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Abstract. We prove polynomial and exponential decay at infinity of eigen-vectors of partial differential operators related to
radiation problems for time-harmonic generalized Maxwell systems in an exterior domain Ω ⊂ R

N , N � 1, with non-smooth
inhomogeneous, anisotropic coefficients converging near infinity with a rate r−τ , τ > 1, towards the identity. As a canonical
application we show that the corresponding eigen-values do not accumulate and that by means of Eidus’ limiting absorption
principle a Fredholm alternative holds true.
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1. Introduction

To establish a solution theory for time-harmonic boundary value problems in exterior domains it is
now well known that Eidus’ limiting absorption principle [3] is a major tool. For this, one crucial step is
to show that there are no point eigen-values, or at least that possible point eigen-values do not accumulate
and that the corresponding eigen-spaces are finite dimensional. The absence of non-vanishing eigen-
vectors can be proved by a general pattern, which was suggested by Vogelsang [20,21] and Eidus [5]
and consists of the following partial results:

Step 1: eigen-solutions decay polynomially,
Step 2: eigen-solutions decay exponentially,
Step 3: eigen-solutions have compact support,
Step 4: eigen-solutions vanish.

These results are well known, for instance, for Helmholtz’ equation including perturbations. See [1,5,
7,8,18,19,21] and the literature cited there. In the case of time-harmonic Maxwell’s equations, Steps 1
and 2 have been shown by Eidus [5] and Step 4, the unique continuation property, is an old result due
to Leis [10–12]. The pattern was just recently completed in a sufficient manner by Bauer [2], who could
prove the last remaining Step 3. All these results are known for C2-coefficients with proper decay at
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infinity except of Step 1, which could have been proved even for L∞-coefficients by Picard, Weck and
Witsch [17].

In the paper at hand we address Steps 1 and 2 for a generalized time-harmonic Maxwell problem
formulated in the language of alternating differential forms. To show Step 1 we follow closely the argu-
ments of Picard, Weck and Witsch [17] and Step 2 will be proved by the methods of Eidus [5]. We note
that Steps 3 and 4 are still open problems in our general case. The only known result for Step 4 is the
case of scalar-valued C2-coefficients.

We consider an exterior domain, i.e., a connected open set with compact complement, Ω ⊂ R
N ,

N � 1, as a N -dimensional Riemannian manifold with compact boundary and the generalized time-
harmonic Maxwell equations with real frequency ω �= 0

δH + iωεE = −iεF , dE + iωμH = −iμG in Ω, (1.1)

ι∗E = 0 in ∂Ω, (1.2)

together with the corresponding radiation condition

(−1)qN ∗ dr ∧ ∗H + E, dr ∧ E + H decay at infinity. (1.3)

Here E, F and H , G are differential forms of rank q (q-forms) and q + 1 ((q + 1)-forms), respectively,
and d resp. δ = (−1)qN ∗ d ∗ is the exterior differential resp. co-differential, the latter acting on (q + 1)-
forms. By ∗ we denote as usual Hodge’s star operator and by ∧ the exterior product. ι : ∂Ω ↪→ Ω is the
natural embedding of the boundary and ι∗ is the pull-back of ι, i.e., the tangential trace operator. We
intend to model non-smooth, inhomogeneous and anisotropic media by linear transformations ε and μ
on q- and (q + 1)-forms, respectively.

For sake of brevity of notation we introduce the ordered pairs of q-forms and (q + 1)-forms

u := (E, H), f := (F , G)

and the formal operator matrices

M :=
[

0 δ

d 0

]
, S :=

[
0 T

R 0

]
, Λ :=

[
ε 0
0 μ

]
, MΛ := iΛ−1M ,

where R := dr∧ and T := (−1)qN ∗ R ∗, and write our problem (1.1)–(1.3) more compactly as

(MΛ − ω)u = f in Ω,

ι∗E = 0 in ∂Ω, (1.4)

(S + 1)u decays at infinity.

For the system (1.4) we will show polynomial and exponential decay of eigen-forms. For the polyno-
mial decay we can admit L∞-coefficients ε, μ, while we need C2-coefficients to prove exponential decay.
In both cases the coefficients must converge at infinity with a rate r−τ , τ > 1, towards homogeneous
and isotropic coefficients.

The main tool to handle irregular coefficients is a decomposition lemma, which allows us to prove
the polynomial decay of eigen-forms by reduction to the similar result known for the scalar Helmholtz
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equation. The keys to this decomposition lemma are weighted Hodge–Helmholtz decompositions, i.e.,
decompositions into irrotational and solenoidal forms, in the whole space case and a well known proce-
dure to decouple the electric and magnetic form by discussing a second order elliptic system. To illustrate
this calculation let us look at (1.4) in the homogeneous case. Applying MId + ω yields

(
M 2 + ω2)u = 0. (1.5)

By (1.4) E is solenoidal, i.e., δE = 0, and G irrotational, i.e., d H = 0, since δδ = 0, d d = 0.
From Δ = d δ + δ d, where the Laplacian acts on each Euclidean component, we get the identity
M 2u = (δ dE, d δH) = Δu and finally (1.5) turns to the component-wise Helmholtz equation

(
Δ + ω2)u = 0. (1.6)

The polynomial decay of eigen-forms together with an a priori estimate for the solutions correspond-
ing to non-real frequencies is sufficient to prove a Fredholm alternative for (1.4) utilizing the limiting
absorption principle introduced by Eidus [3]. Moreover, we get at most finite dimensional eigen-spaces
for possible eigen-values but these cannot accumulate.

2. Definitions and preliminaries

For later purpose let us fix r0 > 0, such that R
N \ Ω ⊂ Br0 , where Bθ denotes the open ball of radius

θ centered at the origin. We also define the exterior of the closed ball B̌θ := R
N \ Bθ and the sphere Sθ,

both of radius θ.
Using the weight function

ρ :=
(
1 + r2)1/2

, r(x) := x,

we introduce for m ∈ N0 and s ∈ R the weighted scalar Sobolev spaces

Hm
s (Ω) :=

{
ψ ∈ L2

loc(Ω): ρs∂αψ ∈ L2(Ω), ∀|α| � m
}
.

In Ω we have a canonical global chart, the identity, and thus, Ω becomes naturally a N -dimensional
smooth Riemannian manifold with Cartesian coordinates {x1, . . . , xN }. For alternating differential
forms of rank q ∈ Z (q-forms) we define component-wise partial derivatives ∂αΦ = (∂αΦI ) dxI , if
Φ = ΦI dxI (sum convention!), where I are ordered multi-indices of length q. Then, for m ∈ N0

and s ∈ R we define weighted Sobolev spaces Hm,q
s (Ω) of q-forms as well. Equipped with their nat-

ural scalar products all these spaces become Hilbert spaces. For m = 0 we also utilize the notation
L2,q

s (Ω) := H0,q
s (Ω) and for pairs of forms we introduce product spaces like

L2,q,q+1
s (Ω) := L2,q

s (Ω) × L2,q+1
s (Ω).

In the special case s = 0 we neglect the index 0 and we have in L2,q(Ω) = H0,q(Ω) = H0,q
0 (Ω) the scalar

product

〈Φ, Ψ 〉L2,q(Ω) =
∫

Ω
Φ ∧ ∗Ψ =

∫
Ω

∗〈Φ, Ψ 〉q =
∫

Ω
〈Φ, Ψ 〉q dλ =

∫
Ω

ΦIΨ I dλ
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for Φ = ΦI dxI , Ψ = ΨI dxI ∈ L2,q(Ω). Here λ denotes Lebesgue’s measure and 〈 ·, · 〉q the point-wise
scalar product on q-forms.

By Stokes’ theorem and the product rule the exterior derivative and co-derivative are formally skew-
adjoint to each other, i.e.,

〈d Φ, Ψ 〉L2,q+1(Ω) = − 〈Φ, δΨ 〉L2,q(Ω) ∀(Φ, Ψ ) ∈
◦
C∞,q,q+1(Ω),

which gives rise to weak definitions of d and δ. Here we denote the vector space of all smooth q-forms
with compact support in Ω by

◦
C∞,q(Ω). We note that still d d = 0, δδ = 0 and d δ + δ d = Δ hold true

in the weak sense. Furthermore, for s ∈ R we introduce some special weighted Sobolev spaces suited
for Maxwell’s equations

Dq
s(Ω) :=

{
Φ ∈ L2,q

s (Ω): d Φ ∈ L2,q+1
s (Ω)

}
,

Δq
s(Ω) :=

{
Φ ∈ L2,q

s (Ω): δΦ ∈ L2,q−1
s (Ω)

}
.

