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Regularity results for
generalized electro-magnetic problems
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Summary: We prove regularity results up to the boundary for time independent generalized
Maxwell equations on Riemannian manifolds with boundary using the calculus of alternating
differential forms. We discuss homogeneous and inhomogeneous boundary data and show ‘poly-
nomially weighted’ regularity in exterior domains as well.

1 Introduction

Regularity theorems are important tools in almost all fields of partial differential equations.
In our efforts to completely determine the low frequency behavior of the time-harmonic
solutions of the generalized Maxwell’s equations in exterior domains of RN [4, 5, 6,
7, 8] as well as to prove compactness results and trace theorems for Sobolev spaces
of differential forms on N-dimensional Riemannian manifolds [2] we have been forced
to show regularity results, which meet our needs. Here ‘generalized’ means using the
calculus of alternating differential forms on Riemannian manifolds of arbitrary dimension,
which is a convenient and well-known way to formulate Maxwell’s equations and to
emphasize their independence of the special choice of a coordinate system. Since these
results are of particular interest of their own we will prove in the paper at hand results for
the time independent case like the following:

Let M be an N-dimensional smooth Riemannian manifold and � ⊂ M be some connected
open subset. If the exterior derivative of some differential form E from L2

s (�) and the
co-derivative of εE belong to some suitable weighted Sobolev space Hm

s+1(�) and the

tangential trace ι∗E belongs to the corresponding trace Sobolev space Hm+1/2(∂ �) as
well, then E already belongs to the higher order Sobolev space Hm+1

s (�). (For details
please see Section 3.)

Here ε is a real valued, symmetric, bounded and uniformly positive definite linear transfor-
mation (one may think of a matrix) on differential forms, ι denotes the natural embedding
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of the boundary, i.e. ι : ∂ � ↪→ �, and s ∈ R indicates some polynomially weight. For
manifolds with compact closure, i.e. ‘bounded domains’, the weight s plays no role since
then all results for s are equivalent to the special case s = 0.

Regularity results as well as regularity estimates, which automatically will be shown
within our proofs, presented here are flexibly usable in the context of time independent
generalized Maxwell’s equations. For example, if we consider (linear media and) the
static generalized Maxwell equations

dE = G, δεE = f, ι∗E = λ,

δH = F, dμH = g, ι∗μH = κ

or the time-harmonic generalized Maxwell equations (with frequency ω)

dE + i ωμH = G, ι∗E = λ,

δH + i ωεE = F, ι∗μH = κ,

e.g. arising from the full generalized Maxwell equations by Fourier’s transformation
with respect to time (or a time-harmonic ansatz), we get regularity of the solutions and
corresponding estimates immediately or by induction, respectively.

We should mention that the generalized Maxwell equations also comprise the system of
linear acoustics and the 2-dimensional version of Maxwell’s equations as well as periodic
boundary conditions in a unified approach.

In the special classical case of bounded sub-domains of the Euclidian space R3 and
homogeneous boundary traces such results for Maxwell problems have been proved
earlier by Weber [20].

2 Preliminaries and definitions

Let M be an N-dimensional smooth Riemannian manifold and � ⊂ M denote some

connected open subset with compact closure in M. On
◦
C∞,q(�), the vector space of all

smooth (C∞) differential forms of rank q (shortly q-forms) on � with compact support
in �, we have a scalar product

〈E, H〉L2,q(�) :=
∫

�

E ∧ ∗H̄

and thus we may define L2,q(�), the Hilbert space of all square integrable q-forms, as

the closure of
◦
C∞,q(�) in the corresponding induced norm. Utilizing the weak version

of Stokes’ theorem

〈dE, H〉L2,q+1(�) = −〈E, δH〉L2,q(�) ∀ (E, H) ∈ ◦
C∞,q,q+1(�)
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(with an obvious notation) we can define weak versions of the exterior derivative and
the co-derivative. Hence we can introduce the Hilbert spaces (equipped with their natural
graph norms)

Dq(�) := {
E ∈ L2,q(�) : dE ∈ L2,q+1(�)

}
,

�q+1(�) := {
H ∈ L2,q+1(�) : δH ∈ L2,q(�)

}
and their closed subspaces

0Dq(�) := {
E ∈ L2,q(�) : dE = 0

}
,

0�
q+1(�) := {

H ∈ L2,q+1(�) : δH = 0
}
.

Using charts we may define the usual Sobolev spaces Hm,q(�) of real order m ≥ 0. For
this we need a finite chart family (V�.h�), � = 1, . . . , L, covering the compact set �.
Then we write E ∈ Hm,q(�), if and only if E�

I ∈ Hm
(
h�(V� ∩�)

)
for all I and

‖E‖Hm,q(�)
:=

(
L∑

�=1

∑
I

∥∥∥E�
I

∥∥∥ 2
Hm(h�(V�∩�))

)1/2

<∞,

where E�
I denote the component functions of (h−1

� )∗E = E�
I dx I (sum convention) with

respect to Cartesian coordinates. Here we introduced an obvious (ordered) multi index
notation dx I = dxi1 ∧ · · · ∧ dxiq for I := (i1, . . . , iq) ∈ {1, . . . , N}q . Transformation
theorems and [22, Satz 4.1] for scalar functions show that this definition is independent of
the chosen charts. Another covering yields the same Sobolev space but with an equivalent
norm. Furthermore, for all m ∈ N0 and any Cm+1-diffeomorphism τ : �̃ → � there
exists a constant c > 0, such that

c−1||E||Hm,q(�)
≤ ||τ∗E||Hm,q(�̃)

≤ c||E||Hm,q(�)

holds for all E ∈ Hm,q(�).

Definition 2.1 Let m ∈ N0. We call ∂ � a ‘Cm-boundary’, if ∂� is an (N−1)-dimensional
Cm-submanifold of M, i.e. for each x ∈ ∂ � there exists a Cm-boundary chart (V, h) with
h(x) = 0 and h(V ) = U1, such that

h(∂ � ∩ V ) = U0
1 , h(� ∩ V ) = U−1 , h

(
(M \�) ∩ V

) = U+1

and h ◦ k−1 ∈ Cm
(
k(Ṽ ∩ V ),RN

)
hold for all charts (for �) (Ṽ , k) of x ∈ ∂ �.

Here Ur ⊂ RN denotes the open ball centered at the origin with radius r > 0 and we
define

U±r :=
{

x ∈ Ur : ± xN > 0
}
, U0

r :=
{
x ∈ Ur : xN = 0

}
.
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Using sufficiently smooth restricted boundary charts and following the ideas of the
definition of Hm,q(�) we may also introduce for all m ∈ [0,∞) the Sobolev spaces
Hm,q(∂ �).

We also define H−m,q(∂ �) for m ∈ (0,∞) as the dual space of
◦
Hm,q(∂ �) = Hm,q(∂ �)

and introduce the exterior derivative, co-derivative and star-operator on H−m,q(∂ �) by
weak formulations. Utilizing boundary charts, (2) and the corresponding results for scalar
Sobolev spaces, e.g. [22, Satz 8.7, Satz 8.8], which will be applied componentwise to
q-forms in RN , we obtain the following lemma:

Lemma 2.2 Let m ∈ N and � possess a Cm+1-boundary. Moreover, let ι : ∂ � ↪→ �

denote the natural embedding. Then there exists a linear and continuous tangential trace
operator

γt : Hm,q(�)→ Hm−1/2,q(∂�)

satisfying γt� = ι∗� and d∂ � γt� = γt d� for all � ∈ C∞,q(�), the vector space of all
C∞,q(M)-forms restricted to �. Moreover, γt is surjective, i.e. there exists a linear and
continuous tangential extension operator

γ̌t : Hm−1/2,q(∂�)→ Hm,q(�)

with the property γt γ̌t = id (right inverse).

By the star operator we define linear and continuous normal trace and extension operators
by

γn := (−1)(q−1)N ∗∂ � γt∗ : Hm,q(�) −→ Hm−1/2,q−1(∂�),

γ̌n := (−1)q(N−q) ∗ γ̌t∗∂ � : Hm−1/2,q−1(∂�) −→ Hm,q(�),

which possess the corresponding properties. By Stokes’ theorem we obtain

〈dE, H〉L2,q+1(�) + 〈E, δH〉L2,q(�) = 〈γt E, γn H〉L2,q(∂�) (2.1)

for (E, H) ∈ H1,q,q+1(�), if � has a C2-boundary.

