩L2 for all Φ ∈ RΓD
, ψ ∈ H1ΓN

.

α1 α2 A A∗ H1 H2 D(A) D(A∗)

ϵ, σ μ−1 rot ∇⊥ L2 L2 RΓD H1ΓN

Table 3. Relation to the notation of Section 2.

Case I: A Maxwell Type Problem. Now (3.5) reads: Find the electric field E ∈ R such that

{{{
{{{
{

∇⊥μ−1 rot E + ϵE = J in Ω,
n × E = 0 on ΓD,

μ−1 rot E = 0 on ΓN.

The mixed formulation of the problem is: Find (E, H) ∈ RΓD
× H1ΓN

such that

∇⊥H + ϵE = J, μ−1 rot E = H in Ω. (3.9)

The norm for H is
|H|2H1 ,ϵ−1 ,μ = |H|2L2 ,μ + |∇⊥H|2L2 ,ϵ−1 .

Now Theorem 3.11 (and thus Theorem 2.5) reads:

Theorem 3.13. Let (E, H), (Ẽ, H̃) ∈ RΓD
× H1ΓN

be the exact solution of (3.9) and any approximation, respec-
tively. Then

‖(E, H) − (Ẽ, H̃)‖2 = Mec(Ẽ, H̃),
‖(E, H) − (Ẽ, H̃)‖2

‖(E, H)‖2
=
Mec(Ẽ, H̃)
|J|2L2 ,ϵ−1

hold, whereMec(Ẽ, H̃) = |J − ϵẼ − ∇⊥H̃|2L2 ,ϵ−1 + |H̃ − μ−1 rot Ẽ|2L2 ,μ.
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Case II: Eddy-Current. Now (3.7) reads: Find the electric field E ∈ R such that

{{{
{{{
{

∇⊥μ−1 rot E + iωσE = J in Ω,
n × E = 0 on ΓD,

μ−1 rot E = 0 on ΓN.

The mixed formulation of the problem is: Find (E, H) ∈ RΓD
× H1ΓN

such that

∇⊥H + iωσE = J, μ−1 rot E = H in Ω. (3.10)

The norm for H is
|H|2H1 ,(|ω|σ)−1 ,μ = |H|2L2 ,μ + |∇⊥H|2L2 ,(|ω|σ)−1 .

Now Theorem 3.12 (and thus Theorem 2.13) reads:

Theorem 3.14. Let (E, H), (Ẽ, H̃) ∈ RΓD
× H1ΓN

be the exact solution of (3.10) and any approximation, respec-
tively. Then

√2
√2 + 1

Mi,ec(Ẽ, H̃) ≤ |||(E, H) − (Ẽ, H̃)|||2 ≤
√2

√2 − 1
Mi,ec(Ẽ, H̃)

and
√2

2(√2 + 1)
⋅
Mi,ec(Ẽ, H̃)
|J|2L2 ,(|ω|σ)−1

≤
|||(E, H) − (Ẽ, H̃)|||2

|||(E, H)|||2
≤

√2
√2 − 1

⋅
Mi,ec(Ẽ, H̃)
|J|2L2 ,(|ω|σ)−1

hold, whereMi,ec(Ẽ, H̃) = |J − iωσẼ − ∇⊥H̃|2L2 ,(|ω|σ)−1 + |H̃ − μ−1 rot Ẽ|2L2 ,μ.

3.4 Linear Elasticity Type Problems

We will need ∇s, which is the symmetric part of the gradient

∇su := sym∇u =
1
2 (∇u + (∇u)⊤),

where ∇u is understood as the Jacobian of the vector field u and ⊤ denotes the transpose. ∇su, often denoted
by ϵ(u), is also called the infinitesimal strain tensor. For a tensor σ the notation σ ∈ D and the application of
Div to σ are to be understood row-wise as the usual divergence div. Moreover, we define

Divs σ := Div sym σ.