Equipped with their natural graph norms these are Hilbert spaces as well. To generalize the homoge-
neous boundary condition we introduce

◦
Dq

s(Ω) as the closure of
◦
C∞,q(Ω) in the norm of Dq

s(Ω). Utiliz-
ing Stokes’ theorem we see that in fact the homogeneous boundary condition ι∗E = 0 is generalized
in

◦
Dq

s(Ω). The spaces Dq
s(Ω), Δq

s(Ω) and even
◦
Dq

s(Ω) are invariant under multiplication with bounded
smooth functions ϕ. A subscript 0 at the lower left corner indicates vanishing exterior derivative resp.
co-derivative, for instance, 0

◦
Dq

s(Ω) = {Φ ∈
◦
Dq

s(Ω): d Φ = 0}. The indices loc and vox refer as usual to
local integrability and compact supports, respectively. If the whole space Ω = R

N is under considera-
tion, we omit the dependence on the domain and write simply, for example, 0Dq

s := 0Dq
s(RN ). Moreover,

for weighted Sobolev spaces Vt, t ∈ R, we define

V<s :=
⋂
t<s

Vt, V>s :=
⋃
t>s

Vt, s ∈ R.

Now let us introduce the properties of our transformations ε, μ, Λ:

Definition 2.1. Let τ � 0. We call a transformation ε τ -admissible, if:

(i) ε(x) is a linear transformation on q-forms for all x ∈ Ω;
(ii) ε possesses L∞(Ω)-coefficients, i.e., the matrix representation of ε corresponding to the canonical

basis (and then for every chart basis) has L∞(Ω)-entries;
(iii) ε is symmetric, i.e.,

∀Φ, Ψ ∈ L2,q(Ω) 〈εΦ, Ψ 〉L2,q(Ω) = 〈Φ, εΨ 〉L2,q(Ω);

(iv) ε is uniformly positive definite, i.e.,

∃c > 0 ∀Φ ∈ L2,q(Ω) 〈εΦ, Φ〉L2,q(Ω) � c‖Φ‖2
L2,q(Ω);

(v) ε is asymptotically the identity, i.e., ε = ε0 Id +ε̂ with ε0 ∈ R+ and ε̂ = O(r−τ ) as r → ∞.

Moreover, for n ∈ N0 we call ε τ -Cn-admissible, if ε is τ -admissible and
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(vi) ε̂ ∈ Cn(B̌r0 ) with bounded derivatives, which means that the matrix representation of ε̂ cor-
responding to the canonical basis (and then for every chart basis) has Cn(B̌r0)-entries and all
derivatives are bounded.

We call τ the order of decay of the perturbation ε̂.

We remark that by a transformation x̃ := αx, H̃ := βH we may assume without loss of generality
ε0 = μ0 = 1 throughout this paper.

Finally, we note that the multiplication operators R, T and S are related to the differential operators
d, δ, M through the following formulas:

CD,ϕ(r) = ϕ′(r)X , FD = irXF, DF = −iFrX.

Here (D, X) ∈ {(d, R), (δ, T ), (M , S)} and CA,B denotes the commutator of two operators A, B, i.e.,
CD,ϕ(r) = Dϕ(r) − ϕ(r)D, where ϕ is a smooth function on R. Furthermore, F denotes the Fourier
transformation on q-forms in R

N (component-wise in Euclidean coordinates), which is an unitary map-
ping on L2,q.

3. A decomposition lemma

The following decomposition lemma is essential and allows us to transfer results known from
Helmholtz’ equation to Maxwell’s equations without any further regularity assumptions. To use results
from Weck and Witsch [23] we set

I := {n + N/2, 1 − n − N/2: n ∈ N0}.

Throughout this section, let Λ be τ -admissible with order of decay

τ � 0.

Furthermore, let K be a compact subset of C \ {0}, ω ∈ K and t, s ∈ R with

0 � s ∈ R \ I, t � s � t + τ

as well as θ � r0 and ϕ := η(r/θ), where η ∈ C∞(R) is a cut-off function with

supp ϕ ⊂ [1, ∞), ϕ|[2,∞) = 1.

For u ∈ Dq
t (Ω) × Δq+1

t (Ω) we set

f := (MΛ − ω)u, f̂ := (CM ,ϕ − iωϕΛ̂)u − iϕΛf.

By decomposing f̂ according to [23], Theorem 4, we define

f̂ =: fd,δ + fδ,d + fS ∈
(

0Dq
s × 0Δq+1

s

)
+̇

(
0Δq

s × 0Dq+1
s

)
+̇ Sq,q+1

s , f̃ := fδ,d +
i
ω

MfS
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and

ud,δ := − i
ω

(fd,δ + fS), uδ,d := − i
ω

(fδ,d − Mϕu),

uF := F−1((1 + r2)−1
(1 − irS)Ff̃

)
, uΔ := uδ,d − uF

provided that f̂ ∈ L2,q,q+1
s .

Lemma 3.1. Let u ∈ Dq
t (Ω) × Δq+1

t (Ω) with f ∈ L2,q,q+1
s (Ω). Then f̂ ∈ L2,q,q+1

s and f̃ ∈ 0Δq
s × 0Dq+1

s .
Moreover, u is decomposed into

u = (1 − ϕ)u + ϕu, ϕu = ud,δ + uδ,d, uδ,d = uF + uΔ,

i.e.,

u = (1 − ϕ)u + ud,δ + uF + uΔ,

and

(1 − ϕ)u ∈ Dq
vox(Ω) × Δq+1

vox (Ω), uδ,d ∈ H1,q,q+1
t ∩

(
0Δq

t × 0Dq+1
t

)
,

ϕu ∈ Dq
t × Δq+1

t , uF ∈ H1,q,q+1
s ∩

(
0Δq

s × 0Dq+1
s

)
,

ud,δ ∈ Dq
s × Δq+1

s , uΔ ∈ H2,q,q+1
t ∩

(
0Δq

t × 0Dq+1
t

)

hold. These forms solve

(M + iω)ϕu = f̂ , (M + iω)uδ,d = f̃ = (M + 1)uF, (M + iω)uΔ = (1 − iω)uF

and

(
Δ + ω2)uΔ = (1 − iω)f̃ −

(
1 + ω2)uF.

Furthermore, there exists a constant c > 0 independent of u, f or ω, λ ∈ K, such that for all t̃ � t the
estimates

‖f̃ ‖
L2,q,q+1
s

� c‖f̂ ‖
L2,q,q+1
s

,

‖f̂ ‖
L2,q,q+1
s

� c
(

‖f ‖
L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)
,

∥∥(1 − ϕ)u
∥∥

Dq

t̃
(Ω)×Δq+1

t̃
(Ω) � c

(
‖f ‖

L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)
,

‖ud,δ ‖
Dq

s ×Δq+1
s

� c‖f̂ ‖
L2,q,q+1
s

,

‖uF ‖
H1,q,q+1

s
� c‖f̃ ‖

L2,q,q+1
s

,

‖uΔ‖
H2,q,q+1

t̃

� c
(

‖uΔ‖
L2,q,q+1
t̃

+ ‖uF ‖
H1,q,q+1

t̃

)
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and

‖u‖
Dq

t̃
(Ω)×Δq+1

t̃
(Ω) � c

(
‖f ‖

L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω) + ‖uΔ‖

L2,q,q+1
t̃

)
,

∥∥(
Δ + ω2)uΔ

∥∥
L2,q,q+1
s

� c
(

‖f ‖
L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)
,

∥∥(M − iλS)u
∥∥

L2,q,q+1
t̃

(Ω) � c
(

‖f ‖
L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω) +

∥∥(M − iλS)uΔ

∥∥
L2,q,q+1
t̃

)

hold.

Proof. Obviously, (MΛ − ω)u = f ∈ L2,q,q+1
s (Ω) is equivalent to

(M + iωΛ)u = −iΛf ∈ L2,q,q+1
s (Ω).

Since ϕu ∈ Dq
t × Δq+1

t we have

Mϕu = ϕMu + CM ,ϕu = −iωϕΛu − iϕΛf + CM ,ϕu

and thus

(M + iω)ϕu = f̂ ∈ L2,q,q+1
s , (3.1)

since CM ,ϕ = η′(r/θ)θ−1S is compactly supported and t + τ � s. We rewrite (3.1) in the form

iωϕu = −Mϕu + fδ,d + fd,δ + fS

and note

uδ,d = − i
ω

(fδ,d − Mϕu) ∈
(
Dq

t ∩ 0Δq
t

)
×

(
Δq+1

t ∩ 0Dq+1
t

)
⊂ H1,q,q+1

t ,

ud,δ = − i
ω

(fd,δ + fS) ∈ Dq
s × Δq+1

s

with ϕu = uδ,d + ud,δ and by regularity, e.g., [9], Lemma 4.2(i). (For s < N/2 we even have fS = 0.)
Moreover, uδ,d solves

Muδ,d = Mϕu − Mud,δ = −iωuδ,d + fδ,d +
i
ω

MfS,

i.e., (M + iω)uδ,d = f̃ ∈ 0Δq
s × 0Dq+1

s . Now, to define (M + 1)−1f̃ by the Fourier transformation we put

uF = F−1((1 + r2)−1
(1 − irS)Ff̃

)
.

