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Dediated to the memory of S. G. MikhlinA POSTERIORI ESTIMATES FOR THE STATIONARYSTOKES PROBLEM IN EXTERIOR DOMAINS© D. PAULY, S. REPINThis paper is onerned with the analysis of the inf-sup ondition arising inthe stationary Stokes problem in exterior domains and appliations to thederivation of omputable bounds of the distane between the exat solutionof the exterior Stokes problem and a ertain approximation (whih may beof a rather general form). In the �rst part, guaranteed bounds are deduedfor the onstant in the stability lemma assoiated with the exterior domain.These bounds depend only on known onstants and the stability onstantrelated to bounded domains that arise after suitable trunations of the un-bounded domains. The lemma in question implies omputable estimates ofthe distane to the set of divergene free �elds de�ned in exterior domains.Suh estimates are ruial for the derivation of omputable majorants ofthe di�erene between the exat solution of the Stokes problem in exte-rior domains and an approximation from the admissible (energy) lass offuntions satisfying the Dirihlet boundary ondition but not neessarilydivergene free (solenoidal). Estimates of this type are often alled a pos-teriori estimates of funtional type. The onstant in the stability lemma(or equivalently in the inf-sup or LBB ondition) serves as a penalty fatorat the term that ontrols violations of the divergene free ondition. In thelast part of the paper, similar estimates are dedued for the distane tothe exat solution for nononforming approximations, i.e., for those thatmay violate some ontinuity and boundary onditions. The ase where thedimension of the domain equals 2 requires a speial onsideration beausethe orresponding weighted spaes di�er from those natural for the dimen-sion 3 (or larger). This speial ase is brie�y disussed at the end of thepaper where similar estimates are dedued for the distane to the exatsolution of the exterior Stokes problem.
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THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 185�1. Introdution1.1. Notation and nomenlature. Throughout the paper we onsider do-mains in R
d, d > 2, with Lipshitz boundaries. The symbol ω is used forbounded domains and the boundary of suh a domain is denoted by γ (typi-ally, the latter is omposed of two open and disjoint parts γD and γN asso-iated with the Dirihlet and Neumann parts). Exterior domains (i.e., thosehaving the form R

d \ ω) are denoted by Ω. By the letter D, we denote do-mains whih may be bounded or unbounded depending on the ontext (if thisproperty is not neessary to outline).For Lebesgue and Sobolev spaes of funtions (salar, vetor, or tensor val-ued) with generalised square integrale derivatives of the �rst order we use thestandard notation L2(ω) and H1(ω) (or L2(Ω) and H1(Ω)), respetively. Thestandard inner produt, norm, and orthogonality in L2(ω) will be denoted by
〈 · , · 〉0,ω, ‖ · ‖0,ω, and ⊥0,ω. If γD 6= ∅, then the homogeneous Dirihlet bound-ary onditions are enoded in the spae H1

γD(D), whih is de�ned as the losureof ompatly supported smooth funtions vanishing on γD in the norm of H1.Also, for bounded domains we use spaes with vanishing mean values1
L
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.To handle the speial ase of γD = ∅ using a uni�ed notation, we introduethe spae
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186 D. PAULY, S. REPINTo further unify our de�nitions and extend them to exterior domains, we on-sider a domain (an open and onneted set) D ⊂ R
d, d > 2. This domain maybe bounded or unbounded. It has a Lipshitz boundary B, whih onsists of tworelatively open and disjoint parts BD,BN ⊂ B (suh that B = BD ∪ BN ) asso-iated with Dirihlet and Neumann boundary onditions. As before, we denotethe standard Lebesgue and Sobolev spaes by L2(D) and H1(D), respetively. If

BD 6= ∅, we introdue homogeneous Dirihlet boundary onditions in H1
BD

(D)de�ned as the losure of
C
∞
BD

(D) :=
{
φ|D : u ∈ C

∞(Rd), suppφ is ompat, dist(suppφ,BD) > 0
}in H1(D). As above we utilise the notations L2B(D) = L2⊥(D), L2BD

(D), and
H1
∅(D) = H1

⊥(D) provided that D is bounded. Next, we introdue polynomiallyweighted spaes
L
2
±1(D) :=