Table 4 shows the relation to the notation of Section 2. The notation σ ∈ sym−1 DΓN
means sym σ ∈ DΓN

. More
precisely, ψ ∈ D(A∗) if and only if

⟨∇sφ, ψ⟩L2 = ⟨φ,A∗ψ⟩L2 for all φ ∈ D(A) = H1ΓD
.

Since ⟨∇sφ, ψ⟩L2 = ⟨∇φ, symψ⟩L2 , we see that this holds if and only if symψ ∈ DΓN
and A∗ψ = −Div symψ.

Equation (2.1) turns into

⟨∇sφ, ψ⟩L2 = −⟨φ,Divs ψ⟩L2 for all φ ∈ H1ΓD
, ψ ∈ sym−1 DΓN

.

α1 α2 A A∗ H1 H2 D(A) D(A∗)

ρ Λ ∇s −Divs L2 L2 H1ΓD sym−1 DΓN

Table 4. Relation to the notation of Section 2.
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Case I. Find the displacement vector field u ∈ H1 such that

{{{
{{{
{

−DivΛ∇su + ρ u = f in Ω,
u = 0 on ΓD,

Λ∇su ⋅ n = 0 on ΓN.
(3.11)

The fourth-order stiffness tensor of elastic moduli Λ ∈ L∞, mapping symmetric matrices to symmetric matri-
ces point-wise, and the second-order tensor (quadratic matrix) of reaction ρ are assumed to be symmetric,
real valued, and uniformly positive definite. The vector field f (body force) belongs to L2 and the dual variable
for this problem is the Cauchy stress tensor σ = Λ∇su ∈ D. Note that σ is indeed symmetric. We note that the
first equation in (3.11) can also be written as

−Divs Λ∇su + ρ u = f.

The mixed formulation of (3.11) reads: Find (u, σ) ∈ H1ΓD
× DΓN

such that

− Div σ + ρ u = f, Λ∇su = σ in Ω. (3.12)

For the norms we have

|u|2H1 ,ρ,Λ = |u|2L2 ,ρ + |∇su|2L2 ,Λ ,

|σ|2sym−1 D,ρ−1 ,Λ−1 = |σ|2L2 ,Λ−1 + |Divs σ|2L2 ,ρ−1 ,

‖(u, σ)‖2 = |u|2H1 ,ρ,Λ + |σ|2sym−1 D,ρ−1 ,Λ−1 .

Now Theorem 2.5 reads:

Theorem 3.15. Let (u, σ), (ũ, σ̃) ∈ H1ΓD
× sym−1 DΓN

be the exact solution of (3.12) and any approximation, re-
spectively. Then

‖(u, σ) − (ũ, σ̃)‖2 = Mle(ũ, σ̃),
‖(u, σ) − (ũ, σ̃)‖2

‖(u, σ)‖2
=
Mle(ũ, σ̃)
|f|2L2 ,ρ−1

hold, whereMle(ũ, σ̃) = |f − ρ ũ + Divs σ̃|2L2 ,ρ−1 + |σ̃ − Λ∇sũ|2L2 ,Λ−1 .
Moreover, since the tensor σ is symmetric, the above results hold for all pairs (ũ, σ̃) ∈ H1ΓD

× DΓN
with sym-

metric tensor σ̃, and the functional simplifies toMle(ũ, σ̃) = |f − ρ ũ + Div σ̃|2L2 ,ρ−1 + |σ̃ − Λ∇sũ|2L2 ,Λ−1 .

Case II. Find the displacement vector field u ∈ H1 such that

{{{
{{{
{

−DivΛ∇su + iωρ u = f in Ω,
u = 0 on ΓD,

Λ∇su ⋅ n = 0 on ΓN,
(3.13)

where Λ, ρ, and f are as before, andω ∈ ℝ \ {0}. The dual variable for this problem is the Cauchy stress tensor
σ = Λ∇su ∈ D. We note again that σ is symmetric, and that the first equation of (3.13) can also be written as

−Divs Λ∇su + iωρ u = f.