Then, uF ∈ L2,q,q+1 as well as FuF ∈ L2,q,q+1
1 are implied by Ff̃ ∈ L2,q,q+1. Hence,

uF ∈ H1,q,q+1.



140 D. Pauly / Polynomial and exponential decay of eigen-solutions

From f̃ ∈ L2,q,q+1
s we get by definition Ff̃ ∈ Hs,q,q+1. The components of FuF arise from those of Ff̃

by multiplication with bounded C∞-functions. Thus, also

FuF ∈ Hs,q,q+1

follows; see, e.g., Wloka [25], p. 71, Lemma 3.2. Again, by definition, uF ∈ L2,q,q+1
s and we obtain the

estimate

‖uF ‖
L2,q,q+1
s

� c‖f̃ ‖
L2,q,q+1
s

.

Since MF−1 = iF−1rS we compute

(
1 + r2)F(M + 1)uF = (1 + irS)(1 − irS)Ff̃ =

(
1 + r2S2)Ff̃.

δF̃ = 0 and d G̃ = 0 imply TFF̃ = 0 and RFG̃ = 0, respectively, and therefore, using RT + TR = 1

S2Ff̃ =
[
TR 0
0 RT

]
Ff̃ = Ff̃

holds. Hence,

F(M + 1)uF = Ff̃ , i.e. (M + 1)uF = f̃.

Besides, we have uF ∈ (Dq
s ∩ 0Δq

s) × (Δq+1
s ∩ 0Dq+1

s ) and thus,

uF ∈ H1,q,q+1
s ∩

(
0Δq

s × 0Dq+1
s

)
again by regularity. Considering

uΔ = uδ,d − uF ∈ H1,q,q+1
t ∩

(
0Δq

t × 0Dq+1
t

)
we calculate

(M + iω)uΔ = (1 − iω)uF.

Once more by regularity we even obtain uΔ ∈ H2,q,q+1
t ∩ (0Δq

t × 0Dq+1
t ) and we compute

(
Δ + ω2)uΔ = (M − iω)(M + iω)uΔ = (1 − iω)(M − iω)uF

= −
(
1 + ω2)uF + (1 − iω)f̃.

Finally, we achieve the asserted estimates from the regularity result and the continuity of the projections
in L2,q

s onto 0Dq
s, 0Δq

s resp. Sq
s mentioning that

‖MfS‖ � c‖fS‖

holds in any norm since Sq,q+1
s is finite dimensional and M linear. �
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4. Polynomial decay

First, we need a trivial but useful technical lemma.

Lemma 4.1. For all t, t̃ ∈ R with t̃ < t and all ϑ > 0 there exist constants c, θ > 0, such that

‖ψ‖L2
t̃
(Ω) � c‖ψ‖L2(Ω∩Bθ) + ϑ‖ψ‖L2

t(Ω)

holds for all ψ ∈ L2
t (Ω).

Proof. For sufficient large θ > 0 we get from t̃ − t < 0

‖ψ‖2
L2
t̃
(Ω) =

∥∥ρt̃ψ
∥∥2

L2(Ω∩Bθ) +
∥∥ρt̃−tψ

∥∥2
L2
t(B̌θ) � cΩ,t̃,θ ‖ψ‖2

L2(Ω∩Bθ) +
(
1 + θ2)t̃−t‖ψ‖2

L2
t(B̌θ).

Thus, limθ→∞(1 + θ2)t̃−t = 0 completes the proof. �

Our decomposition lemma implies the following theorem.

Theorem 4.2. Let Λ be τ -admissible with τ > 1. Moreover, let I ⊂ R± be a closed interval and ω ∈ I
as well as 1/2 < s ∈ R \ I. If

u ∈ Dq
>−1/2(Ω) × Δq+1

>−1/2(Ω)

is a solution of Maxwell’s equation

(MΛ − ω)u =: f ∈ L2,q,q+1
s (Ω),

then u ∈ Dq
s−1(Ω) × Δq+1

s−1(Ω) and there exist constants c, θ > 0 independent of u, f or ω, such that

‖u‖
Dq

s−1(Ω)×Δq+1
s−1(Ω) � c

(
‖f ‖

L2,q,q+1
s (Ω) + ‖u‖L2,q,q+1(Ω∩Bθ)

)
.

Proof. Let t > −1/2 and u ∈ Dq
t (Ω) × Δq+1

t (Ω) with t < s − 1. Without loss of generality we may
assume t+1 < s < t+τ . Otherwise, we replace t and s by tk := t+kα and sk := t+1+ (k+1)α � s,
k = 0, . . . , with α := (τ − 1)/2 > 0 and obtain the assertions after finitely many α-steps.

Decomposing u by Lemma 3.1 we get solutions uΔ ∈ H2,q,q+1
t of Helmholtz’ equation in R

N

(
Δ + ω2)uΔ =: fΔ ∈ 0Δq

s × 0Dq+1
s .

A component-wise application of [24], Lemma 5, yields uΔ ∈ H2,q,q+1
s−1 and with a constant c > 0

independent of uΔ, fΔ or ω we have

‖uΔ‖
H2,q,q+1

s−1
� c

(
‖fΔ‖

L2,q,q+1
s

+ ‖uΔ‖
L2,q,q+1
s−2

)
.
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Furthermore, from Lemma 3.1 we have u ∈ Δq
s−1(Ω) × Δq+1

s−1(Ω) and the estimate

‖u‖
Dq

s−1(Ω)×Δq+1
s−1(Ω) � c

(
‖uΔ‖

L2,q,q+1
s−1

+ ‖f ‖
L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)
� c

(
‖fΔ‖

L2,q,q+1
s

+ ‖f ‖
L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)
� c

(
‖f ‖

L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)
,

where we assumed without loss of generality τ < 2. Since s − τ < s − 1 the assertion follows now by
Lemma 4.1. �

Remark 4.3. Let the assumptions of Theorem 4.2 be satisfied. If f ∈ L2,q,q+1
s (Ω) for all s ∈ R, we get

u ∈ Dq
s(Ω) × Δq+1

s (Ω)

for all s ∈ R. This holds, for instance, if f is exponentially decaying or even compactly supported.

5. Exponential decay

Using the ‘partial integration’ technique introduced by Eidus [5] for the classical Maxwell equations
we will prove the following theorem.

Theorem 5.1. Let ω ∈ R \ {0} and Λ be τ -C2-admissible with τ > 1. If

u ∈ Dq
>−1/2(Ω) × Δq+1

>−1/2(Ω)

is a solution of Maxwell’s equation

(MΛ − ω)u =: f ∈ etrH2,q,q+1(B̌r0)

for all t ∈ R, then

etru ∈
(
Dq(Ω) × Δq+1(Ω)

)
∩ H2,q,q+1(B̌r0+1)

holds for all t ∈ R. The assertion holds in particular if f is compactly supported.

Proof. The idea of the proof is to estimate the exponential series. For this, we need some technical
preliminaries. For all s ∈ R we have

(M + iωΛ)u = −iΛf ∈ L2,q,q+1
s (Ω) ∩ H2,q,q+1

s (B̌r0).

Hence, by Theorem 4.2 and Remark 4.3 u belongs to Dq
s(Ω) × Δq+1

s (Ω) for all s ∈ R. Therefore, inner
regularity, e.g., a combination of a standard cut-off technique together with [9], Lemma 4.2(i), yields
u ∈ H2,q,q+1

s (B̌r0+θ) for all s ∈ R and all positive θ. Thus,

(M + iω)u = −iΛf − iωΛ̂u =: f̃ ∈ L2,q,q+1
s (Ω) ∩ H2,q,q+1

s (B̌r0+θ)
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for all θ > 0 and all s ∈ R. Consequently, applying δ, d and (M − iω) to the latter equation we can
compute in B̌r0

iωδE = δF̃ , iω dH = dG̃ (5.1)

and

(
M 2 + ω2)u = (M − iω)f̃.

By defining � := Δ − M 2 we note

M 2 =
[
δ d 0
0 d δ

]
, � =

[
d δ 0
0 δ d

]
, M 2 + � = Δ.

Therefore, we achieve

(
Δ + ω2)u =

(
M − iω − i

ω
�

)
f̃ =: f̂ ,

which is the equation we intend to work with. Now, we multiply this equation and all forms by rm with
some m ∈ R and indicate the resulting forms by an index m. We note that all occurring forms are well
defined elements of H2,q,q+1(B̌r0+θ) for all θ > 0 and all m ∈ R. Using Lemma B.1 we obtain in B̌r0

(
Δ + ω2 +

m(m + 2 − N )
r2

)
um − 2

m

r
∂rum

= f̂m =
(

M − iω − i
ω
�

)
f̃m +

(
−CM ,rm +

i
ω

C�,rm

)
f̃

= −i
(

iM + ω +
1
ω
� − 1

ω

m

r

(
iωS + sw MS + sw SM − m + 1

r
sw S2

))
f̃m. (5.2)

With η from Lemma 3.1 we define the cut-off function ϕθ := η(r − θ + 1) for all θ > r0 + 1. Then,

supp ϕθ ⊂ B̌θ, supp ∇ϕθ, supp(1 − ϕθ) ∩ B̌θ ⊂ B̌θ ∩ Bθ+1.