{
φ ∈ L

2
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,where the weight funtion ρ is de�ned by ρ(r) := (1 + r2)1/2, and r(x) := |x|.The inner produt, norm, and orthogonality in L2±1(D) are denoted by

〈 · , · 〉±1,D :=
〈
ρ±2 · , ·

〉
0,D
, ‖ · ‖±1,D, and ⊥±1,D,respetively. In the ase of a bounded domain, there is no di�erene betweenthe unweighted and weighted spaes (if we mean that the spaes oinide assets and possess di�erent inner produts). However, in analysis of problems inexterior domains a proper seletion of weights is important (in �4.6 devotedto the ase of d = 2 we de�ne the weighted spaes di�erently). As before, if

BD 6= ∅, then the homogeneous Dirihlet boundary onditions are enoded in
H1
−1,BD

(D), the losure of C∞
BD

(D) in H1
−1(D). Finally, for the Stokes equations,we introdue spaes of solenoidal �elds
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1
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(D) ∩ S−1(D).1.2. Stability lemma and the Stokes problem in bounded domains.The lassial stationary Stokes problem onsists of �nding a vetor �eld u



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 187(veloity) and a salar valued funtion p (pressure) that solve the system
−ν∆u+∇ p = f in ω, (1)

div u = 0 in ω, (2)
u = uD on γD, (3)
σn = 0 on γN , (4)where σ := ν∇u−p I, ν (visosity) is a positive onstant or a positive funtiontaking values in [ν⊖, ν⊕], ν⊖, ν⊕ > 0, and f ∈ L2(ω). The boundary onditionsare de�ned by the vetor valued funtion uD. Heneforth, we assume that uDis given by a solenoidal vetor �eld uD, i.e., the Dirihlet boundary onditionis de�ned by uD ∈ S(ω) in the sense that u = uD on γD, i.e.,
u− uD ∈ H

1
γD(ω).If γ = γD, then we additionally assume that∫

γ

n · uD =

∫

ω

div uD = 〈uD, 1〉0,ω = 0. (5)The existene of the orresponding generalised solution follows from the well-known solution theory for uniformly ellipti linear equations and the stabilitylemma, whih plays an important role in the theory of inompressible �ow.Lemma 1.1 (stability lemma, [1, 3, 13, 14, 22℄). There exists c > 0 suh thatfor any g ∈ L2γD(ω) there is a vetor �eld ug ∈ H1
γD(ω) with

div ug = g and ‖∇ug‖0,ω 6 c‖g‖0,ω . (6)Heneforth, the best onstants in (6) and similar inequalities for unboundeddomains are denoted by the letter κ, i.e., κ(ω, γD) is the smallest c in (6). For
u ∈ H1

γD(ω) we also have the Friedrihs/Poinar�e inequality
‖u‖0,ω 6 c‖∇ u‖0,ω,and cFP(ω, γD) denotes the best onstant c. Hene from Lemma 1.1, we on-lude that ug satis�es the inequalities

1

cFP(ω, γD)
‖ug‖0,ω 6 ‖∇ug‖0,ω 6 κ(ω, γD)‖div ug‖0,ω.We notie that in the theory of eletrodynamis the funtion ug is alled aregular potential as it admits (for Maxwell's equations) an unphysial (high)regularity and boundary ondition, whih is muh stronger than the usualnormal boundary ondition related to the divergene operator.Lemma 1.1 yields several important orollaries. First, it guarantees the solv-ability of the stationary Stokes problem (in the veloity-pressure posing). By



188 D. PAULY, S. REPINsetting g = div ug, Lemma 1.1 immediately yields the well known inf-sup (orLBB) ondition:
inf

g∈L2γD
(ω)

sup
u∈H1

γD
(ω)

〈g,div u〉0,ω
‖g‖0,ω‖∇u‖0,ω

>
1

κ(ω, γD)
=: cLBB (7)Another diret orollary to Lemma 1.1 is an estimate of the distane betweena vetor �eld u ∈ H1