The mixed formulation of (3.13) reads: Find (u, σ) ∈ H1ΓD
× DΓN

such that

− Div σ + iωρ u = f, Λ∇su = σ in Ω. (3.14)

For the norms we have

|u|2H1 ,|ω|ρ,Λ = |u|2L2 ,|ω|ρ + |∇su|2L2 ,Λ ,

|σ|2sym−1 D,(|ω|ρ)−1 ,Λ−1 = |σ|2L2 ,Λ−1 + |Divs σ|2L2 ,(|ω|ρ)−1 ,

|||(u, σ)|||2 = |u|2H1 ,|ω|ρ,Λ + |σ|2sym−1 D,(|ω|ρ)−1 ,Λ−1 .

Now Theorem 2.13 reads:
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Theorem 3.16. Let (u, σ), (ũ, σ̃) ∈ H1ΓD
× sym−1 DΓN

be the exact solution of (3.14) and any approximation, re-
spectively. Then

√2
√2 + 1

Mi,le(ũ, σ̃) ≤ |||(u, σ) − (ũ, σ̃)|||2 ≤
√2

√2 − 1
Mi,le(ũ, σ̃)

and
√2

2(√2 + 1)
⋅
Mi,le(ũ, σ̃)
|f|2L2 ,(|ω|ρ)−1

≤
|||(u, σ) − (ũ, σ̃)|||2

|||(u, σ)|||2
≤

√2
√2 − 1

⋅
Mi,le(ũ, σ̃)
|f|2L2 ,(|ω|ρ)−1

hold, whereMi,le(ũ, σ̃) = |f − iωρ ũ + Divs σ̃|2L2 ,(|ω|ρ)−1 + |σ̃ − Λ∇sũ|2L2 ,Λ−1 .
Moreover, since the tensor σ is symmetric, the above results hold for all pairs (ũ, σ̃) ∈ H1ΓD

× DΓN
with sym-

metric σ̃, and the functional simplifies toMi,le(ũ, σ̃) = |f − iωρ ũ + Div σ̃|2L2 ,(|ω|ρ)−1 + |σ̃ − Λ∇sũ|2L2 ,Λ−1 .

3.5 Different Boundary Conditions and Other Problems

We note that the (non-normalized) error equalities and error estimates hold without change with non-
homogeneous boundary conditions. Also Robin boundary conditions can be treated (see Appendix A).

It is clear that the list of applications of our theory is much longer. For example:
∙ generalized reaction-diffusion, linear acoustics and electromagnetics on Riemannian manifolds

−δd + 1, −δd + i,

were d and δ denote the exterior and co-derivative, respectively;
∙ the fourth-order problem

divDiv∇∇ + 1, divDiv∇∇ + i;

∙ the biharmonic problem
∆∆ + 1, ∆∆ + i;

∙ certain generalized Stokes and Oseen type problems.

A Inhomogeneous and More Boundary Conditions
We will demonstrate that our results also hold for Robin type boundary conditions, which means that our
results are true for many commonly used boundary conditions. Moreover, we emphasize that we can also
handle inhomogeneous boundary conditions. Since it is clear that this method works in the general setting
for both Cases I and II, we will demonstrate it here just for a simple reaction-diffusion type model problem
belonging to the class of Case I. Let Ω be as in the latter section and now the boundary Γ be decomposed into
three disjoint parts ΓD, ΓN and ΓR.