Without loss of generality let any form be real-valued. We multiply (5.2) by ϕθr
pum with p ∈ R resp.

ϕθr∂rum and integrate over R
N . We achieve

〈
f̂m, ϕθr

pum
〉

L2,q,q+1

=
〈(

Δ + ω2 +
m(m + 2 − N )

r2

)
um − 2

m

r
∂rum, ϕθr

pum

〉
L2,q,q+1

=
∫

RN
Δumϕθr

pum + ω2ϕθr
p|um|2

q,q+1

+ m(m + 2 − N )ϕθr
p−2 |um|2

q,q+1 − mϕθr
p−1∂r |um|2

q,q+1 dλ (5.3)
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resp.

〈f̂m, ϕθr∂rum〉L2,q,q+1

=
〈(

Δ + ω2 +
m(m + 2 − N )

r2

)
um − 2

m

r
∂rum, ϕθr∂rum

〉
L2,q,q+1

=
∫

RN
Δumϕθr∂rum +

ω2

2
ϕθr∂r |um|2

q,q+1

+
m

2
m + 2 − N

r
ϕθ∂r |um|2

q,q+1 − 2mϕθ |∂rum|2
q,q+1 dλ. (5.4)

By partial integration we get from (5.3) resp. (5.4)

∣∣∣∣
∫

RN
ϕθr

p
((

ω2 +
γm,p,N

r2

)
|um|2

q,q+1 −
∑

|α|=1

∣∣∂αum

∣∣2
q,q+1

)
dλ

∣∣∣∣
�

∣∣〈f̂m, ϕθr
pum

〉
L2,q,q+1

∣∣ + cm(θ + 1)2m+p (5.5)

resp.

∣∣∣∣
∫

RN
ϕθ

((
Nω2 +

γ̃m,N

r2

)
|um|2

q,q+1 − (N − 2)
∑

|α|=1

∣∣∂αum

∣∣2
q,q+1 + 4m

∣∣∂rum

∣∣2
q,q+1

)
dλ

∣∣∣∣
�

∣∣〈f̂m, ϕθr∂rum〉L2,q,q+1

∣∣ + cm2(θ + 1)2m+1, (5.6)

where

γm,p,N := m(m + p) + p(p + N − 2)/2, γ̃m,N := m(m + 2 − N )(N − 2)

and c is a generic constant independent of m and θ. Now, we multiply (5.5) for p = 0 by N − 2 and add
(5.5) and (5.6) in a suitable way. We obtain

∫
RN

ϕθ

((
2ω2 − m(N − 2)2

r2

)
|um|2

q,q+1 + 4m|∂rum|2
q,q+1

)
dλ

� c
(∣∣〈f̂m, ϕθum〉L2,q,q+1

∣∣ +
∣∣〈f̂m, ϕθr∂rum〉L2,q,q+1

∣∣ + m2(θ + 1)2m+1),

which yields

∫
RN

ϕθ |um|2
q,q+1 dλ � (N − 2)2

∫
RN

ϕθ
1
r

m

r
|um|2

q,q+1 dλ + cm2(θ + 1)2m+1

+ c
(∣∣〈f̂m, ϕθum〉L2,q,q+1

∣∣ +
∣∣〈f̂m, ϕθr∂rum〉L2,q,q+1

∣∣). (5.7)

To take care of the right-hand side we prove two lemmas.
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Lemma 5.2. For all p ∈ R there exists a constant c > 0, such that for all ψ ∈ H2
p/2(B̌r0+1) and all

θ > r0 + 1

∑
|α|=2

∫
RN

ϕθr
p
∣∣∂αψ

∣∣2
q,q+1 dλ � c

∫
B̌(θ)

rp
( ∑

|α|=1

∣∣∂αψ
∣∣2
q,q+1 + |Δψ|2

q,q+1

)
dλ.

Proof. By a cut-off technique we may assume ψ ∈
◦
H2

p/2(B̌r0+1). Hence, it suffices to prove the assertion

only for ψ ∈
◦
C∞,q(B̌r0+1) by continuity. But for those ψ the result is simply shown by several partial

integrations. �

Lemma 5.3. Let p, p̃, p̂ ∈ R with p̃ > p and p̂ > 2. There are a constant c > 0 and a non-negative
function κ tending to zero at infinity, such that for all m ∈ R and σ > 0, θ > r0 + 1 the following
estimates hold:

(i)
∣∣〈f̂m, ϕθr

pum
〉

L2,q,q+1

∣∣ � κ(θ)
(

m(θ + 1)2m+p +
∫

RN
ϕθr

p̃|fm|2
q,q+1 dλ

+
∫

RN
ϕθr

p
(

m4

r4
|um|2

q,q+1 +
∑

|α|�2

∣∣∂αum

∣∣2
q,q+1

)
dλ

)

(ii)
∣∣〈f̂m, ϕθr

pum
〉

L2,q,q+1

∣∣ � κ(θ)
(

m(θ + 1)2m+p +
∑

|α|�1

∫
RN

ϕθr
p̃
∣∣∂αfm

∣∣2
q,q+1 dλ

+
∫

RN
ϕθr

p
(

m4

r4
|um|2

q,q+1 +
∑

|α|�1

∣∣∂αum

∣∣2
q,q+1

)
dλ

)

+ c

∫
RN

ϕθr
p
(

1
σ

|um|2
q,q+1 + σ

∑
|α|=1

∣∣∂αum

∣∣2
q,q+1

)
dλ

(iii)
∣∣〈f̂m, ϕθr∂rum〉L2,q,q+1

∣∣
� κ(θ)

(
m2(θ + 1)2m+1 +

∑
|α|�2

∫
RN

ϕθr
p̂
∣∣∂αfm

∣∣2
q,q+1 dλ

+
∫

RN
ϕθ

( ∑
|α|�1

m4

r4

∣∣∂αum

∣∣2
q,q+1 +

∑
|α|�2

∣∣∂αum

∣∣2
q,q+1

)
dλ

)
.

Proof. By several partial integrations we remove all derivatives from Λ̂um resp. fm and use the decay
of Λ̂ resp. the integrability of fm. This yields (i). In (ii) there are no longer second derivatives allowed
on um. Hence, we have to insert a σ into the estimate since we do not demand any decay properties of
the derivatives of Λ̂. To prove (iii) we have to handle one challenging term, i.e.,

〈�Λ̂um, ϕρr∂rum〉L2,q,q+1 = −
〈
δε̂Em, δ(ϕρr∂rEm)

〉
L2,q−1 −

〈
d μ̂Hm, d(ϕρr∂rHm)

〉
L2,q+2 .
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The part of the first summand causing the biggest difficulties is

〈δε̂Em, ϕρr∂rδEm〉L2,q−1

because we cannot integrate by parts anymore since E is only twice weakly differentiable. But with (5.1)
and Lemma B.1(ii) we can substitute

δEm =
m

r
TEm − 1

ω

(
δ − m

r
T

)
εFm −

(
δ − m

r
T

)
ε̂Em.

Thus, the most challenging term reads now

〈δε̂Em, ϕρr∂rδε̂Em〉L2,q−1 =
1
2

∫
RN

ϕρr∂r |δε̂Em|2
q−1 dλ

and can be handled easily by two partial integrations. �

We proceed with the proof of the theorem by further estimating (5.7) using Lemma 5.3(i) and (iii).

∫
RN

ϕθ |um|2
q,q+1 dλ � κ(θ)

( ∑
|α|�1

∫
RN

ϕθ

(
1 +

m4

r4

)∣∣∂αum

∣∣2
q,q+1 dλ

+
∑

|α|=2

∫
RN

ϕθ

∣∣∂αum

∣∣2
q,q+1 dλ

+
∑

|α|�2

∫
RN

ϕθr
p̂
∣∣∂αfm

∣∣2
q,q+1 dλ

)
+ cm2(θ + 1)2m+1. (5.8)

Utilizing Lemma 5.2 we estimate the second derivatives of um by the first ones and Δum. Then we
substitute Δum with (5.2) and get for sufficient large θ

∑
|α|=2

∫
RN

ϕθ

∣∣∂αum

∣∣2
q,q+1 dλ � c

( ∑
|α|�1

∫
RN

ϕθ

(
1 +

m4

r4

)∣∣∂αum

∣∣2
q,q+1 dλ

+
∑

|α|�2

∫
RN

ϕθ

(
1 +

m4

r4

)∣∣∂αfm

∣∣2
q,q+1 dλ

)
+ cm4(θ + 1)2m.