γD (ω) and the set SγD(ω) (see [35, 36℄)
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0,ω
.Corollary 1.2. For any u ∈ H1
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u,SγD(ω)
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6
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6 κ(ω, γD)‖div u‖0,ω.Proof. For u ∈ H1
γD(ω), solve the equation

div ũ = div u ∈ L
2
γD

(ω)with ũ ∈ H1
γD(ω) and the stability estimate

‖∇ ũ‖0,ω 6 κ(ω, γD)‖div u‖0,ωby Lemma 1.1. Note that for γD = γ we have∫

γ

n · u =

∫

ω

div u = 〈u, 1〉0,ω = 0. (8)Then
u0 := u− ũ ∈ SγD(ω) and ∥∥∇(u− u0)

∥∥
0,ω

=
∥∥∇ ũ

∥∥
0,ω

6 κ(ω, γD)‖div u‖0,ω. �In [38�40℄, this result was extended to vetor �elds satisfying nonhomoge-neous Dirihlet boundary onditions (and also for vetor �elds in W1,q(Ω) for
q ∈ (1,∞)) provided that suh a vetor �eld u satis�es div u ∈ L2γD

(Ω), i.e.,the mean value ondition (8), if γD = γ. Moreover, it was shown that if themean value onditions hold true for a olletion of subdomains whose unionof losures oinides with the losure of ω, then estimates of the distane anbe based on loal onstants assoiated with subdomains. In the ase of nonho-mogeneous boundary onditions, a modi�ed version of Corollary 1.2 reads asfollows.Corollary 1.3. For any u ∈ H1(ω) with div u ∈ L2γD
(ω) there exists a soleno-idal u0 ∈ S(ω) suh that u0 − u ∈ H1

γD(ω), i.e., u0|γD = u|γD , and∥∥∇(u0 − u)
∥∥
0,ω

6 κ(ω, γD)‖div u‖0,ω.



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 189It should be noted that Corollary 1.3 an be also viewed as a lifting lemma,beause a boundary datum u|γD is lifted to the domain ω. In this ase liftingis performed with the help of a solenoidal representative.Estimates of the onstant κ(ω, γD) have been studied in [6, 10, 25, 29, 44℄and some other publiations. It is not di�ult to see that the onstant cLBBin (7) is nonnegative and annot exeed 1 so that κ(ω, γD) > 1. It is knownthat cLBB > 0 for any bounded Lipshitz domain (e.g., cLBB = 1/
√
d for a ballin R

d). However, the exat values of this onstant are unknown exept somevery speial ases (for example, we do not know the onstant even for a ube!).In [6℄, simply omputable and su�iently aurate estimates of the onstantwere obtained for domains in R
2 that are inluded in a ball of radius R andare star-shaped with respet to a onentri ball of radius ρ. It was shown that

κ(ω, γ) 6

√
2

ζ

(
1 +

√
1− ζ2

)1/2
, (9)where ζ = ρ/R. For d = 3, estimates of cLBB are known only for domains withsu�iently regular boundaries (see [29℄). A systemati numerial analysis ofonstants in the inf-sup ondition (7) was performed in [11℄, where approxi-mate values of the onstants were omputed for a wide olletion of boundeddomains. Computational approahes to the evaluation of the distane to theset of divergene free �elds based on domain deomposition were suggestedin [38�40℄. In our subsequent analysis, we assume that, using the results andmethods mentioned above, we are able to �nd a majorant of the onstant

κ(ω, γD) for bounded domains ω that arise as trunations of an unboundeddomain Ω.1.3. A posteriori estimates. Estimates of the distane to SγD(ω) are notmerely of theoretial value. They are important for the quantitative analysisof boundary value problems generated by inompressible media models (e.g.,in the theory of visous inompressible �uids). First, estimates of this typeare neessary for getting omputable bounds for the di�erene between theexat solution of a boundary value problem and an approximation obtained bysome omputational proedure. The term �omputable� means that the orre-sponding estimates do not involve unknown funtions and onstants and anindeed be omputed by means of an approximate solution only. Estimates ofthis type are often alled a posteriori error estimates and nowadays are widelyused in the quantitative analysis of mathematial problems. Unlike the a priori(asymptoti) onvergene estimates, a posteriori estimates provide an expliitveri�ation of the auray of a partiular numerial solution. First methodsof a posteriori error ontrol for PDEs originates from the works of W. Pragerand J. L. Synge [33℄ and S. G. Mikhlin [19℄. The latter monograph ontains



190 D. PAULY, S. REPINa pioneering idea of a new approah to error estimation, whih di�ers prini-pally from asymptoti rate onvergene estimates dominated at that time andseveral deades subsequently. For variational problems generated by quadratitype funtionals
J(v) =