It is well known that this suggests to define the tangential trace

γt E ∈ H−1/2,q(∂�)

of a q-form E ∈ Dq(�) by

γt E(ϕ) = 〈γt E, ϕ〉H−1/2,q(∂�)
:= 〈dE, γ̌nϕ〉L2,q+1(�) + 〈E, δγ̌nϕ〉L2,q(�) (2.2)

for all ϕ ∈ H1/2,q(∂�). Clearly acting on E ∈ H1,q(�) it satisfies

〈γt E, ϕ〉H−1/2,q(∂�)
= 〈γt E, ϕ〉L2,q(∂�) (2.3)
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for all ϕ ∈ H1/2,q(∂�). Hence in this case we have γt E = 〈γt E, · 〉L2,q(∂�) and we identify

the continuous linear functional γt E with the element γt E ∈ H1/2,q(∂�). We note that γt
still commutes with the exterior derivative and that the mapping

γt : Dq(�) −→ Dq(∂�) := {
e ∈ H−1/2,q(∂�) : d∂ � e ∈ H−1/2,q+1(∂�)

}
is continuous. Moreover, we have for all E ∈ Dq(�)

γt E = 0 ⇐⇒ E ∈ ◦
Dq(�), (2.4)

where we set

◦
Dq(�) := ◦

C∞,q(�),

taking the closure in Dq(�). We note

◦
Dq(�) = {

E ∈ Dq(�) : ∀ H ∈ �q+1(�) 〈dE, H〉L2,q+1(�) + 〈E, δH〉L2,q(�) = 0
}

and define 0
◦
Dq(�) := ◦

Dq(�) ∩ 0Dq(�).

Definition 2.3 Let m ∈ N0. We call a transformation ε admissible, if and only if

• ε(x) is a linear mapping on q-forms for all x ∈ �,

• ε possesses real L∞(�)-coefficients, i.e. the matrix representation of ε correspond-
ing to an arbitrary chart basis {dhI } has L∞(�,R)-entries,

• ε is symmetric, i.e. for all E, H ∈ L2,q(�) we have

〈εE, H〉L2,q(�) = 〈E, εH〉L2,q(�),

• ε is uniformly positive definite, i.e.

∃ c > 0 ∀ E ∈ L2,q(�) 〈εE, E〉L2,q(�) ≥ c ‖E‖ 2
L2,q(�)

.

We call ε Cm-admissible, if and only if ε is admissible and has Cm(�)-coefficients,
which are bounded together with all their derivatives up to the boundary. Here we mean
componentwise differentiation and write ∂α ε for |α| ≤ m.

We note that admissible transformations ε generate an equivalent scalar product on
L2,q(�) by

(E, H) �−→ 〈εE, H〉L2,q(�).

Of course most of these concepts extend to manifolds, whose closures are not compact.
Particularly we may consider the special case of M := RN as a smooth Riemannian
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manifold of dimension N ∈ N and an exterior domain � ⊂ RN , i.e. � is connected and
R

N \ � compact. The definitions of spaces carry over to exterior domains as long as the
compactness of � is not necessary.

Using the weight function

ρ := (1+ r2)1/2, r(x) := |x|
we introduce for m ∈ N0 and s ∈ R the scalar weighted Sobolev spaces

Hm
s (�) := {

u ∈ L2
loc(�) : ρs+|α| ∂α u ∈ L2(�) for all |α| ≤ m

}
,

⊂ Hm
s (�) := {

u ∈ L2
loc(�) : ρs ∂α u ∈ L2(�) for all |α| ≤ m

}
utilizing the usual multi index notation for partial derivatives. (To distinguish between
these different polynomially weighted Sobolev spaces of exterior domains we will use
roman and bold roman letters simultaneously.) Equipped with their natural scalar products
these are Hilbert spaces.

Now we have a global chart (�, id) and � becomes naturally an N-dimensional smooth
Riemannian manifold with Cartesian coordinates {x1, . . . , xN }. As before with compo-
nentwise partial derivatives ∂α u = (∂α uI ) dx I , if u = uI dx I , we introduce for m ∈ N0

and s ∈ R componentwise the Sobolev spaces Hm,q
s (�) resp. Hm,q

s (�) of q-forms. In the
special case m = 0 we define

L2,q
s (�) := H0,q

s (�) = H0,q
s (�).

Then for f = fI dx I , g = gI dx I ∈ L2,q
s (�) we have the scalar product

〈 f, g〉
L2,q

s (�)
=

∫
�

ρ2s f ∧ ∗g︸ ︷︷ ︸
=:∗〈 f,g〉q

=
∫

�

ρ2s〈 f, g〉q dλ =
∫

�

ρ2s fI gI dλ,

where λ denotes Lebesgue’s measure in RN .

Furthermore, for s ∈ R we need some special weighted Sobolev spaces suited for the
exterior derivative and co-derivative:

Dq
s (�) := {

E ∈ L2,q
s (�) : dE ∈ L2,q+1

s+1 (�)
}

⊂ Dq
s (�) := {

E ∈ L2,q
s (�) : dE ∈ L2,q+1

s (�)
}
,

�
q
s (�) := {

H ∈ L2,q
s (�) : δH ∈ L2,q−1

s+1 (�)
}

⊂ �
q
s (�) := {

H ∈ L2,q
s (�) : δH ∈ L2,q−1

s (�)
}
.

Equipped with their natural graph norms these are all Hilbert spaces. To generalize the

homogeneous tangential boundary condition we introduce again
◦
Dq

s (�) resp.
◦
Dq

s (�)

as the closure of
◦
C∞,q(�) with respect to the corresponding graph norm ‖ · ‖Dq

s (�)
,

‖ · ‖Dq
s (�)

, respectively. The spaces Dq
s (�), �

q
s (�) and even

◦
Dq

s (�) are invariant under
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multiplication with bounded smooth functions. As in the last section a subscript 0 at the
lower left corner indicates vanishing exterior derivative resp. co-derivative, e.g.

0
◦
Dq

s (�) = {
E ∈ ◦

Dq
s (�) : dE = 0

} = 0
◦
Dq

s (�).

The properties ‘admissible’ and ‘Cm-admissible’ extend analogously to our exterior do-
main case as well. Nevertheless we need some additional decay properties of our trans-
formations.

Definition 2.4 Let m ∈ N0 and τ ≥ 0. We call ε τ-Cm- admissible of first resp. second
kind, if and only if ε = ε0 + ε̂ with some ε0 > 0 is Cm-admissible and the perturbation ε̂

satisfies

∀ |α| ≤ m ∂α ε̂ = O(r−τ ) resp. O(r−(τ+|α|)) as r →∞.

In each case we call τ the order of decay of the perturbation ε̂. Without loss of generality
we may assume ε0 = 1, i.e. ε = id+ ε̂, throughout this paper.

We note that a transformation is 0-Cm-admissible of first kind, if and only if it is Cm-
admissible.

Finally if the exterior domain � has got a C2-boundary there exist adequate trace and ex-
tension operators as well. By obvious restriction, extension by zero and cutting techniques
we obtain linear and continuous tangential trace and extension operators⋃

s∈R
Hm,q

s (�)
γt−→ Hm−1/2,q(∂ �)

γ̌t−→
⋂
s∈R

Hm,q
s (�), γt γ̌t = id,

where γ̌t even maps to compactly supported forms and γt even operates on Hm,q
loc (�).

Here continuity is to be understood in the sense of

Hm,q
s (�)

γt−→ Hm−1/2,q(∂ �)
γ̌t−→ Hm,q

s (�) (2.5)

for all s ∈ R. Again by the star operator we get the corresponding linear and continuous
normal trace and extension operators γn := ± ∗∂ � γt∗, γ̌n := ± ∗ γ̌t∗∂ �. As indicated
above by Stokes’ theorem (2.1) we then get for all s ∈ R a linear and continuous tangential
trace operator γt : Dq

s (�) −→ H−1/2,q(∂�), which is (well) defined by

γt E(ϕ) = 〈γt E, ϕ〉H−1/2,q(∂�)
:= 〈dE, γ̌nϕ〉L2,q+1(�) + 〈E, δγ̌nϕ〉L2,q(�)

for all E ∈ Dq
s (�) and ϕ ∈ H1/2,q(∂�). Once more for E ∈ Hm,q

s (�) we identify the
continuous linear functional γt E with the element γt E ∈ H1/2,q(∂�) and of course the
mapping

γt : Dq
s (�) −→ Dq(∂�)

is continuous as well. We still have for all s ∈ R and all E ∈ Dq
s (�)

γt E = 0 ⇐⇒ E ∈ ◦
Dq

s (�). (2.6)
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3 Regularity theorems

Theorem 3.1 Let m ∈ N0, � be a connected open subset with compact closure and Cm+2-
boundary of some smooth Riemannian manifold M as well as ε be some Cm+1-admissible
transformation. Furthermore, let

E ∈ Dq(�) ∩ ε−1�q(�)

with

dE ∈ Hm,q+1(�), δεE ∈ Hm,q−1(�), γt E ∈ Hm+1/2,q(∂ �).