Now we insert this estimate into (5.8) and obtain

∫
RN

ϕθ |um|2
q,q+1 dλ � κ(θ)

( ∑
|α|�1

∫
RN

ϕθ

(
1 +

m4

r4

)∣∣∂αum

∣∣2
q,q+1 dλ

+
∑

|α|�2

∫
RN

ϕθr
p̂
(

1 +
m4

r4

)∣∣∂αfm

∣∣2
q,q+1 dλ

)
+ cm4(θ + 1)2m+1.

(5.9)
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For all p ∈ R (5.5) yields the estimate

∑
|α|=1

∫
RN

ϕθr
p
∣∣∂αum

∣∣2
q,q+1 dλ � c

∫
RN

ϕθr
p
(

1 +
m2

r2

)
|um|2

q,q+1 dλ +
∣∣〈f̂m, ϕθr

pum

〉
L2,q,q+1

∣∣

+ cm(θ + 1)2m+p,

such that by Lemma 5.3 (ii) for sufficient small σ and large θ

∑
|α|=1

∫
RN

ϕθr
p
∣∣∂αum

∣∣2
q,q+1 dλ � c

∫
RN

ϕθr
p
(

1 +
m4

r4

)
|um|2

q,q+1 dλ

+ c
∑

|α|�1

∫
RN

ϕθr
p̃
∣∣∂αfm

∣∣2
q,q+1 dλ + cm(θ + 1)2m+p

follows. Now, we plug the latter estimate for p = 0 and p = −4 into (5.9) obtaining

∫
RN

ϕθ |um|2
q,q+1 dλ � κ(θ)

(∫
RN

ϕθ

(
1 +

m8

r8

)
|um|2

q,q+1 dλ +
∑

|α|�2

∫
RN

ϕθm
4rp̂

∣∣∂αfm

∣∣2
q,q+1 dλ

)

+ cm5(θ + 1)2m+1,

where we assume without loss of generality p̃ � p̂. Therefore, for sufficient large θ

∫
RN

ϕθ |um|2
q,q+1 dλ � κ(θ)

(∫
RN

ϕθ
m8

r8
|um|2

q,q+1 dλ +
∑

|α|�2

∫
RN

ϕθm
4rp̂

∣∣∂αfm

∣∣2
q,q+1 dλ

)

+ cm5(θ + 1)2m+1,

i.e.

∫
B̌θ

|um|2
q,q+1 dλ

� κ(θ)
(∫

B̌θ

m8

r8
|um|2

q,q+1 dλ +
∑

|α|�2

∫
B̌θ

m4rp̂
∣∣∂αfm

∣∣2
q,q+1 dλ

)
+ cm5(θ + 1)2m+1.

Setting k := 2m we finally get for all k ∈ R and sufficient large θ

∫
B̌θ

rk |u|2
q,q+1 dλ

� κ(θ)k8
(∫

B̌θ

rk−8 |u|2
q,q+1 dλ +

∑
|α|�2

∫
B̌θ

rk+p̂
∣∣∂αf

∣∣2
q,q+1 dλ

)
+ ck5(θ + 1)k+1. (5.10)
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We are ready to prove the exponential decay. Let t ∈ R+ and θ large enough, such that (5.10) is holds.
Then, we have for all natural numbers 8 � K1 � K2

K2∑
k=K1

tk

k!

∫
B̌θ

rk |u|2
q,q+1 dλ

� κ(θ)
K2∑

k=K1

tk

k!
k8

∫
B̌θ

rk−8 |u|2
q,q+1 dλ

+ κ(θ)
K2∑

k=K1

tk

k!

∑
|α|�2

∫
B̌θ

k8rk+p̂︸ ︷︷ ︸
�8krkrp̂

|∂αf |2
q,q+1 dλ + c

K2∑
k=K1

tk

k!
k5(θ + 1)k+1︸ ︷︷ ︸
�(5(θ+1))k(θ+1)

� κ(θ)
K2∑

k=K1

tk

(k − 8)!

∫
B̌θ

rk−8 |u|2
q,q+1 dλ

+ κ(θ)
∑

|α|�2

∫
B̌θ

e8trrp̂|∂αf |2
q,q+1 dλ + ce5t(θ+1)(θ + 1)

� κ(θ)
K2∑

k=K1 −8

tk+8

k!

∫
B̌θ

rk |u|2
q,q+1 dλ + κ(θ) + ce6t(θ+1).

Now, let θ be so large, such that κ(θ)t8 � 1/2. Then,

K2∑
k=K1

tk

k!

∫
B̌θ

rk |u|2
q,q+1 dλ � κ(θ)

K1 −1∑
k=0

tk+8

k!

∫
B̌θ

rk |u|2
q,q+1 dλ + c.

Since the right-hand side is independent of K2 we obtain by the monotone convergence theorem for
K2 → ∞

∫
B̌θ

etr |u|2
q,q+1 dλ < ∞,

i.e., etru ∈ L2,q,q+1(Ω) for all t ∈ R. The differential equation yields

etrMu ∈ L2,q,q+1(Ω), etr(δεE, d μH) ∈ L2,q−1,q+1(B̌r0+θ)

for all t ∈ R and all θ > 0. Consequently, by

Metru = etrMu + tetrSu,

δεetrE = etrδεE + tetrTεE, d μetrH = etrd μH + tetrRμH

and inner regularity (see the beginning of the proof) we achieve etru ∈ H1,q,q+1(B̌r0+θ) for all t ∈ R and
all θ > 0. Repeating this argument yields finally the same assertion for H2. �
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6. Solution theory for time-harmonic Maxwell equations

As a canonical application we intend to present a solution theory for the radiation problem (1.4). We
will follow in close lines the first part of [17]. It can be seen easily that

d :
◦
Dq(Ω) ⊂ L2,q(Ω) → L2,q+1(Ω), δ : Δq+1(Ω) ⊂ L2,q+1(Ω) → L2,q(Ω)

are skew-adjoint to each other. Consequently, for 0-admissible coefficients Λ

M : D(M) :=
◦
Dq(Ω) × Δq+1(Ω) ⊂ ΛL2,q,q+1(Ω) → ΛL2,q,q+1(Ω), Mu := MΛu

is self-adjoint. Here, ΛL2,q,q+1(Ω) := L2,q,q+1(Ω) equipped with the scalar product

(u, v) �→ 〈Λu, v〉L2,q,q+1(Ω).

Furthermore, we will denote the kernel and the image of M by N (M) and I(M), respectively.

Definition 6.1. Let ω ∈ C\R and f ∈ L2,q,q+1
loc (Ω). Then we say that u solves Max(Λ, ω, f ) if u ∈ D(M)

and (MΛ − ω)u = f .

The self-adjointness of M yields the unique solvability of the problem Max(Λ, ω, f ) for non-real fre-
quencies ω ∈ C \ R and right-hand sides f ∈ L2,q,q+1(Ω). We denote the continuous solution operator
by Lω. Since the spectrum of M is contained in the real axis we expect from well known facts about
Helmholtz’ equation that we have to work in weighted L2-spaces and utilize radiating solutions to get a
proper solution theory for real frequencies.

Definition 6.2. Let ω ∈ R \ {0} and f ∈ L2,q,q+1
loc (Ω). Then we say that u solves Max(Λ, ω, f ) if

u ∈
◦
Dq

<−1/2(Ω) × Δq+1
<−1/2(Ω), (S + 1)u ∈ L2,q,q+1

>−1/2 (Ω), (MΛ − ω)u = f.

The second constraint will be called ‘Maxwell incoming radiation condition’ or simply ‘radiation con-
dition’.

We will establish a solution theory using Eidus’ limiting absorption principle. The key tool for the
application of this principle is an a priori estimate, which ensures the uniform continuity of Lω operating
in proper Hilbert spaces even up to the real axis.

6.1. An a priori estimate

Lemma 6.3. Let I ⊂ R\{0} be a compact interval and s, −t > 1/2. Furthermore, let Λ be τ -admissible
with τ > 1. Then, there exist constants c, θ > 0 and a t̂ > −1/2, such that for all ω ∈ C+, which means
that ω has got non-negative imaginary part, with ω2 = λ2 + iσλ, λ ∈ I , σ ∈ (0, 1] and f ∈ L2,q,q+1

s (Ω)
as well as u := Lωf the estimate

‖u‖
Dq

t (Ω)×Δq+1
t (Ω) +

∥∥(S + 1)u
∥∥

L2,q,q+1
t̂

(Ω) � c
(

‖f ‖
L2,q,q+1
s (Ω) + ‖u‖L2,q,q+1(Ω∩Bθ)

)

holds true.
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Proof. Without loss of generality let s ∈ (1/2, 1). We note (1/2, 1) ∩ I = ∅. Decomposing f and u using
Lemma 3.1 with s = s, t = 0 we have fS = 0 since s < N/2 and obtain uΔ ∈ H2,q,q+1 satisfying

(
Δ + ω2)uΔ = −

(
1 + ω2)uF + (1 − iω)f̃ =: fΔ ∈ L2,q,q+1

s .