1

2
a(v, v) − 〈f, v〉, f ∈ V, (10)where V is a Hilbert spae and a : V × V → R is a V -ellipti bilinear form,S. Mikhlin dedued the prinipal relation

1

2
a(u− v, u− v) = J(v) − J(u). (11)Here u is the minimizer that satis�es

J(u) = min
w∈V

J(w) and v ∈ Vis any funtion ompared with u. Sine the exat in�mum is unknown, it isimpossible to use (11) diretly. In [19℄, it was suggested to estimate J(u) frombelow using a dual variational problem and further apply the orthogonal pro-jetion method of H. Weyl [48℄. Certainly, these �rst estimates were derived fora rather limited set of problems and su�ered from serious restritions imposedon the set of funtions that are admissible in the dual setting. For these reasons,they were rarely used in omputational pratie. Moreover, the methods devel-oped in 1970�1980 for measuring errors of �nite element approximations (suhas the �gradient averaging� and �residual� methods, see, e.g., [47℄ and the refer-enes therein) were based on di�erent grounds. These methods strongly exploitproperties of a partiular approximation omputed on a partiular mesh. Inessene, they provide ertain error indiators (for mesh adaptive proedures)rather than guaranteed error bounds. Subsequent studies foused on the prob-lem of guaranteed error ontrol (performed in the 1990s) on�rmed the idea(enompassed in (11)) that the orresponding methods should be justi�ed onthe funtional level by means of the same mathematial tools that are usedin analysis of PDEs without attrating spei� features of approximations andnumerial methods. If we have a general (universal) estimate of the distanebetween a funtion and the exat solution of a boundary value problem, then itan be used with any approximation and requires no hanges if one approxima-tion (mesh) is replaed by another. In the last two deades omputable boundsof this type has been derived and tested for a wide spetrum of problems(see [17, 23, 34, 37℄ and many other publiations ited in these monographs).For lear reasons, they are often alled a posteriori estimates of funtional type.They di�er from others due to two important properties: the estimates(a) do not ontain onstants assoiated with a partiular �nite dimensionalsubspae (mesh) and a method used to solve the problem and



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 191(b) are valid for any approximation in the energy spae and do not usespeial onditions required for the exat solution (e.g., extra regularity)or its approximation (e.g., Galerkin orthogonality, quasi�uniformity ofmeshes).A posteriori estimates of funtional type involve only global onstants gen-erated by funtional inequalities suh as various embedding estimates, traeinequalities, Poinar�e, Maxwell, Korn inequalities, et. It should be noted thatalthough onstants of this type do not appear in (11) (and in the estimatesderived in [33℄), the importane of studying them was already understood byMikhlin (see [20℄). The reader an �nd an overview of the history of a poste-riori error estimation methods and a subsequent exposition of the funtionalapproah to the problem in [37℄.First estimates of the distane between a funtion in the energy spae andthe exat solution of the stationary Stokes problem in a bounded domain werederived in [35℄ (by means of the variational duality method) and in [36℄ (bytransformations of the integral identity that de�nes the orresponding weaksolution). It is worth starting a short overview of these results with the erroridentity
ν
∥∥∇(v − u)

∥∥2 + ν−1‖τf − σ‖2 = 2(I(v) − I∗(τf )), (12)whih an be viewed as an analog of (11) for the stationary Stokes problem.Here v ∈ Sγ(ω) and
τf ∈ L

2
f (ω) :=

{
τ ∈ L

2(ω) : 〈τ,∇w〉0,ω = 〈f,w〉0,ω ∀w ∈ Sγ(ω)
}are regarded as approximations of the exat veloity �eld u and exat stress�elsσ, respetively. Identity (12) is ful�lled for any v∈Sγ(ω) and any τf ∈L2f (ω).However, it is not very useful for pratie for the same reasons as (11), namely,the funtions in Sγ(ω) and L2f (ω) are subjet to di�erential relations. In [35℄ (seealso [37℄), a way was shown to overome these di�ulties by using omputableestimates of distanes to the sets Sγ(ω) and L2f (ω). As a result, the followingestimates for the veloity and pressure �elds were derived:

ν
∥∥∇(u− ũ)