Then E ∈ Hm+1,q(�) and there exists a positive constant c independent of E, such that

‖E‖Hm+1,q(�)

≤ c
( ‖E‖ L2,q(�) + ‖dE‖Hm,q+1(�)

+ ‖δεE‖Hm,q−1(�)
+ ‖γt E‖Hm+1/2,q(∂ �)

)
.

Theorem 3.2 Let s ∈ R, m ∈ N0, � ⊂ RN be an exterior domain with Cm+2-boundary
and ε be some Cm+1-admissible transformation. Furthermore, let

E ∈ Dq
s (�) ∩ ε−1�

q
s (�) with γt E ∈ Hm+1/2,q(∂ �).

(i) Then dE ∈ Hm,q+1
s (�) and δεE ∈ Hm,q−1

s (�) imply E ∈ Hm+1,q
s (�) and with

some constant c > 0

‖E‖
Hm+1,q

s (�)

≤ c
( ‖E‖

L2,q
s (�)

+ ‖dE‖
Hm,q+1

s (�)
+ ‖δεE‖

Hm,q−1
s (�)

+ ‖γt E‖Hm+1/2,q(∂ �)

)
holds uniformly with respect to E.

(ii) If additionally ε is 0-Cm+1-admissible of second kind and τ-C0-admissible of first
(or second) kind with some τ > 0 then dE ∈ Hm,q+1

s+1 (�) and δεE ∈ Hm,q−1
s+1 (�)

imply E ∈ Hm+1,q
s (�) and there exists some positive constant c, such that the

estimate

‖E‖
Hm+1,q

s (�)

≤ c
( ‖E‖

L2,q
s (�)

+ ‖dE‖
Hm,q+1

s+1 (�)
+ ‖δεE‖

Hm,q−1
s+1 (�)

+ ‖γt E‖Hm+1/2,q(∂ �)

)
holds uniformly with respect to E.

Remark 3.3 Utilizing the transformation E � εE and/or the Hodge star-operator we
obtain similar results for spaces like ε−1Dq(�) ∩ �q(�) and/or with prescribed normal
traces γn .
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4 Proofs

4.1 Riemannian manifolds with compact closure

Proof of Theorem 3.1: Extending the boundary form γt E to � by Lemma 2.2 via

Ě := γ̌tγt E ∈ Hm+1,q(�)

yields that Ẽ := E − Ě is an element of
◦
Dq(�) ∩ ε−1�q(�) and still satisfies

dẼ ∈ Hm,q+1(�), δεẼ ∈ Hm,q−1(�).

Hence our problem is reduced to the discussion of forms with homogeneous tangential
trace.

The classical case N = 3, q = 1 and � is some bounded domain in R3 has been proved
by Weber in [20] using the natural regularity of (q − 1 = 0)- resp. (q + 2 = 3)-forms,
i.e. scalar functions. Here in the generalized case we have to deal with some additional
difficulties.

Using a partition of unity we localize our problem and only consider the more difficult
case of boundary charts. (A very simple proof of inner regularity utilizing Fourier’s
transformation is presented in Section 4.2.) By (2) and Lemma A.8 we transform our
problem to the special domain U−1 ⊂ U1 ⊂ RN using a Cm+2-boundary chart. Hence we
have to show the following assertion for the model problem:

Lemma 4.1 Let ε be Cm+1-admissible (in U−1 ) and E ∈ ◦
Dq(U−1 ) ∩ ε−1�q(U−1 ) with

supp E ⊂ U−� for some � ∈ (0, 1) as well as

dE ∈ Hm,q+1(U−1 ), δεE ∈ Hm,q−1(U−1 ).

Then E ∈ Hm+1,q(U−1 ) and there exists a positive constant c, such that

||E||Hm+1,q(U−1 )
≤ c

(||E||L2,q(U−1 ) + || dE||Hm,q+1(U−1 )
+ ||δεE||Hm,q−1(U−1 )

)
holds uniformly with respect to E.

Proof: First let us discuss the case N ≥ 3 by induction over q and m. Since we have
◦
D0(U−1 ) = ◦

H1(U−1 ) (d acts as ∇ !) the case q = 0 is trivial. Moreover, because of

�N (U−1 ) = H1(U−1 ) (δ acts as ∇ !) the case q = N is trivial as well. Thus we may
assume 1 ≤ q ≤ N − 1 and that the assertion is valid for q− 1. Let m = 0. First we take
care about the tangential derivatives and show

∂i E ∈ L2,q(U−1 ),

‖∂i E‖ L2,q(U−1 ) ≤ c||E||Dq(U−1 )∩ε−1�q(U−1 )

(4.1)
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for i = 1, . . . , N − 1. By symmetry it is sufficient to consider i = 1. We choose some
θ ∈ (0, 1) satisfying �+ 4θ < 1 and put � j := �+ jθ , j = 1, . . . , 4. For 0 < |h| < θ we
introduce the mappings

τh : RN− −→ R
N−

x �−→ (x1 + h, x2, · · · , xN )
, δh := 1

h
(τh − id),

where RN− := {x ∈ RN : xN < 0}. The pullback δ∗h of the latter operator acts componen-
twise as the differential quotient and commutates with d, ∗ and thus also with δ. For all

F, G ∈ L2,q(U−1 ) with support in U−�3 we have with some constant c > 0 independent of
h or F

〈δ∗h F, G〉L2,q (U−1 ) = −〈F, δ∗−h G〉L2,q(U−1 ),

δ∗hεF = εδ∗h F + (δhε)τ∗h F,∥∥τ∗h F
∥∥

L2,q(U−1 ) ≤ c ‖F‖ L2,q(U−1 ),∣∣∣∣(δhε)F
∣∣∣∣

L2,q(U−1 )
≤ c ‖F‖ L2,q(U−1 ),

(4.2)

where (δhε)�(x) := (
δhεJ,I(x)

)
�I (x)dx J with �(x) = �I (x)dxI and the matrix entries

εI,J of ε. Following in straight lines [1, Theorem 3.13] we obtain for m ∈ N and all

F ∈ Hm,q(U−1 ) supported in U−�3

||δ∗h F||Hm−1,q(U−1 )
≤ ||F||Hm,q(U−1 )

.

To show (4.1) by [1, Theorem 3.15] it suffices to prove∥∥δ∗h E
∥∥

L2,q(U−�1 ) ≤ c||E||Dq(U−1 )∩ε−1�q(U−1 )
,

where c > 0 is independent of h, � or E. In turn this estimate follows by the even stronger
estimate ∣∣〈εδ∗h E,�〉L2,q(U−�1)

∣∣ ≤ c||E||Dq(U−1 )∩ε−1�q(U−1 )
||�||L2,q(U−�1 ) (4.3)

for all � ∈ L2,q(U−�1
), where c > 0 is independent of h, �, E or �. Therefore, let

� ∈ L2,q(U−�1
). According to Lemma A.1 we decompose � (actually the extension by

zero to U−1 of �) orthogonally in L2,q(U−1 )

� = �1 + ε−1�2,

where �1 ∈ d
◦
Dq−1(U−1 ) and �2 ∈ δ�q+1(U−1 )

(
closures in L2,q(U−1 )

)
, since Hq(U−1 )

vanishes by [9, Satz 1, Satz 2] and thus εH
q(U−1 ) = {0} as well. Moreover, by (A.4),

(A.5) we may assume �1 = d�1 and �2 = δ�2 with �1 ∈
◦
Dq−1(U−1 )∩0�

q−1(U−1 ) and

�2 ∈ �q+1(U−1 )∩ 0
◦
Dq+1(U−1 ). Furthermore, (A.3) yields a constant c > 0 independent

of �, ��, ��, such that

||�1||Dq−1(U−1 )
+ ||�2||�q+1(U−1 )

≤ c||�||L2,q(U−�1 )
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holds. Let χ ∈ ◦
C∞(U�2) with χ|U−�1

= 1. Then the assumption of the induction for ε = id

yields �1, χ�1 ∈ H1,q−1(U−1 ) and

||χ�1||H1,q−1(U−1 )
≤ c||�1||H1,q−1(U−1 )

≤ c||�1||Dq−1(U−1 )
≤ c||�||L2,q(U−�1 ).