The self-adjointness of Δ : H2,q,q+1 ⊂ L2,q,q+1 → L2,q,q+1 yields (Δ + ω2)−1fΔ = uΔ. Applying [24],
Lemma 7, which is a well-known a priori estimate for the scalar Helmholtz equation in R

N ; see also
Ikebe and Saito [6] or Vogelsang [20, Section 2], component-wise to uΔ and using Lemma 3.1 with
M (e−iλruΔ) = e−iλr(M − iλS)uΔ we get the estimate

‖uΔ‖
L2,q,q+1
t

+
∥∥(M − iλS)uΔ

∥∥
L2,q,q+1
s−1

� c

(
‖uΔ‖

L2,q,q+1
t

+
∑

|α|=1

∥∥∂α(
e−iλruΔ

)∥∥
L2,q,q+1
s−1

)

� c‖fΔ‖
L2,q,q+1
s

� c
(

‖f ‖
L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)
, (6.1)

which holds uniformly in uΔ, fΔ and λ. But actually we are interested in estimating another term, which
is ‖(M − iωS)uΔ‖

L2,q,q+1
s−1

. This needs an additional argument. The standard resolvent estimate yields

σ|λ| ‖uΔ‖L2,q,q+1 � ‖fΔ‖L2,q,q+1 (6.2)

and we have |ω + λ| � |λ| since | Re ω| � |λ|
√

2/2 and ω ∈ C+. Thus, by (6.2) and

ω − λ =
ω2 − λ2

ω + λ
=

iσλ

ω + λ

we achieve uniformly in ω

∥∥(M − iωS)uΔ

∥∥
L2,q,q+1
s−1

�
∥∥(M − iλS)uΔ

∥∥
L2,q,q+1
s−1

+ c|ω − λ| ‖uΔ‖
L2,q,q+1
s−1

�
∥∥(M − iλS)uΔ

∥∥
L2,q,q+1
s−1

+
c

|λ| ‖fΔ‖L2,q,q+1 .

A combination of the latter estimate with (6.1) and Lemma 3.1 yield

‖u‖
Dq

t (Ω)×Δq+1
t (Ω) +

∥∥(M − iωS)u
∥∥

L2,q,q+1
s−1 (Ω)

� c
(

‖uΔ‖
L2,q,q+1
t

+
∥∥(M − iωS)uΔ

∥∥
L2,q,q+1
s−1

+ ‖f ‖
L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)
� c

(
‖f ‖

L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)

uniformly in u, f and ω. Using (M − iωS)u = −iω(S + 1 + Λ̂)u + f we finally arrive at

‖u‖
Dq

t (Ω)×Δq+1
t (Ω) +

∥∥(S + 1)u
∥∥

L2,q,q+1
s−1 (Ω) � c

(
‖f ‖

L2,q,q+1
s (Ω) + ‖u‖

L2,q,q+1
s−τ (Ω)

)
.
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Because of the monotone dependence of the weighted L2-norms on the weights we may assume t near
to −1/2 and s near to 1/2, such that 1 < s − t < τ holds. Then Lemma 4.1 completes the proof. �

6.2. Fredholm theory using the limiting absorption principle

We prove three more technical lemmas.

Lemma 6.4. Let α, β ∈ R with 0 � α < β and R
N \Ω ⊂ Bα. Moreover, for some t ∈ R let E ∈

◦
Dq

t (Ω),
H ∈ Δq+1

t (Ω) and ϕ ∈ C0([α, β], C). Then with

ψ : [0, β] → C,

σ �→
∫ β

max{α,σ}
ϕ(s) ds

and Φ := ϕ ◦ r, Ψ := ψ ◦ r

〈ΦRE, H〉L2,q+1(B̌α ∩Bβ ) = 〈ΨdE, H〉L2,q+1(Ω∩Bβ ) + 〈ΨE, δH〉L2,q(Ω∩Bβ ).

Proof. Assume E ∈
◦
C∞,q(Ω), H ∈ C∞,q+1(Ω). With γ :=

∫ β
α ϕ(s) ds we have ψ|[0,α] = γ, ψ(β) = 0

and ψ ∈ C1((α, β), C) with ψ′ = −ϕ. By Stokes’ theorem we compute

〈ΨdE, H〉L2,q+1(Ω∩Bβ ) + 〈ΨE, δH〉L2,q(Ω∩Bβ )

= γ〈dE, H〉L2,q+1(Ω∩Bα) + γ〈E, δH〉L2,q(Ω∩Bα)

+ 〈ΨdE, H〉L2,q+1(B̌α ∩Bβ ) + 〈ΨE, δH〉L2,q(B̌α ∩Bβ )

= γ

∫
Sα

ι∗
α(E ∧ ∗H̄) + 〈ΦRE, H〉L2,q+1(B̌α ∩Bβ )

− γ

∫
Sα

ι∗
α(E ∧ ∗H̄) + ψ(β)

∫
Sβ

ι∗
β(E ∧ ∗H),

where ιθ : Sθ → R
N denotes the natural embedding. With the help of mollifiers we get the desired

formula for all H ∈ Δq+1
t (Ω). Since

◦
C∞,q(Ω) is dense in

◦
Dq

t (Ω) the assertion holds as stated. �

By the same approximation technique we obtain the rule of partial integration for weighted forms.

Lemma 6.5. Let t, s ∈ R and E ∈
◦
Dq

t (Ω), H ∈ Δq+1
s (Ω) as well as ϕθ := 1 − η(·/θ), Φθ := ϕθ ◦ r

with some θ > r0. Then

〈Φθ dE, H〉L2,q+1(Ω) + 〈ΦθE, δH〉L2,q(Ω) = −
〈
ϕ′

θ(r)RE, H
〉

L2,q+1(Ω)

holds. Additionally, if t + s � 0 then

〈dE, H〉L2,q+1(Ω) + 〈E, δH〉L2,q(Ω) = 0.
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Remark 6.6. If u ∈
◦
Dq

t (Ω) × Δq+1
t (Ω) and v ∈

◦
Dq

s(Ω) × Δq+1
s (Ω) with t + s � 0 then

〈Mu, v〉L2,q,q+1(Ω) + 〈u, Mv〉L2,q,q+1(Ω) = 0.

Since M is self-adjoint we have the well-known Hodge–Helmholtz decomposition.

Lemma 6.7.

L2,q,q+1(Ω) = ΛL2,q,q+1(Ω) = N (M)
⊕

ΛI(M)

=
(

0
◦
Dq(Ω) × 0Δq+1(Ω)

)⊕
ΛΛ−1(δΔq+1(Ω) × d

◦
Dq(Ω)

)
.

Here
⊕

Λ denotes the orthogonal sum in ΛL2,q,q+1(Ω) and the closures are taken in the respective L2-
spaces.

Another essential ingredient of the solution theory generating convergence in the limiting absorption
argument is the so-called Maxwell local compactness property MLCP, i.e., the embeddings

◦
Dq

s(Ω) ∩ Δq
s(Ω) ↪→ L2,q

t (Ω)

have to be compact for all t < s and all q. For a detailed analysis of this property of ∂Ω we refer to [17,
22] and [13–16] as well as the papers cited there.

Definition 6.8. For ω ∈ C \ {0} we define

P :=
{
ω ∈ C \ {0}: Max(Λ, ω, 0) has a nontrivial solution

}
,

Nω :=
{
u: u is a solution of Max(Λ, ω, 0)

}
.

We remark P ⊂ R \ {0} or Nω = N (M − ω) = {0} if ω ∈ C \ R. We are ready to prove the main
result of this section.

Theorem 6.9. Let ω ∈ R \ {0} and Λ be τ -admissible with τ > 1.

(i) Eigen-solutions decay polynomially, i.e., for all t ∈ R

Nω = N (M − ω) ⊂
( ◦
Dq

t (Ω) ∩ ε−1
0Δq

t (Ω)
)

×
(
Δq+1

t (Ω) ∩ μ−1
0

◦
Dq+1

t (Ω)
)
.

Additionally, let Ω possess the MLCP. Then

(ii) Nω is finite dimensional;
(iii) P has no accumulation point in R \ {0};
(iv) for every f ∈ L2,q,q+1

>1/2 (Ω) there exists a solution u of the problem Max(Λ, ω, f ), if and only if
f ⊥ΛNω, i.e.,

∀v ∈ Nω 〈Λf , v〉L2,q,q+1(Ω) = 0. (6.3)
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The solution can be chosen, such that u⊥ΛNω, i.e.,

∀v ∈ Nω 〈Λu, v〉L2,q,q+1(Ω) = 0. (6.4)

By this condition u is uniquely determined and the solution operator Lωf := u is continuous.
More precisely, Lω maps L2,q,q+1

s (Ω) ∩ N ⊥Λ
ω to (

◦
Dq

t (Ω) × Δq+1
t (Ω)) ∩ N ⊥Λ

ω continuously for all
s, −t > 1/2. Here we denote the orthogonality corresponding to the ΛL2,q,q+1(Ω)-scalar product
by ⊥Λ.