The model problem is: Find the scalar potential u ∈ H1 such that

{{{{{{
{{{{{{
{

−div∇u + u = f in Ω,
u = g1 on ΓD,

n ⋅ ∇u = g2 on ΓN,
n ⋅ ∇u + γu = g3 on ΓR

hold. Hence, on ΓD, ΓN and ΓR we impose Dirichlet, Neumann and Robin type boundary conditions, respec-
tively. In the Robin boundary condition, we assume that the coefficient γ ≥ γ0 > 0 belongs to L∞. The dual
variable for this problem is the flux p := ∇u ∈ D. Furthermore, as long as ΓR ̸= 0 and to avoid tricky discus-
sions about traces and the corresponding H−1/2-spaces of Γ, ΓD, ΓN, and ΓR, which can be quite complicated,
we assume for simplicity that u ∈ H2. Then, p ∈ H1 and all gi belong to L2 even to H1/2 of Γ. For the norms we
simply have

‖(u, p)‖2 = |u|2H1 + |p|2D.
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Theorem A.1. For any approximation pair (ũ, p̃) ∈ H2 × H1 with u − ũ ∈ H1ΓD
and p − p̃ ∈ DΓN

as well as
n ⋅ (p − p̃) + γ(u − ũ) = 0 on ΓR it holds

‖(u, p) − (ũ, p̃)‖2 + 2|u − ũ|2L2(ΓR),γ = M(ũ, p̃)

withM(ũ, p̃) := |f − ũ + div p̃|2L2 + |p̃ − ∇ũ|2L2 . Moreover, |u − ũ|L2(ΓR),γ = |n ⋅ (p − p̃)|L2(ΓR),γ−1 .

Proof. Following the proof of Theorem 2.5, we have

M(ũ, p̃) = |u − ũ|2H1 + |p − p̃|2D⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=‖(u,p)−(ũ,p̃)‖2

+ 2ℜ⟨u − ũ, div(p̃ − p)⟩L2 + 2ℜ⟨∇(u − ũ), p̃ − p⟩L2 .

Moreover, since n ⋅ (p̃ − p) and u − ũ belong to L2(Γ), we have

⟨∇(u − ũ), p̃ − p⟩L2 + ⟨u − ũ, div(p̃ − p)⟩L2 = ⟨n ⋅ (p̃ − p), u − ũ⟩L2(Γ)
= ⟨n ⋅ (p̃ − p), u − ũ⟩L2(ΓR)

= ⟨γ(u − ũ), u − ũ⟩L2(ΓR).

As ⟨γ(u − ũ), u − ũ⟩L2(ΓR) = ⟨γ−1n ⋅ (p − p̃), n ⋅ (p − p̃)⟩L2(ΓR), we get the assertion.

Remark A.2. If all gi = 0, we can set (ũ, p̃) = (0, 0) and get

‖(u, p)‖2 + 2|u|2L2(ΓR),γ = |f|2L2 ,

which follows also by

|f|2L2 = |div p|2L2 + |u|2L2 − 2ℜ⟨div∇u, u⟩L2

= |div p|2L2 + |u|2L2 + 2|∇u|L2 − 2ℜ⟨n ⋅ ∇u, u⟩L2(Γ)
= |div p|2L2 + |u|2L2 + 2|∇u|L2 − 2ℜ⟨n ⋅ ∇u, u⟩L2(ΓR)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

=−|u|2
L2(ΓR),γ

.

Thus, in this case the assertion of Theorem A.1 has a normalized counterpart as well.

If ΓR = 0, we have a pure mixed Dirichlet and Neumann boundary.

Theorem A.3. Let ΓR = 0. For any approximation (ũ, p̃) ∈ H1 × D with u − ũ ∈ H1ΓD
and p − p̃ ∈ DΓN

we have

‖(u, p) − (ũ, p̃)‖2 = M(ũ, p̃).

Corollary A.4. Let ΓR = 0. Theorem A.3 provides the well-known a posteriori error estimates for the primal and
dual problems.
(i) For any ũ ∈ H1 with u − ũ ∈ H1ΓD

it holds

|u − ũ|2H1 = min
ψ∈D

p−ψ∈DΓN

M(ũ, ψ) = M(ũ, p).

(ii) For any p̃ ∈ D with p − p̃ ∈ DΓN
it holds

|p − p̃|2D = min
φ∈H1

u−φ∈H1
ΓD

M(φ, p̃) = M(u, p̃).
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