Clearly the form χ�2 possesses compact support in U−�2
∪ U0

�2
and by Lemma A.9 and

(A.18) the extension by zero of Sδχ�2 to RN is an element of �q+1(RN ). Hence we
have �̃2 := δSδχ�2 ∈ 0�

q(RN ) with supp �̃2 ⊂ U�2 and �̃2
∣∣
U−�1

= �2. Lemma

A.10 yields some H ∈ H1,q+1(RN ) satisfying δH = �̃2 and furthermore the estimate
||H ||H1,q+1(RN )

≤ c||�||L2,q(U−�1 ). Using � = dχ�1 + ε−1δχH in U−�1
and (4.2) as well as

δ∗−h(χ�1) ∈
◦
Dq−1(U−1 ), E ∈ ◦

Dq(U−1 ) we get

〈εδ∗h E,�〉L2,q(U−�1)

= 〈
δ∗h(εE),�

〉
L2,q(U−�1)

− 〈
(δhε)τ∗h E,�

〉
L2,q(U−�1 )

= −〈
εE, dδ∗−h(χ�1)

〉
L2,q(U−1 )

− 〈
E, δδ∗−h(χH )

〉
L2,q(U−1 )

− 〈
εE, (δ−hε−1)τ∗−hδχH

〉
L2,q(U−1 )

− 〈
(δhε)τ∗h E,�

〉
L2,q(U−�1 )

= 〈
δεE, δ∗−h(χ�1)

〉
L2,q(U−1 )

+ 〈
dE, δ∗−h(χH )

〉
L2,q(U−1 )

− 〈
εE, (δ−hε−1)τ∗−hδχH

〉
L2,q(U−1 )

− 〈
(δhε)τ∗h E,�

〉
L2,q(U−�1 )

,

which immediately implies (4.3). Hence (4.1) is proved.

The normal partial derivative ∂N E may be discussed as follows. By the usual formula

dE = d(EI dx I ) = ∂ j EI dx j ∧ dx I = (± ∂ j EI ) dx I+ j

we get

± ∂N EI = (dE)I+N −
N−1∑

I� j=1

± ∂ j EI+N− j ∈ L2(U−1 ) (4.4)

for all I �� N and thus Eτ ∈ H1,q(U−1 ) with the decomposition from (A.19). The usual
formula for the co-derivative reads

δH = δ(HI dx I ) = (± ∂ j HI ) ∗ (dx j ∧ ∗dx I ) = (± ∂ j HI ) dx I− j .

By ∂i(εE) = (∂i ε)E + ε ∂i E we obtain ∂i(εE) ∈ L2,q(U−1 ) for i = 1, . . . , N − 1 and
hence

± ∂N (εE)I = (δεE)I−N −
N−1∑

I �� j=1

± ∂ j(εE)I−N+ j ∈ L2(U−1 ) (4.5)

for all I � N. Therefore, (εE)ρ ∈ H1,q(U−1 ).
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Now Lemma A.11 yields E ∈ H1,q(U−1 ) and the case m = 0 is proved.

Let m ≥ 1 and our assertions be valid for m − 1 as well as the assumptions be given

for m. We consider E, εE ∈ Hm,q(U−1 ) with E ∈ ◦
Dq(U−1 )∩ ε−1�q(U−1 ), supp E ⊂ U−�

and

dE ∈ Hm,q+1(U−1 ), δεE ∈ Hm,q−1(U−1 ).

Moreover, we have the estimate

||E||Hm,q(U−1 )
≤ c

(||E||L2,q(U−1 ) + || dE||Hm−1,q+1(U−1 )
+ ||δεE||Hm−1,q−1(U−1 )

)
.

For sufficiently small h we have δ∗h E ∈ ◦
Dq(U−1 ) and δ∗h E resp. δ∗h dE converges weakly

to ∂1 E resp. ∂1 dE in L2,q(U−1 ) resp. L2,q+1(U−1 ) as h → 0. Thus ∂1 E ∈ ◦
Dq(U−1 )

and d∂1 E = ∂1 dE. Analogously we get ∂i E ∈ ◦
Dq(U−1 ) and d∂i E = ∂i dE for i =

2, . . . , N − 1. Hence all tangential derivatives ∂i E ∈ ◦
Dq(U−1 ) ∩ ε−1�q(U−1 ), i =

1, . . . , N − 1, satisfy

d∂i E = ∂i dE ∈ Hm−1,q+1(U−1 ),

δε ∂i E = ∂i δεE − δ(∂i ε)E ∈ Hm−1,q−1(U−1 ),

which implies ∂i E ∈ Hm,q(U−1 ) and also ∂i(εE) ∈ Hm,q(U−1 ) by assumption. By (4.4)
and (4.5) we obtain ∂N Eτ , ∂N (εE)ρ ∈ Hm,q(U−1 ) and thus Eτ , (εE)ρ ∈ Hm+1,q(U−1 )

as well. Finally we achieve by Lemma A.11 E ∈ Hm+1,q(U−1 ), which completes the
induction and hence the proof for N ≥ 3.

The only non trivial remaining case is N = 2, q = 1. But this case can be proved
similarly to the case N ≥ 3 without using Lemma A.10, since then �2 is even an element
of �2(U−1 ) = H1,2(U−1 ). �

The proof of Theorem 3.1 is finished. �

4.2 Exterior domains

Proof of Theorem 3.2: Extending the boundary form γt E to � by (2.5) via

Ě := γ̌tγt E ∈ Hm+1,q
s (�), supp Ě compact

yields that Ẽ := E − Ě satisfies the assumptions of Theorem 3.2 with homogeneous

tangential trace. Hence we may assume γt E = 0, i.e. E ∈ ◦
Dq

s (�) ∩ ε−1�
q
s (�), since γ̌t

is continuous.

Let us assume for a moment that Theorem 3.2 holds in the special case � = RN .
Moreover, let η denote a smooth cut-off function, which vanishes near ∂ � and equals 1
near infinity. Then by Theorem 3.2 in the whole space case ηE ∈ Hm+1,q

s (RN ) resp.
ηE ∈ Hm+1,q

s (RN ). Furthermore, Theorem 3.1 may be applied to the truncated form
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(1 − η)E ∈ ◦
Dq(�b) ∩ ε−1�q(�b) with some adequate bounded subdomain �b ⊂ �

yielding (1 − η)E ∈ Hm+1,q(�b). Then extending (1 − η)E by zero into � leads to

(1− η)E ∈ Hm+1,q
s (�). The estimates follow by induction. Hence our proof is reduced

to the following assertion for the special model case � = RN :

Lemma 4.2 Let s ∈ R, m ∈ N0 and ε be some Cm+1-admissible transformation as well
as E ∈ Dq

s (R
N ) ∩ ε−1�

q
s (R

N ).

(i) Then dE ∈ Hm,q+1
s (RN ) and δεE ∈ Hm,q−1

s (RN ) imply E ∈ Hm+1,q
s (RN ) and with

some constant c > 0

‖E‖Hm+1,q
s (RN )

≤ c
( ‖E‖

L2,q
s (RN )

+ ‖dE‖Hm,q+1
s (RN )

+ ‖δεE‖Hm,q−1
s (RN )

)
holds uniformly with respect to E.

(ii) If additionally ε is a 0-Cm+1-admissible transformation of second kind and τ-C0-
admissible of first (or second) kind with some τ > 0 then dE ∈ Hm,q+1

s+1 (RN ) and

δεE ∈ Hm,q−1
s+1 (RN ) imply E ∈ Hm+1,q

s (RN ) and there exists some positive constant
c, such that the estimate

‖E‖
Hm+1,q

s (RN )
≤ c

( ‖E‖
L2,q

s (RN )
+ ‖dE‖

Hm,q+1
s+1 (RN )

+ ‖δεE‖
Hm,q−1

s+1 (RN )

)
holds uniformly with respect to E.

Proof: Our induction over m starts with m = 0.

Lemma 4.3 Let ε be C1-admissible. Then Dq(RN ) ∩ ε−1�q(RN ) = H1,q(RN ) holds
with equivalent norms depending on ε.

Proof: Partial integration, i.e. Stokes’ theorem, and the well known formula dδ+ δ d= �

(Here the Laplacian � acts componentwise with respect to Euclidian coordinates.) yield

∀ � ∈ ◦
C∞,q(RN )

N∑
n=1

‖∂n �‖ 2
L2,q(RN )

= ‖d�‖ 2
L2,q+1(RN )

+ ‖δ�‖ 2
L2,q−1(RN )

. (4.6)

A combination of this identity and Fourier’s transformation, i.e. (A.15)–(A.17) and (A.7),
implies

Dq(RN ) ∩ �q(RN ) = H1,q(RN ) (4.7)

with equal norms, since
◦
C∞,q(RN ) is dense in H1,q(RN ).