Proof. We follow the proof of [17], Theorem 2.10. To show (i), i.e., the polynomial decay of any eigen-
solution u, we only have to prove

u ∈ L2,q,q+1
>−1/2 (Ω)

because of Theorem 4.2, Remark 4.3, the equation Mu = −iωΛu and the inclusions

d
◦
Dq(Ω) ⊂ 0

◦
Dq+1(Ω), δΔq+1(Ω) ⊂ 0Δq(Ω). (6.5)

Using the second part of the radiation condition we obtain some t > −1/2, such that

lim
β→∞

‖RE + H‖
L2,q+1
t (B̌r0 ∩Bβ ) < ∞

holds true. We calculate

‖RE + H‖2
L2,q+1
t (B̌r0 ∩Bβ )

= ‖RE‖2
L2,q+1
t (B̌r0 ∩Bβ )

+ ‖H‖2
L2,q+1
t (B̌r0 ∩Bβ )

+ 2 Re〈ΦRE, H〉L2,q+1(B̌r0 ∩Bβ )

with Φ := ρ2t. Lemma 6.4, the differential equation and the symmetry of ε, μ yield

〈ΦRE, H〉L2,q+1(B̌r0 ∩Bβ ) = 〈ΨdE, H〉L2,q+1(Ω∩Bβ ) + 〈ΨE, δH〉L2,q(Ω∩Bβ )

= −iω 〈ΨμH , H〉L2,q+1(Ω∩Bβ )︸ ︷︷ ︸
∈R

+ iω 〈ΨE, εE〉L2,q(Ω∩Bβ )︸ ︷︷ ︸
∈R

.

Thus, Re〈ΦRE, H〉L2,q+1(B̌r0 ∩Bβ ) = 0 and hence, by means of the monotone convergence theorem we

have H ∈ L2,q+1
t (Ω) for β → ∞. Finally we get E ∈ L2,q

>−1/2(Ω) using the first part of the radiation
condition.

If the assertions (ii) or (iii) would be wrong then there would exist a sequence of eigen-values
(ω�)�∈N ⊂ R \ {0} tending to ω and a sequence of eigen-forms (u�)�∈N ⊂ Nω�

, such that (u�)�∈N is an
ortho-normal system with respect to the ΛL2,q,q+1(Ω)-scalar product. As an ortho-normal system (u�)�∈N

converges in L2,q,q+1(Ω) weakly to zero. Moreover, by the differential equation (u�)�∈N is bounded in

( ◦
Dq(Ω) ∩ ε−1

0Δq(Ω)
)

×
(
Δq+1(Ω) ∩ μ−1

0
◦
Dq+1(Ω)

)
.
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Hence, from the MLCP we can extract a subsequence (uπ�)�∈N, where π : N → N is strictly monotone,
converging for all t < 0 in L2,q,q+1

t (Ω) to 0. The latter is due to the weak convergence. For 1 � s ∈ R \ I

Theorem 4.2 yields uniformly in (uπ�)�∈N and (ωπ�)�∈N the estimate

1 = 〈Λuπ�, uπ�〉L2,q,q+1(Ω) � c‖uπ�‖2
L2,q,q+1(Ω) � c‖uπ�‖2

L2,q,q+1
s−1 (Ω)

� c‖uπ�‖2
L2,q,q+1(Ω∩Bθ)

�→∞−−−→ 0,

which is a contradiction.
We prove (iv): first of all (6.3) is necessary since we get for all eigen-forms v ∈ Nω by their polynomial

decay and Remark 6.6

〈Λf , v〉L2,q,q+1(Ω) = i
〈
(M + iωΛ)u, v

〉
L2,q,q+1(Ω) = −i

〈
u, (M + iωΛ)v︸ ︷︷ ︸

=0

〉
L2,q,q+1(Ω) = 0.

To show existence we now use Eidus’ famous principle of limiting absorption. For that purpose
let f ∈ L2,q,q+1

>1/2 (Ω) with (6.3). Moreover, let (σ�)�∈N be a positive sequence tending to zero and

(f�)�∈N ⊂ L2,q,q+1
s (Ω) with some s > 1/2 be a sequence satisfying f�⊥ΛNω, such that (f�)�∈N con-

verges to f in L2,q,q+1
s (Ω) as � tends to infinity. Defining non-real frequencies in the upper half plane

ω� ∈ C+ \ R with ω2
� = ω2 + iσ�ω and ω� → ω we obtain L2-solutions

u� := Lω�
f� ∈ D(M) =

◦
Dq(Ω) × Δq+1(Ω)

solving the Maxwell problem Max(Λ, ω�, f�), i.e.,

(MΛ − ω�)u� = f�. (6.6)

Applying the orthogonal Hodge–Helmholtz decomposition we decompose u� and f� according to
Lemma 6.7

u� = uN
� + uI

� , f� = fN
� + f I

� ∈ N (M)
⊕

ΛI(M).

Therefore,

(MΛ − ω�)u
I
� − f I

� = ω�u
N
� + fN

� ∈ N (M) ∩ I(M) = {0}.

As orthogonal projections the sequences of forms (fN
� )�∈N, (f I

� )�∈N converge in L2,q,q+1(Ω). Hence, so
does (uN

� )�∈N. Let us assume the boundedness of (uI
� )�∈N or

∀t < −1/2 ∃c > 0 ∀� ∈ N ‖u�‖
L2,q,q+1
t (Ω) � c (6.7)

for a moment. At the end of the proof we will show by contradiction that in fact (6.7) holds. Let t′ be
such a t with (6.7). Then, (uI

� )�∈N is bounded in L2,q,q+1
t′ (Ω) and by the differential equation, i.e.,

(MΛ − ω�)u
I
� = f I

� ,
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and by (6.5) even in (
◦
Dq

t′ (Ω) ∩ ε−1
0Δq

t′ (Ω)) × (Δq+1
t′ (Ω) ∩ μ−1

0
◦
Dq+1

t′ (Ω)). Hence, the MLCP yields for

an arbitrary t̃ < t′ a subsequence (uI
π�)�∈N converging in L2,q,q+1

t̃
(Ω) and even in

◦
Dq

t̃
(Ω) × Δq+1

t̃
(Ω) by

the differential equation. Therefore, the entire sequence (uπ�)�∈N converges in
◦
Dq

t̃
(Ω) × Δq+1

t̃
(Ω) to, let

us say,

u ∈
◦
Dq

t̃
(Ω) × Δq+1

t̃
(Ω),

which solves

(MΛ − ω)u = f.

With the polynomial decay of eigen-solutions and Remark 6.6 we compute for all eigen-forms v ∈ Nω

and all � ∈ N

0 = 〈Λfπ�, v〉L2,q,q+1(Ω) = −i
〈
uπ�, (M + iωπ�Λ)v

〉
L2,q,q+1(Ω) = (ωπ� − ω)︸ ︷︷ ︸

	=0

〈Λuπ�, v〉L2,q,q+1(Ω).

Consequently, 〈Λuπ�, v〉L2,q,q+1(Ω) = 0. Since 〈 ·, Λv〉L2,q,q+1(Ω) is a continuous linear functional on

L2,q,q+1
t̃

(Ω) for all v ∈ Nω we obtain

∀v ∈ Nω 〈Λu, v〉L2,q,q+1(Ω) = 0. (6.8)

Now, we pick some t < −1/2. Then, we get by Lemma 6.3 constants t̂ > −1/2 and c, θ > 0, such that
by the monotone convergence theorem

‖u‖
Dq

t (Ω)×Δq+1
t (Ω) + ‖(S + 1)u‖

L2,q,q+1
t̂

(Ω) � c
(

‖f ‖
L2,q,q+1
s (Ω) + ‖u‖L2,q,q+1(Ω∩Bθ)

)

holds. Therefore, u is an element of
◦
Dq

<−1/2(Ω) × Δq+1
<−1/2(Ω) and satisfies the radiation condition, i.e.,

(S + 1)u ∈ L2,q,q+1
>−1/2 (Ω). In other words, u solves Max(Λ, ω, f ).

We note that this proves the principle of limiting absorption to hold. The choice f� := f for all � ∈ N

yields the existence of a solution of Max(Λ, ω, f ) and this one is unique because of (6.8).
Moreover, for −t, s > 1/2 the solution operator Lω maps Ds(Lω) to It(Lω), where

Ds(Lω) := L2,q,q+1
s (Ω) ∩ N ⊥Λ

ω , It(Lω) :=
( ◦
Dq

t (Ω) × Δq+1
t (Ω)

)
∩ N ⊥Λ

ω ,

continuously. This follows by the closed graph theorem because Ds(Lω) and It(Lω) are Hilbert spaces
by the polynomial decay of eigen-solutions and Lω is closed. The latter assertion is a consequence of
Lemma 6.3 and the monotone convergence theorem.