∥∥
0,ω

6 ‖τ + p̃ I− ν∇ ũ‖0,ω + cFP(ω, γ)‖Div τ + f‖0,ω
+ 2νκ(ω, γ)‖div ũ‖0,ω,

(13)
1

2κ(ω, γ)
‖p − p̃‖0,ω 6 ‖τ + p̃ I− ν∇ ũ‖0,ω + cFP(ω, γ)‖Div τ + f‖0,ω

+ νκ(ω, γ)‖div ũ‖0,ω
(14)Here ν is a positive onstant and ũ ∈ H1(ω) is a vetor valued funtion sat-isfying the Dirihlet boundary onditions. The funtion ũ is regarded as an



192 D. PAULY, S. REPINapproximation of the exat veloity u. Similarly, p̃ is a square integrable fun-tion (with zero mean value if the Dirihlet onditions are imposed on the wholeboundary γ) viewed as an approximation of p and τ ∈ L2(ω) is an approxima-tion of the exat stress �eld σ. The right-hand sides of (13) and (14) have alear meaning: they ontain three nonnegative terms that vanish if the approx-imations oinide with the exat veloity, pressure, and stress, respetively. Inother ases, the terms an be viewed as penalties for possible violations of thethree basi relations that form (1) and (2).It is easy to see that the onstant κ(ω, γ) plays an important role in (13)and (14) and, therefore, it is indeed neessary to have guaranteed majorants ofthis onstant. These onstants arise in the a posteriori analysis of a numerialsolution if it satis�es the divergene free ondition only approximately. If theonstant κ(ω, γD) is known, then by using Corollary 1.2 we an dedue guaran-teed and fully omputable error estimates. For problems in bounded Lipshitzdomains the respetive results are presented in [35�37, 39℄ and other publia-tions ited therein. Also, it should be mentioned that expliit bounds of theonstant κ(ω, γ) are required not only for Stokes type problems. They arise inother ontinuous media problems, whih are not related to visous �uids (e.g.,see [42℄).Subsequently analogous estimates for the veloity and pressure �elds wereobtained for the Stokes problem in the veloity-vortiity-pressure formula-tion [18℄ and for the generalised Stokes problem [41℄. In [7℄, suh estimateswere derived for a lass of stationary problems assoiated with nonlinear vis-ous �uids and in [24℄ for the evolutionary Stokes problem. We note that theapproah used in these publiations and in the present paper di�ers essentiallyfrom the so-alled residual method often used in the �nite element ommunityfor getting indiators of approximation errors (see, e.g., [46℄).1.4. Outline of the paper. In the �rst part of the paper, we reall someknown results related to the analysis of boundary value problems in exteriordomains paying a speial attention to the stability Lemma 2.3 and the orre-sponding orollaries.�3 is devoted to omputable bounds κ⊕(Ω,ΓD) for the stability onstant
κ(Ω,ΓD). In Lemma 3.2, we obtain a desired estimate for κ⊕(Ω,ΓD), whihinvolves known onstants and the onstant κ(ω, γD) assoiated with a boundeddomain ω (whih is a suitable trunation of Ω). Estimates of the last onstanthave been derived in several publiations ited above, so that we view thisproblem as solvable (at least in the sense that a ertain guaranteed boundof κ(ω, γD) an be derived). As a result, we obtain estimates of the distanebetween a vetor �eld in Ω and the respetive set of solenoidal �elds de�ned in Ωand satisfying the same boundary onditions (Lemma 3.4). These estimates are