Now let E ∈ Dq(RN )∩ ε−1�q(RN ). By [10, Lemma 1, Lemma 7] (See also [14] as well
as Appendix A.2 and A.3.) we decompose E = d�+� according to

L2,q(RN ) = dDq−1(RN )⊕ 0�
q(RN ) = d

(
Dq−1
−1 (RN ) ∩ 0�

q−1
−1 (RN )

)⊕ 0�
q(RN )
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observing d� = dE and δ� = 0. By (4.7) we obtain � ∈ H1,q(RN ) and the estimate
‖�‖H1,q(RN )

≤ c‖E‖Dq(RN )
with some constant c > 0. Hence ε� ∈ H1,q(RN ) and �

solves the elliptic system

δε d� = δεE − δε� =: F ∈ L2,q−1(RN ), δ� = 0,

where ‖F‖L2,q(RN ) ≤ c‖E‖
Dq(RN )∩ε−1�q(RN )

. Using the operators

τh,i : RN −→ R
N

x �−→ (x1, · · · , xi−1, xi + h, xi+1, · · · , xN )
,

δh,i := 1

h
(τh,i − id)

for i = 1, . . . , N and h > 0 defined on RN corresponding to τh = τh,1 and δh = δh,1
defined on RN− from the proof of Theorem 3.1 as well as ‖τ∗h,iφ‖L2,q(RN ) = ‖φ‖L2,q(RN )

and the estimates

∥∥δ∗h,iφ
∥∥

L2,q(RN ) ≤ ‖∂i φ‖ L2,q(RN ), ‖dφ‖ L2,q+1(RN ) ≤
N∑

n=1

‖∂n φ‖ L2,q(RN )

we get

〈εδ∗h,i d�, dφ〉L2,q(RN ) = 〈δε d�, δ∗−h,iφ〉L2,q−1(RN ) −
〈
d�, (δ−h,iε)τ

∗−h,i dφ
〉
L2,q(RN )

and thus by (4.6) uniformly with respect to φ and h

∣∣〈εδ∗h,i d�, dφ〉L2,q(RN )

∣∣ ≤ c ‖E‖
Dq(RN )∩ε−1�q(RN )

N∑
n=1

‖∂n φ‖ L2,q−1(RN )

≤ c ‖E‖
Dq(RN )∩ε−1�q(RN )

( ‖dφ‖ L2,q(RN ) + ‖δφ‖ L2,q−2(RN )

)
for all φ ∈ ◦

C∞,q−1(RN ). By this estimate and since
◦
C∞,q−1(RN ) is a dense subset of

Dq−1
−1 (RN ) ∩ �

q−1
−1 (RN ) we obtain∥∥δ∗h,i d�

∥∥
L2,q(RN ) ≤ c ‖E‖

Dq(RN )∩ε−1�q(RN )
,

where the constant c > 0 is independent of h. Therefore, d� ∈ H1,q(RN ) and the esti-
mates ‖ ∂i d�‖L2,q(RN ) ≤ c‖E‖

Dq(RN )∩ε−1�q(RN )
, i = 1, . . . , N, hold, which completes

the proof. �

Now we may proceed with the induction start. Let E ∈ Dq
s (R

N )∩ ε−1�
q
s (R

N ). We have
ρs E ∈ L2,q(RN ) and by (A.9)

d(ρs E) = ρs dE + sρs−2 RE ∈ L2,q+1(RN ),

δ(ρsεE) = ρsδεE + sρs−2TεE ∈ L2,q−1(RN ).
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Thus, using Lemma 4.3 ρs E ∈ Dq(RN ) ∩ ε−1�q(RN ) = H1,q(RN ) follows and

∂n(ρs E) = ρs ∂n E + sρs−2Xn E ∈ L2,q(RN )

yields (i) with the desired estimates. Looking at

E ∈ Dq
s (R

N ) ∩ ε−1�
q
s (R

N ) ⊂ Dq
s (RN ) ∩ ε−1�

q
s (R

N )

we obtain E ∈ H1,q
s (RN ) by (i). Therefore, it only remains to show ∂n E ∈ L2,q

s+1(R
N ) for

n = 1, . . . , N. We choose a real smooth cut-off function ϕ with ϕ = 1 on (−∞, 1] and
ϕ = 0 on [2,∞) and set ηt := ϕ(r/t). Then we calculate with (4.6) or (4.7) uniformly
with respect to t ∈ R+∣∣∣∣ ∂n(ηt E)

∣∣∣∣
L2,q

s+1(RN )

≤ c
(∣∣∣∣ ∂n(ρs+1ηt E︸ ︷︷ ︸

∈H1,q(RN )

)
∣∣∣∣

L2,q(RN )
+ ∣∣∣∣(s + 1)ρs−1Xnηt E

∣∣∣∣
L2,q(RN )

)

≤ c
(∣∣∣∣ d(ρs+1ηt E)

∣∣∣∣
L2,q+1(RN )

+ ∣∣∣∣δ(ρs+1ηt E)
∣∣∣∣

L2,q−1(RN )
+ ∣∣∣∣ηt E

∣∣∣∣
L2,q

s (RN )

)
≤ c

(∣∣∣∣ηt E
∣∣∣∣

Dq
s (RN )∩ε−1�

q
s (RN )

+ ∣∣∣∣δ(ηt ε̂E)
∣∣∣∣

L2,q−1
s+1 (RN )

)

≤ c
(∣∣∣∣ηt E

∣∣∣∣
Dq

s (RN )∩ε−1�
q
s (RN )

+
N∑

m=1

∣∣∣∣ ∂m(ηt E)
∣∣∣∣

L2,q
s+1−τ (RN )

)
.

Since τ > 0 and decomposing RN = Uϑ ∪ Aϑ we get for all ϑ ∈ R+∣∣∣∣ ∂m(ηt E)
∣∣∣∣2

L2,q
s+1−τ (R

N )

≤ cϑ

∣∣∣∣ ∂m(ηt E)
∣∣∣∣2

L2,q
s (RN )

+ (1+ ϑ2)−τ
∣∣∣∣ ∂m(ηt E)

∣∣∣∣2
L2,q

s+1(RN )

with some constant cϑ > 0 depending only on ϑ and τ . Here we have

Aϑ := RN \Uϑ =
{
x ∈ RN : |x| > ϑ

}
.

A combination of the latter two estimates yields for some sufficient large ϑ and with (i)

N∑
n=1

∣∣∣∣ ∂n(ηt E)
∣∣∣∣

L2,q
s+1(RN )

≤ c
(
‖ηt E‖H1,q

s (RN )
+ ∣∣∣∣ d(ηt E)

∣∣∣∣
L2,q+1

s+1 (RN )
+ ∣∣∣∣δ(ηtεE)

∣∣∣∣
L2,q−1

s+1 (RN )

)
≤ c

(
‖E‖ Dq

s (RN )∩ε−1�
q
s (RN )

+
∥∥∥t−1r−1 RE

∥∥∥ L2,q+1
s+1 (Zt,2t )

+
∥∥∥t−1r−1TεE

∥∥∥ L2,q−1
s+1 (Zt,2t )

)
,

where Zt,T := At ∩UT =
{
x ∈ RN : t < |x| < T

}
. Using t−1 ≤ 2r−1 in Zt,2t we finally

obtain the estimate

N∑
n=1

‖∂n E‖
L2,q

s+1(Ut )
≤

N∑
n=1

∣∣∣∣ ∂n(ηt E)
∣∣∣∣

L2,q
s+1(RN )

≤ c ‖E‖ Dq
s (RN )∩ε−1�

q
s (RN )

,
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which holds uniformly with respect to t. Thus letting t →∞ the monotone convergence
theorem implies E ∈ H1,q

s (RN ) and the desired estimate. Hence (ii) is proved and thus
the case m = 0 is completed.

For the induction step we assume ε to be Cm+1-admissible and

dE ∈ Hm,q+1
s (RN ), δεE ∈ Hm,q−1

s (RN ).

The assertion for m − 1 yields E ∈ Hm,q
s (RN ) and the corresponding estimate. Then for

n = 1, . . . , N we get ∂n E ∈ L2,q
s (RN ), d ∂n E ∈ Hm−1,q+1

s (RN ) and

δ(ε ∂n E) = ∂n δεE − δ
(
(∂n ε)E

) ∈ Hm−1,q−1
s (RN ).

Using once again the assumption for m − 1 we obtain ∂n E ∈ Hm,q
s (RN ) and

‖∂n E‖Hm,q
s (RN )

≤ c
(
‖ ∂n E‖

L2,q
s (RN )

+ ‖ d ∂n E‖
Hm−1,q+1

s (RN )
+ ∣∣∣∣δ(ε ∂n E)

∣∣∣∣
Hm−1,q−1

s (RN )

)

for n = 1, . . . , N. Hence E ∈ Hm+1,q
s (RN ) and

‖E‖Hm+1,q
s (RN )

≤ c
(
‖E‖Hm,q

s (RN )
+

N∑
n=1

‖∂n E‖Hm,q
s (RN )

)
≤ c

( ‖E‖Hm,q
s (RN )

+ ‖dE‖Hm,q+1
s (RN )

+ ‖δεE‖Hm,q−1
s (RN )

)
.