Finally, it remains to contradict the contrary assumption to (6.7). To this end, let t < −1/2 and
(u�)�∈N ⊂

◦
Dq

t (Ω) × Δq+1
t (Ω) be a sequence with ‖u�‖

L2,q,q+1
t (Ω) → ∞. Defining the normalized forms

ũ� := ‖u�‖−1
L2,q,q+1
t (Ω)

u�, f̃� := ‖u�‖−1
L2,q,q+1
t (Ω)

f�
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we have ‖ũ�‖
L2,q,q+1
t (Ω) = 1 for all � ∈ N and ‖f̃�‖

L2,q,q+1
s (Ω) → 0. Moreover, the equation

(MΛ − ω�)ũ� = f̃�

holds. Following the arguments above we obtain a subsequence (ũπ�)�∈N converging in L2,q,q+1
t̃

(Ω) with
t̃ < t towards ũ ∈ N ⊥Λ

ω , which solves Max(Λ, ω, 0). Hence, ũ = 0 and Lemma 6.3 yields constants
c, θ > 0 independent of σπ�, f̃π� or ũπ�, such that

1 = ‖ũπ�‖
L2,q,q+1
t (Ω) � c

(
‖f̃π�‖

L2,q,q+1
s (Ω)︸ ︷︷ ︸

→0

+ ‖ũπ�‖L2,q,q+1(Ω∩Bθ)︸ ︷︷ ︸
→0

)

holds true; a contradiction. �

The polynomial decay of eigen-solutions proved above and Theorem 5.1 yield the following corollary.

Corollary 6.10. Let ω ∈ R \ {0} and Λ be τ -C2-admissible with τ > 1. Then, any eigen-solution
u ∈ Nω decays exponentially, i.e.,

etru ∈
( ◦
Dq(Ω) ∩ ε−1Δq(Ω)

)
×

(
Δq+1(Ω) ∩ μ−1 ◦

Dq+1(Ω)
)

∩ H2,q,q+1(B̌r0+1)

holds for all t ∈ R.

Remark 6.11. The polynomial resp. exponential decay of eigen-solutions holds for arbitrary exterior
domains Ω, i.e., Ω does not need to have the MLCP.

Remark 6.12. If the medium is homogeneous and isotropic in the exterior of some ball in R
N , this is,

supp Λ̂ ∪ (RN \ Ω) ⊂ Bθ for some θ > 0, then

u = 0 in B̌θ

for all ω ∈ R \ {0} and u ∈ Nω. Because in this case u solves component-wise Helmholtz’ equation
(Δ + ω2)u = 0 in B̌θ and therefore, by Rellich’s estimate [18] or [12], p. 59, must vanish in B̌θ. If the
principle of unique continuation holds for our Maxwell system under consideration then even

Nω = {0}.

Remark 6.13. We note that P even has no accumulation point in R, i.e., P does not accumulate in 0 as
well, provided that Λ is τ -C1-admissible with τ > (N + 1)/2 (and decaying derivatives as well). This
has already been proved in [13], Lemma 5.2(i).

Using the a priori estimate of the limiting absorption principle and some indirect arguments followed
by the ‘trivial’ decomposition of L2,q

s (Ω) from [15], Lemma 4.1, we are able to prove stronger estimates
for the solution operator Lω as the ones given in Theorem 6.9 (iv). We only note the results here. For this,
let Ω possess the MLCP and let s, −t > 1/2 as well as K be a compact subset of C+ \ {0}. Furthermore,
let Λ be τ -admissible with some τ > 1.
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Lemma 6.14. There exist constants c, θ > 0 and some t̂ > −1/2, such that

‖Lωf ‖
Dq

t (Ω)×Δq+1
t (Ω) +

∥∥(S + 1)Lωf
∥∥

L2,q,q+1
t̂

(Ω) � c
(

‖f ‖
L2,q,q+1
s (Ω) + ‖Lωf ‖L2,q,q+1(Ω∩Bθ)

)

holds for all ω ∈ K and f ∈ L2,q,q+1
s (Ω) ∩ N ⊥Λ

ω .

Corollary 6.15. Let K ∩ P = ∅. Then there exist constants c > 0 and t̂ > −1/2, such that the estimate

‖Lωf ‖
Dq

t (Ω)×Δq+1
t (Ω) +

∥∥(S + 1)Lωf
∥∥

L2,q,q+1
t̂

(Ω) � c‖f ‖
L2,q,q+1
s (Ω)

holds true for all ω ∈ K and f ∈ L2,q,q+1
s (Ω). In particular, the solution operator Lω mapping

L2,q,q+1
s (Ω) to

◦
Dq

t (Ω) × Δq+1
t (Ω) is equi-continuous with respect to ω ∈ K.

Theorem 6.16. Let K ∩ P = ∅. Then, the mapping

L : K → B
(
L2,q,q+1

s (Ω),
◦
Dq

t (Ω) × Δq+1
t (Ω)

)
,

ω �→ Lω

is uniformly continuous. Here we denote the set of bounded linear operators from some normed space
X to some normed space Y by B(X , Y ).
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Appendix A: Classical equations

We want to point out briefly, which classical equations are covered by our generalized approach. Since
the relation between the differential form calculus and the classical vector calculus is very well known
we directly translate our equations (1.4), i.e., in the longer version (1.1)–(1.3), into terms of vector
analysis.

q = 0: E, F are scalar functions and H , G are vector fields. We have the equations of linear acoustics
with Dirichlet boundary condition in first order form

div H + iωεE = −iεF , grad E + iωμH = −iμG in Ω,

E = 0 on ∂Ω

and ξ · H + E, Eξ + H decay at infinity, where ξ(x) := x/r(x). Using the differential equation
for H , i.e.,

−iω(ξ · H + E) = ξ · grad E︸ ︷︷ ︸
=∂rE

− iωE + · · · ,
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we see that we get Sommerfeld’s classical radiation condition, i.e., (∂r − iω)E decays at infinity.
q = N − 1: E, F are vector fields and H , G are scalar functions. We have the equations of linear

acoustics with Neumann boundary condition in first order form

grad H + iωεE = −iεF , div E + iωμH = −iμG in Ω,

ν · E = 0 on ∂Ω

and Hξ +E, ξ · E +H decay at infinity. Here ν is the unit normal vector pointing outwards. Now,
using the differential equation for E we get again Sommerfeld’s radiation condition. Note that by
the differential equation the homogeneous boundary condition is equivalent to the inhomogeneous
Neumann boundary condition

∂νH = −iων · ε̂(E − f ) − iν · F on ∂Ω.

q = N : E, F are scalar functions and H , G vanish. We have trivial equations

ωE = −F in Ω, E decays at infinity.

q = 1, N = 3: E, F , H , G are all vector fields. We have the classical Maxwell equations with
homogeneous electric boundary condition, i.e., ∂Ω is a perfect conductor,

− curl H + iωεE = −iεF , curl E + iωμH = −iμG in Ω,

ν × E = 0 on ∂Ω

and −ξ × H + E, ξ × E + H decay at infinity. The latter are the classical Silver–Müller radiation
conditions for Maxwell’s equations.

Appendix B: Some calculations

Let tr and sw denote the formal trace and the formal swapping operator, respectively, i.e.,

tr
[
A a

b B

]
= A + B, sw

[
A a

b B

]
=

[
B a

b A

]
.

We note

S2 =
[
TR 0
0 RT

]
, 1 − S2 =

[
RT 0
0 TR

]

and formally 1 − S2 = sw S2 and tr S2 = tr sw S2 = RT + TR = 1. Moreover,

SM =
[
Td 0
0 Rδ

]
, MS =

[
δR 0
0 dT

]

and formally tr SM = Td + Rδ, tr MS = d T + δR. By a straight forward computation we obtain the
following lemma.
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Lemma B.1. Let m ∈ R.

(i) C∂n,rm =
m

r
r−1 Idn rm, CΔ,rm =

m

r

(
2∂r − m + 2 − N

r

)
rm,

(ii) Cd,rm =
m

r
Rrm, Cδ,rm =

m

r
Trm, CM ,rm =

m

r
Srm,

(iii) Cδ d,rm =
m

r

(
δR + Td − m + 1

r
TR

)
rm, Cd δ,rm =

m

r

(
d T + Rδ − m + 1

r
RT

)
rm,

(iv) CM2,rm =
m

r

(
MS + SM − m + 1

r
S2

)
rm,

(v) C�,rm =
m

r

(
sw MS + sw SM − m + 1

r
sw S2

)
rm,

(vi) CΔ,rm =
m

r

(
tr MS + tr SM − m + 1

r

)
rm.

Looking at the two formulas for CΔ,rm we get the relation

d T + δR + Td + Rδ = tr(SM + MS) =
(N − 1)

r
+ 2∂r.

Here ∂r denotes component-wise radial differentiation with respect to Cartesian coordinates.
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