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 193used in �4, we derive a posteriori error estimates of the funtional type, whihare valid for a wide lass of approximate solutions to the stationary Stokesproblem in exterior domains.Estimates for the veloity are obtained in three di�erent forms. The �rst(and the simplest) form is valid for approximations in S(Ω), i.e., for solenoidalvetor-valued funtions that satisfy the Dirihlet boundary ondition exatly(Theorem 4.1). These estimates do not ontain the onstant κ(Ω,ΓD). Esti-mates of the seond type are valid for approximations in H1(Ω) still satisfyingthe boundary ondition exatly but admit possibly nonsolenoidal funtions(Theorem 4.2). They involve a term that penalises possible violation of thesolenoidality ondition and has the onstant κ(Ω,ΓD) as a penalty fator. Fi-nally, the most general form of the estimate is appliable for nononformingapproximations, whih even may not belong to the energy lass H1(Ω) (The-orem 4.6). It involves one more term that an be viewed as a measure of thedistane to the energy lass natural for the veloity funtion. Also, we dedueestimates for approximations of the pressure (Theorem 4.4 and Theorem 4.6)and the stress �eld (Subsetion 4.4). In �4.5 we onsider lower bounds and in�4.6 we adapt our results to the speial ase of spae dimension d = 2.�2. Preliminaries2.1. Exterior domain and main funtional inequalities. We onsideran exterior domain Ω ⊂ R
d, where d > 3 (the speial ase d = 2 is studied inSubsetion 4.6), with a (strong) Lipshitz boundary Γ, whih is omposed oftwo open and disjoint parts ΓD,ΓN ⊂ Γ (Dirihlet and Neumann part) with

Γ = ΓD ∪ ΓN . Moreover, we assume that there exist 0 < r1 < r2 suh that
R
d \ Ω ⊂ Br1 and denote (see Figure 1)

ω := Ωr2 := Ω ∩Br2 , γ = Γ ∪ Sr2 , γD := ΓD ∪ Sr2 , (15)where Br and Sr denote the open ball and the sphere of radius r entered atthe origin in R
d. By η we denote a Lipshitz ontinuous ut-o� funtion, whihvanishes in the ball2 Br1 , equals 1 in R

d \Br2 , and takes values in [0, 1].The two main ingredients for our proofs are Lemma 1.1 and a few elemen-tary results from the theory of ∇-curl-div�systems in exterior domains andespeially R
d (see, e.g., [16, 43℄ or [12, 26℄ and in partiular [28℄ as well as ref-erenes therein), whih an be summarised in the two subsequent lemmas asfollows.2For the sake of simpliity we heneforth operate with the balls Br1 and Br2 . However, ifneessary Br1 an be replaed by a Lipshitz domain ontaining R

2 \Ω and Br2 by anotherLipshitz domain ontaining Br1 .
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ω

Ω

η = 1

η = 0

∇ η 6= 0

R
d \ Ω

Γ

Γ
ΓD

ΓDSr2

Sr1

Figure 1. R
d \ Ω (gray) surrounded by the boundary Γ (thinblak lines), the boundary part ΓD (thik blak lines), and thearti�ial boundary spheres (dashed lines)Lemma 2.1 (Friedrihs/Poinar�e lemma for exterior domains). The followingweighted Friedrihs/Poinar�e estimates hold true.(i) There exists c > 0 suh that for all v ∈ H1

−1,ΓD
(Ω) we have

‖v‖−1,Ω 6 c‖∇ v‖0,Ω.The best onstant c is alled the Friedrihs/Poinar�e onstant and wedenote it by cFP(Ω,ΓD).(ii) If ΓD = Γ, then cFP(Ω,Γ) = cF(Ω) (the Friedrihs onstant) and
cF(Ω) 6 cd :=

2

d− 2
.Hene for all v∈H1

−1,Γ(Ω) the Friedrihs estimate ‖v‖−1,Ω6cd‖∇v‖0,Ωholds true. If ΓD = ∅, then cFP(Ω,∅) is replaed by the Poinar�e on-stant cP(Ω). In this ase, the Poinar�e estimate
‖v‖−1,Ω 6 cP(Ω)‖∇ v‖0,Ωis ful�lled for all v ∈ H1

−1(Ω).
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d, then the Friedrihs and Poinar�e onstants oinide and,moreover,

cFP(R
d) = cF(R

d) = cP(R
d) 6 cd.Hene for all v ∈ H1

−1(R
d) we have ‖v‖−1,Rd 6 cd‖∇ v‖0,Rd .Note that no boundary or mean value onditions are needed in Lemma 2.1(beause onstant funtions are not integrable in L2−1(Ω)).Lemma 2.2 (∇-curl-div lemma for exterior domains). Let Ω = R

d and h ∈
L2(Rd). Then there exists a unique v ∈ H1

−1(R
d) suh that curl v = 0 and

div v = h. Moreover,
1

cd
‖v‖−1,Rd 6 ‖∇ v‖0,Rd = ‖div v‖0,Rd = ‖h‖0,Rd .The results of Lemma 2.2 are well known and follow diretly by Fourieranalysis, see, e.g., [16, 30�32℄ or [12, 26℄. Notie that the well-known equation