This shows (i). Similarly we prove (ii) paying attention to the fact that the weights
in the ‖ · ‖Hm,q

s (RN )
-norms grow with the number of derivatives and that this effect is

compensated by the decay properties of ε̂ and its derivatives. �

The proof of Theorem 3.2 is finished. �

Remark 4.4 Lemma 4.3 and Lemma 4.2 as well as an obvious cutting technique easily
yield inner regularity results. These even include weighted inner regularity in exterior
domains.

A Appendix

As before let M be an N-dimensional smooth Riemannian manifold and let � ⊂ M
denote some connected open subset with compact closure in M or some exterior domain of
M = RN . Moreover, throughout this appendix ν denotes some admissible transformation.
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A.1 Density results

Let � ⊂ M be a connected open subset with compact closure of the N-dimensional
smooth Riemannian manifold M. Using charts and the results and techniques known
from the scalar cases, i.e. mollifiers, we get the following assertions for m ∈ N0:

C∞,q(�) ∩Hm,q(�) is dense in Hm,q(�).

If � has the ‘segment property’, i.e. for each x ∈ ∂ � there exist a chart (V, h), some
� ∈ (0, 1) and some vector v ∈ RN with h(x) = 0, h(V ) = U1 and

U� ∩ h(� ∩ V )+ τv ⊂ h(� ∩ V )

for all τ ∈ (0, 1)
(
Please compare to [1, Definition 2.1] for the classical segment property.

We note that manifolds with C1-boundary possess the segment property.
)
, we can adopt

more properties from the scalar cases. For example,

C∞,q(�) is dense in Hm,q(�) (A.1)

as well as E ∈ ◦
Hm,q(�) for some E ∈ Hm,q(�), if and only if its extension by zero into

�̃ is an element of Hm,q(�̃) for any open set �̃ with � ⊂ � ⊂ �̃ ⊂ �̃ ⊂ M. The first
assertion may be proved analogously to [22, Theorem 3.6] or [1, Theorem 2.1] and the
second analogously to [22, Theorem 3.7]. The same techniques yield finally

C∞,q(�) is dense in Dq(�) resp. �q(�). (A.2)

Especially for � = M = RN we also have for all s ∈ R that
◦
C∞,q(RN ) is dense in

Dq
s (R

N ), Dq
s (R

N ), �q
s (R

N ), �q
s (R

N ), Dq
s (R

N )∩�
q
s (R

N ), Dq
s (R

N )∩�
q
s (R

N ), Hm,q
s (RN )

and Hm,q
s (RN ).

A.2 Hodge–Helmholtz decompositions

By the projection theorem, the L2,q(�)-orthogonality of d
◦
Dq−1(�) and 0�

q(�) as well

as δ�q+1(�) and 0
◦
Dq(�) and the obvious inclusions d

◦
Dq−1(�) ⊂ 0

◦
Dq(�) as well

as δ�q+1(�) ⊂ 0�
q(�) we get the following Hodge–Helmholtz decompositions (for

details please see [10, Lemma 1], [14, Lemma 1] or in the classical case [11, p. 168], [15,
Lemma 3.13]):

Lemma A.1 The following 〈ε · , · 〉L2,q(�)-orthogonal (denoted by ⊕ε) decompositions
hold for admissible transformations ε:

(i) L2,q(�) = d
◦
Dq−1(�)⊕ε ε−1

0�
q(�) = 0

◦
Dq(�)⊕ε ε−1δ�q+1(�)

= ε−1d
◦
Dq−1(�)⊕ε 0�

q(�) = ε−1
0
◦
Dq(�)⊕ε δ�q+1(�)
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(ii) L2,q(�) = d
◦
Dq−1(�)⊕ε εH

q(�)⊕ε ε−1δ�q+1(�)

= ε−1d
◦
Dq−1(�)⊕ε ε−1

ε−1Hq(�)⊕ε δ�q+1(�).

All closures are taken in L2,q(�).

Here we introduced the ‘(harmonic) Dirichlet forms’ by

εH
q(�) := 0

◦
Dq(�) ∩ ε−1

0�
q(�)

and we denote them by Hq(�), if ε = id. An easy application of the latter lemma shows
that the orthogonal projection

π : νH
q(�) −→ εH

q(�)

on ε−1
0�

q(�) along d
◦
Dq−1(�) is well defined, linear, continuous and injective. There-

fore, by symmetry we obtain dim νH
q(�) = dim εH

q(�) and hence this dimension is
independent of transformations, i.e.

dim εH
q(�) = dimHq(�).

A.3 Compact embedding

Definition A.2 � possesses the

(i) ‘Maxwell compactness property’ (MCP), if and only if the embeddings

◦
Dq(�) ∩ �q(�) ↪→ L2,q(�);

(ii) ‘Maxwell local compactness property’ (MLCP), if and only if the embeddings

◦
Dq(�) ∩ �q(�) ↪→ L2,q

loc (�)

are compact for all q.

The MCP and MLCP are properties of the boundary. We will briefly present some results.

There exists a large amount of literature about the MCP, which can only hold for sub-
manifolds � with compact closure, which may be assumed by now. The first idea was to
use Gaffney’s inequality, i.e. to estimate the H1,q(�)-norm by the Dq(�)∩�q(�)-norm,
and then to apply Rellich’s selection theorem. To do this one needs smooth boundaries,
which for instance may be seen in [3, Theorem 8.6]. If q = 0 we even have

◦
D0(�) ∩ �0(�) = ◦

D0(�) = ◦
H1,0(�).



Regularity results for generalized electro-magnetic problems 243

In 1972 Weck [16] resp. [17] presented for the first time a proof of the MCP for manifolds
with nonsmooth boundaries (‘cone-property’). Further proofs of the MCP were given
by Picard [13] (‘Lipschitz-domains’) and in the classical case by Weber [19] (another
‘cone-property’) and Witsch [21] (‘ p-cusp-property’).A proof of the MCP in the classical
case for bounded domains handling the largest known class of boundaries was given by
Picard, Weck and Witsch in [15]. They combine the techniques from [17], [13] and [21].

We note that the MCP is independent of transformations. More precisely: Let εq be
admissible transformations for all q. Then � possesses the MCP, if and only if the
embeddings

◦
Dq(�) ∩ ε−1

q �q(�) ↪→ L2,q(�)

are compact for all q. Moreover, the MCP yields the finite dimension of the space of
Dirichlet forms Hq(�). In fact, the dimension is determined by topological properties
of �, i.e. dimHq(�) = βN−q , the (N − q)-th Betti number of �. Furthermore, for
admissible transformations the MCP implies (by an indirect argument) the existence of
a positive constant c, such that the estimate

‖E‖ L2,q(�) ≤ c
( ‖dE‖ L2,q+1(�) + ‖δεE‖ L2,q−1(�)

)
(A.3)

holds uniformly with respect to E ∈ ◦
Dq(�)∩ε−1�q(�)∩εH

q(�)⊥. Here we denote the
orthogonality with respect to the 〈 · , · 〉L2,q(�)-scalar product by⊥. This estimate implies

the closedness of d
◦
Dq(�) resp. δ�q(�) in L2,q+1(�) resp. L2,q−1(�). We even have

d
◦
Dq(�) = d

◦
Dq(�) = d

( ◦
Dq(�) ∩ ε−1

0�
q(�) ∩ εH

q(�)⊥ν
)
, (A.4)

δ�q(�) = δ�q(�) = δ
(
�q(�) ∩ ε−1

0
◦
Dq(�) ∩ ε−1Hq(�)⊥ν

)
, (A.5)

which was shown in [10] in the case ε = ν = id. Here we denote the orthogonality with
respect to the 〈ν · , · 〉L2,q(�)-scalar product by ⊥ν and put ⊥ := ⊥id.

For an exterior domain � with the MLCP we have similar results. We will present them
in the following.

Lemma A.3 The following assertions are equivalent:

(i) � possesses the MLCP.

(ii) � ∩Ut possesses the MCP for all r ≥ r0 with RN \� ⊂ Ur0 .

(iii) The embeddings

◦
Dq

s (�) ∩ �
q
s (�) ↪→ L2,q

t (�)

are compact for all t, s ∈ R with t < s and all q.
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(iv) For all t, s ∈ R with t < s, all q and all admissible transformations εq the
embeddings

◦
Dq

s (�) ∩ ε−1
q �

q
s (�) ↪→ L2,q

t (�)

are compact.

From [10] and [12] we obtain dimHq(�) = dimHq
−1(�) = βN−q < ∞. Here we

introduced the ‘(weighted harmonic) Dirichlet forms’

εH
q
t (�) := 0

◦
Dq

t (�) ∩ ε−1
0�

q
t (�)

and again neglect the transformation or the weight in the notation for ε = id or t = 0.

Now let ε be an admissible transformation, which is τ-C1-admissible of second kind in
Ar for an arbitrary r ≥ r0 with some order of decay τ > 0 (and r0 from Lemma A.3).

We need a fundamental Poincare-like estimate:

Lemma A.4 There exists some constant c > 0 and some compact set K ⊂ RN , such that

‖E‖
L2,q
−1 (�)

≤ c
( ‖dE‖ L2,q+1(�) + ‖δεE‖ L2,q−1(�) + ‖E‖ L2,q(�∩K )

)
holds true for all E ∈ Dq

−1(�) ∩ ε−1�
q
−1(�).

Proof: By a usual cutting technique we may restrict our considerations to the special
case � = RN and ε is τ-C1-admissible of second kind in RN . Picking some E from
Dq
−1(R

N ) ∩ ε−1�
q
−1(R

N ) by Lemma 4.2 (ii) we get E ∈ H1,q
−t (RN ) for all t ≥ 1 and the

estimate (with c depending on t but not on E)

‖E‖
H1,q
−t (RN )

≤ c
( ‖E‖

L2,q
−t (RN )

+ ‖dE‖
L2,q+1

1−t (RN )
+ ‖δεE‖

L2,q−1
1−t (RN )

)
. (A.6)

From [10, Lemma 5] we receive a compact set K , such that

‖E‖
L2,q
−1 (RN )

≤ c
( ‖dE‖ L2,q+1(RN ) + ‖δE‖ L2,q−1(RN ) + ‖E‖ L2,q(K )

)
.

Then (A.6) (for t = 1) and the latter estimate yield with id = ε− ε̂

‖E‖
H1,q
−1 (RN )

≤ c
( ‖dE‖ L2,q+1(RN ) + ‖δεE‖L2,q−1(RN ) + ‖E‖ L2,q(K ) + ‖E‖

H1,q
−1−τ (R

N )

)
.

Again utilizing (A.6) (for t = 1 + τ) the term ‖E‖
H1,q
−1−τ

(RN )
may be replaced by

‖E‖
L2,q
−1−τ (R

N )
. Since τ > 0 and using the trick from (4.8) this one can be swallowed

by the left hand side, which might produce some other compact set K̃ ⊃ K . �

We note that we did not need the MLCP for the proof of this lemma. But this lemma and
the MLCP yield directly (by an indirect argument)
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Corollary A.5 εH
q
−1(�) is finite dimensional and there exists some positive constant c,

such that

‖E‖
L2,q
−1 (�)

≤ c
( ‖dE‖ L2,q+1(�) + ‖δεE‖ L2,q−1(�)

)
holds for all E ∈ ◦

Dq
−1(�) ∩ ε−1�

q
−1(�) ∩ εH

q
−1(�)⊥−1,ν . Here we denote by ⊥−1,ν the

orthogonality with respect to the 〈νρ−1 · , ρ−1 · 〉�-scalar product.

Corollary A.6 With closures taken in L2,q±1(�) we have

(i) d
◦
Dq(�) = d

◦
Dq
−1(�) = d

( ◦
Dq
−1(�) ∩ ε−1

0�
q
−1(�) ∩ εH

q
−1(�)⊥−1,ν

)
,

(ii) δ�q(�) = δ�
q
−1(�) = δ

(
�

q
−1(�) ∩ ε−1

0
◦
Dq
−1(�) ∩ ε−1H

q
−1(�)⊥−1,ν

)
.

Proof: The proof is analogous to the one of [10, Lemma 7]. Nevertheless, let us briefly

indicate how to prove (i). The other assertion follows similarly. Let (En)n∈N ⊂
◦
Dq(�)

be some sequence with dEn
n→∞−−−→ G in L2,q+1(�). Using Lemma A.1 we may assume

without loss of generality En ∈
◦
Dq(�)∩ε−1

0�
q(�). Moreover, by the projection theorem

applied in L2,q
−1 (�) we may further assume

En ∈
◦
Dq
−1(�) ∩ ε−1

0�
q
−1(�) ∩ εH

q
−1(�)⊥−1,ν .

By Corollary A.5 (En)n∈N is a L2,q
−1 (�)-Cauchy sequence and the limit E ∈ L2,q

−1 (�) even

is an element of
◦
Dq
−1(�)∩ ε−1

0�
q
−1(�)∩ εH

q
−1(�)⊥−1,ν , which completes the proof. �

Finally we note an immediate and easy conclusion of Corollary A.6, i.e. an electro-
magneto static solution theory handling homogeneous tangential boundary data.

Theorem A.7 Let dq := dim εH
q
−1(�) continuous linear functionals ��

ε on the space

Dq
−1(�) ∩ ε−1�

q
−1(�) with

εH
q
−1(�) ∩

dq⋂
�=1

N(��
ε) = {0}

be given. Then with �ε := (�1
ε , . . . ,�dq

ε ) the linear operator

Maxε :
◦
Dq
−1(�) ∩ ε−1�

q
−1(�) −→ δ�q(�)× d

◦
Dq(�)× Cdq

E �−→ (
δεE, dE,�ε(E)

)
is a topological isomorphism. Here N(��

ε) denotes the kernel of ��
ε.
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A.4 Linear transformations

Elementary calculations and estimates show for open subsets �, �̃ with compact closure
of smooth Riemannian manifolds M, M̃:

Lemma A.8 Let τ : �̃ → � be a C2-diffeomorphism respecting orientation and ε

be a linear transformation. Then the transformation ε is admissible, if and only if the
transformation

ετ := (−1)q(N−q) ∗ τ∗ ∗ ε(τ∗)−1

is admissible. In particular idτ = (−1)q(N−q) ∗ τ∗ ∗ (τ∗)−1 is admissible. Furthermore:

(i) E ∈ Dq(�) resp. E ∈ ◦
Dq(�), if and only if τ∗E ∈ Dq(�̃) resp. τ∗E ∈ ◦

Dq(�̃).
Moreover, dτ∗E = τ∗ dE and there exists a constant c > 0 independent of E, such
that

c−1||E||Dq(�)
≤ ||τ∗E||Dq(�̃)

≤ c||E||Dq(�)
.

(ii) E ∈ ε−1�q(�), if and only if τ∗E ∈ ε−1
τ �q(�̃). Moreover, δεττ

∗E = idτ τ
∗δεE

holds and there exists some c > 0 independent of E or ετ , such that

c−1||E||
ε−1�q(�)

≤ ||τ∗E||
ε−1
τ �q(�̃)

≤ c||E||
ε−1�q(�)

.

A.5 Fourier transformation for differential forms

In the special case M = RN we have some useful operators from the spherical calculus
developed in [18]. For Euclidean coordinates {x1, . . . , xN } we introduce the pointwise
linear operators R, T on q-forms by

RE := xn dxn ∧ E = r dr ∧ E, TE := (−1)(q−1)N ∗ R ∗ E

and recall the formulas

RR = 0, TT = 0, RT + TR = r2 (A.7)

as well as for q-forms E and (q + 1)-forms H

RE ∧ ∗H = E ∧ ∗TH, TH ∧ ∗E = H ∧ ∗RE, (A.8)

i.e. 〈RE, H〉q+1 = 〈E, TH〉q using the pointwise scalar product for differential forms.
Then, for example, the differential d resp. δ corresponds to R resp. T in the sense that

Cd,ϕ(r)E = ϕ′(r)r−1 RE resp. Cδ,ϕ(r)E = ϕ′(r)r−1TE (A.9)

holds for ϕ ∈ C1(R) and E ∈ Dq(RN ) resp. E ∈ �q(RN ).
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But there is at least one more connection between these operators. Let us present the
componentwise (with respect to Euclidean coordinates) Fourier transformation on q-
forms F, which is a unitary mapping on L2,q(RN ). With X (x) := x and the well known
formula

F(∂α u) = i|α| X αF(u)

for scalar distributions u we get some formulas for F operating on q-forms E:

F ∗ E = ∗FE (A.10)

F(∂α E) = i|α| X αF(E), ∂α F(E) = (− i)|α|F(X α E) (A.11)

F(dE) = i RF(E), dF(E) = − iF(RE) (A.12)

F(δE) = i TF(E), δF(E) = − iF(TE) (A.13)

F(�E) = −r2F(E), �F(E) = −F(r2 E) (A.14)

These formulas may be checked for smooth forms from Schwartz’ space and hence remain
valid for distributional q-forms, i.e. extend to our weak calculus. We note the equation
dδ+ δ d= �, where the Laplacian � acts on each Euclidean component of E. Utilizing
these formulas some Sobolev spaces can be characterized with the aid of the Fourier
transformation. We easily get:

Hm,q(RN ) = {
E ∈ L2,q(RN ) : F(E) ∈ L2,q

m (RN )
}
, m ∈ N (A.15)

Dq(RN ) = {
E ∈ L2,q(RN ) : RF(E) ∈ L2,q+1(RN )

}
(A.16)

�q(RN ) = {
E ∈ L2,q(RN ) : TF(E) ∈ L2,q−1(RN )

}
(A.17)

In this sense we also may define Hs,q(RN ), if s ∈ R.