−∆ = curl∗ curl−∇ div implies the identity
‖∇ v‖20,Rd = ‖ curl v‖20,Rd + ‖div v‖20,Rd (16)for all v ∈ C∞(Rd) having ompat support. By density and ontinuity argu-ments it an be extended to all v ∈ H1

−1(R
d). Hene the relation

‖∇ v‖0,Rd = ‖div v‖0,Rdin Lemma 2.2 follows immediately.2.2. Stability lemma and Stokes problem in exterior domains. Forexterior domains we have a result similar to Lemma 1.1 (see [9℄).Lemma 2.3 (stability lemma for exterior domains). There exists c > 0 suhthat for any h ∈ L2(Ω) there is a vetor �eld
uh ∈ H

1
−1,ΓD

(Ω)with
div uh = h and ‖∇ uh‖0,Ω 6 c‖h‖0,Ω.The best onstant is denoted by κ(Ω,ΓD).In the subsequent Lemma 3.2 we present omputable upper bounds for

κ(Ω,ΓD).Remark 2.4. In [9℄ only the ase of ΓD = Γ was onsidered, but it is trivialthat then the stability lemma is true for general ΓD as well. It should benoted that unlike in the ase of a bounded domain, no mean value onditionis imposed on h even if ΓD = Γ.Lemma 2.3 immediately implies the inf-sup ondition.



196 D. PAULY, S. REPINCorollary 2.5 (inf-sup lemma for exterior domains). We have
inf

h∈L2(Ω)
sup

u∈H1
−1,ΓD

(Ω)

〈h,div u〉0,Ω
‖h‖0,Ω‖∇u‖0,Ω

>
1

κ(Ω,ΓD)
.From now on, let f ∈ L21(Ω), uD ∈ S−1(Ω) be given data. The lassialStokes problem in an exterior domain Ω onsists of �nding a vetor-valuedfuntion u (veloity) and a salar valued funtion p (pressure) satysfying thesystem

−Div σ = f in Ω, (17)
σ = ν∇u− p I in Ω, (18)

div u = 0 in Ω, (19)
u = uD on ΓD, (20)
σn = 0 on ΓN , (21)where u additionally satis�es a proper deay onditions at in�nity, so that

u ∈ S−1(Ω) or u ∈ H1
−1(Ω), i.e.,
u ∈ L

2
−1(Ω) and ∇u ∈ L

2(Ω).The lassial (point-wise) ondition reads
u(x)

|x|→∞−−−−→ 0. (22)The orresponding generalised solution
u ∈ uD + S−1,ΓD

(Ω)is de�ned by the integral identity (see, e.g., [9, 13℄)
〈ν∇u,∇ϕ〉0,Ω = 〈f, ϕ〉0,Ω ∀ϕ ∈ S−1,ΓD

(Ω). (23)Note that, sine
〈f, ϕ〉0,Ω =

〈
ρ f, ρ−1ϕ

〉
0,Ω
,the right-hand side of (23) is well de�ned. Using the Ansatz u = uD + û with

û ∈ S−1,ΓD
(Ω), we redue this formulation to �nd û ∈ S−1,ΓD

(Ω) suh that forall ϕ ∈ S−1,ΓD
(Ω) we have
〈ν∇ û,∇ϕ〉0,Ω = 〈f, ϕ〉0,Ω − 〈ν∇uD,∇ϕ〉0,Ω.Another formulation taking the pressure into aount leads to the followingsaddle point formulation: �nd

(u, p) ∈
(
uD + H

1
−1,ΓD

(Ω)
)
× L

2(Ω)
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−1,ΓD

(Ω)× L2(Ω) we have
〈ν∇u,∇ϕ〉0,Ω − 〈p,divϕ〉0,Ω = 〈f, ϕ〉0,Ω, (24)

〈div û, φ〉0,Ω = 0. (25)By standard arguments (see, e.g., [8,9,13℄) and the inf-sup lemma, we knowthat for f ∈ L21(Ω) and uD ∈ S−1(Ω) the Stokes system is uniquely solvablewith u ∈ uD + S−1,ΓD
(Ω) and p ∈ L2(Ω). Moreover, the solution meets theestimates