A.6 Some technical lemmas

Lemma A.9 Let r > 0, x′ := (x1, · · · , xN−1) and

τ : U+r −→ U−r
x �−→ (x′,−xN )

.

Then the mirror operator

Sd : Dq(U−r )→ Dq(Ur)

defined by Sd E|U−r := E and Sd E|U+r := τ∗E is well defined, linear and continuous.

Sd commutates with d and ||Sd E||L2,q(Ur)
= √2||E||L2,q(U−r ) holds.

(√
2/2Sd even is an

isometry.
)

Moreover, if supp E ⊂ U−� for some � < r, then supp Sd E ⊂ U�.

The dual mirror operator

Sδ := (−1)q(N−q) ∗ Sd∗ : �q(U−r )→ �q(Ur) (A.18)

has the corresponding properties.
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Proof: By density it is enough to show Sd E ∈ Dq(Ur) and dSd E = SddE for some form

E ∈ C∞,q(U−r ). The assertions about the continuity and the support follow directly. Let

ι : U0
r ↪→ U−r denote the natural embedding. Observing that τ changes the orientation we

get from Stokes’ theorem for � ∈ ◦
C∞,q+1(Ur) (Clearly we identify � with its restrictions

on U±r .)

〈Sd E, δ�〉L2,q(Ur)
= (−1)q2

∫
U−r

E ∧ (d ∗ �̄)+ (−1)q2
∫

U+r
(τ∗E) ∧ (d ∗ �̄)

= (−1)q
∫

U−r
E ∧ d

( ∗ �̄− (τ−1)∗ ∗ �̄
)

= −
∫

U−r
(dE)∧ ( ∗ �̄− (τ−1)∗ ∗ �̄

)
+

∫
U0

r

(ι∗E) ∧
((

ι∗ − ι∗(τ−1)∗
) ∗ �̄

)
.

By ι− τ−1 ◦ ι = 0 the boundary integral vanishes and we obtain

〈Sd E, δ�〉L2,q(Ur)
= −

∫
U−r

(dE) ∧ ∗�̄−
∫

U+r
(τ∗dE) ∧ ∗�̄

= −〈SddE,�〉L2,q+1(Ur)
. �

Lemma A.10 Let N ≥ 3 and � > 0. There exists a constant c > 0, such that for all
E ∈ 0�

q(RN ) with supp E ⊂ U� there exists some H ∈ H1,q+1(RN ) satisfying

δH = E, ||H ||H1,q+1(RN )
≤ c||E||L2,q(RN ).

Proof: Let E ∈ 0�
q(RN ) with supp E ⊂ U�. By Fourier’s transformation we get for the

Euclidian components of E = EI dx I

FEI ∈ C0(RN ), ∀ x ∈ RN
∣∣FEI (x)

∣∣ ≤ λ(U�)
1/2||E||L2,q(RN ),

where λ denotes Lebesgue’s measure. Hence, all components of FE are bounded. Let
Ĥ := r−2 RFE with Ĥ(0) := 0. The estimate∣∣Ĥ J(x)

∣∣ ≤ c|x|−1
∑

I

∣∣FEI (x)
∣∣

holds for all x ∈ RN \ {0} and all indices J and implies Xn Ĥ ∈ L2,q+1(RN ). Hence,
Ĥ,F−1 Ĥ ∈ L2,q+1(RN ) since N ≥ 3. Moreover, we get∣∣∣∣Ĥ

∣∣∣∣
L2,q+1(RN )

+ ∣∣∣∣r Ĥ
∣∣∣∣

L2,q+1(RN )
≤ c ‖E‖ L2,q(RN ).
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Thus by (A.15) H := − iF−1 Ĥ ∈ H1,q+1(RN ) with ||H ||H1,q+1(RN )
≤ c||E||L2,q(RN ).

Using (A.13) as well as (A.7) we finally obtain

δH = F−1T Ĥ = F−1r−2TRFE = E

because δE = 0 yields TFE = 0 again by (A.13). �

To prepare the final lemma of the appendix let U ⊂ RN and

� =
∑

I

�I dxI ∈ L2,q(U).

Then � = �τ +�ρ is an (pointwise) orthogonal decomposition, where

�τ :=
∑
N �∈I

�I dxI , �ρ :=
∑
N∈I

�I dxI . (A.19)

Lemma A.11 Let U ⊂ RN , m ∈ N, E ∈ L2,q(U) and ε be a Cm-admissible trans-
formation. Furthermore, let Eτ and (εE)ρ be elements of Hm,q(U). Then E belongs to
Hm,q(U) as well.

Proof: We have (εEρ)ρ = (εE)ρ − (εEτ)ρ ∈ Hm,q(U). Since the restriction ερ,ρ of ε

acting on the normal parts, i.e. ερ,ρ Eρ = (εEρ)ρ, is pointwise invertible with Cm(U)

entries we obtain Eρ ∈ Hm,q(U). �

B Translation to the classical electro-magnetic language

Finally we present our results in the classical language of vector analysis, i.e. M = R3.
By the usual identifications we have to following table:

q = 0 q = 1 q = 2 q = 3

d grad curl div 0

δ 0 div − curl grad

Now we deal with the usual Sobolev spaces Hm(�) and H(curl,�), H(div,�) as well as
the trace spaces Hm−1/2(∂ �). Moreover, we have the weighted Sobolev spaces Hm

s (�),
Hm

s (�) as well as for � ∈ {curl, div}
Hs(�,�) := {

E ∈ L2
s (�) : �E ∈ L2

s (�)
}
.

q = 0 q = 1 q = 2 q = 3

Dq
s (�) H1

s (�) Hs(curl,�) Hs(div,�) L2
s (�)

�
q
s (�) L2

s (�) Hs(div,�) Hs(curl,�) H1
s (�)
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Theorem B.1 Let m ∈ N0, � be a bounded domain in R3 with Cm+2-boundary as well
as ε be some Cm+1-admissible matrix. Furthermore, let

E ∈ H(curl,�) ∩ ε−1H(div,�)

with

curl E ∈ Hm(�), divεE ∈ Hm(�), ν × E ∈ Hm+1/2(∂ �).

Then E ∈ Hm+1(�) and there exists a positive constant c independent of E, such that

‖E‖Hm+1(�)

≤ c
( ‖E‖ L2(�) + ‖curl E‖Hm(�)

+ ‖divεE‖Hm(�)
+ ‖ν × E‖Hm+1/2(∂ �)

)
.

This theorem may be regarded as a generalization to inhomogeneous boundary data
of [20], whereas the next theorem represents a new result even in the classical context.

Theorem B.2 Let s ∈ R, m ∈ N0, � ⊂ R3 be an exterior domain with Cm+2-boundary
and ε be some Cm+1-admissible matrix. Furthermore, let

E ∈ Hs(curl,�) ∩ ε−1Hs(div,�) with ν × E ∈ Hm+1/2(∂ �).

(i) Then curl E ∈ Hm
s (�) and divεE ∈ Hm

s (�) imply E ∈ Hm+1
s (�) and with some

constant c > 0

‖E‖Hm+1
s (�)

≤ c
( ‖E‖ L2

s (�) + ‖curl E‖Hm
s (�)

+ ‖divεE‖Hm
s (�)

+ ‖ν × E‖Hm+1/2(∂ �)

)
holds uniformly with respect to E.

(ii) If additionally ε is 0-Cm+1-admissible of second kind and τ-C0-admissible of first
(or second) kind with some τ > 0 then curl E ∈ Hm

s+1(�) and divεE ∈ Hm
s+1(�)

imply E ∈ Hm+1
s (�) and there exists some positive constant c, such that the

estimate

‖E‖Hm+1
s (�)

≤ c
( ‖E‖ L2

s (�) + ‖curl E‖Hm
s+1(�)

+ ‖divεE‖Hm
s+1(�)

+ ‖ν × E‖Hm+1/2(∂ �)

)
holds uniformly with respect to E.

Here we denoted by ν the exterior normal unit vector at ∂ �.

Remark B.3 Similar results hold for kinds of spaces like ε−1H(curl,�) ∩ H(div,�)

and/or with prescribed normal traces ν · E resp. ν · εE.
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