ν‖∇ û‖0,Ω 6 cFP(Ω,ΓD)‖f‖1,Ω + ν‖∇uD‖0,Ω,
ν‖∇u‖0,Ω 6 cFP(Ω,ΓD)‖f‖1,Ω + 2ν‖∇ uD‖0,Ω,

‖p‖0,Ω 6 2κ(Ω,ΓD)
(
cFP(Ω,ΓD)‖f‖1,Ω + ν‖∇uD‖0,Ω

)
.�3. Estimates of κ(Ω,ΓD)Our goal is to dedue majorants for the onstant in Lemma 2.3 that in-volve only known onstants (suh as cd) and stability onstants for a boundeddomain ω generated by a ertain trunation of Ω.First we disuss the simplest ase of a ompatly supported right-hand side.Lemma 3.1. There exists c > 0 suh that for all h ∈ L2(Ω) with supph ⊂ ωand h ∈ L2γD (ω), i.e., ∫Ω h =

∫
ω h = 0 if ΓD = Γ, there exists a vetor �eld

uh ∈ H1
−1,ΓD

(Ω) suh that
div uh = h and ‖∇ uh‖0,Ω 6 c‖h‖0,Ω.The funtion uh an be hosen with ompat support in ω, in partiular,

uh ∈ H
1
γD(ω) ⊂ H

1
ΓD

(Ω).In this ase, κ(Ω,ΓD) 6 κ(ω, γD).Hene we arrive at the rather obvious onlusion that for a ompatly sup-ported h the onstant κ(Ω,ΓD) an be estimated by κ(ω, γD).Proof of Lemma 3.1. Set
g := h|ω ∈ L

2
γD

(ω).By Lemma 1.1 there exist κ(ω, γD) > 0 and ug ∈ H1
γD

(ω), ug = 0 on Sr2 suhthat div ug = g and ‖∇ug‖0,ω 6 κ(ω, γD)‖g‖0,ω . Let uh be the extension byzero of ug to Ω. Then uh ∈ H1
ΓD

(Ω) and suppuh = suppug ⊂ ω. Moreover,
div uh = h and

‖∇uh‖0,Ω = ‖∇ug‖0,ω 6 κ(ω, γD)‖g‖0,ω = κ(ω, γD)‖h‖0,Ω,ompleting the proof. �



198 D. PAULY, S. REPINNow we present the main result, whih provides an upper bound for the bestonstant κ(Ω,ΓD) in the stability Lemma 2.3 for exterior domains as well asan alternative proof of this lemma.Lemma 3.2. Let Ω and ω be de�ned by (15). Then
κ(Ω,ΓD) 6 κ⊕(Ω,ΓD) := (1 + κ)

(
1 + cd αρ(r2)

)with κ(Ω,ΓD) from Lemma 2.3, where α and κ are de�ned in (29) and (31),i.e.,
α = α(r1, r2, η) = max

x∈Br2
\Br1

∣∣∇ η(x)
∣∣, κ = min

{
κ(ω, γD), κ(ω, γ)

}
.Remark 3.3. It should be noted that κ 6 κ(ω, γD) and κ 6 κ(ω, γ), where theseond bound means that κ an be estimated independently of the boundarypart ΓD of Γ. Moreover, the onstant κ⊕(Ω,ΓD) depends on the dimension d,the radii r1, r2, and the Lipshitz ontinuous ut-o� funtion η. Optimal val-ues of these parameters (whih minimise the onstant) are not known a prioriand should be de�ned by solving an additional algebrai problem. If η is on-struted, e.g., by a simple a�ne funtion with r2 = r1 + 1, then α = 1 and wehave one possible upper bound

κ⊕(Ω,ΓD) 6 (1 + κ)
(
1 + cd

√
1 + r22

)
6

(
1 + κ(ω, γ)

)(
1 +

2
√
2

d− 2
r2

)
.In some ases, this bound may be rather oarse, but, anyhow, it presents aguaranteed upper bound of the stability onstant κ⊕(Ω,ΓD) assoiated withthe exterior domain Ω.Proof of Lemma 3.2. We extend h by 0 to R

d \Ω and identify the extendedfuntion with h ∈ L2(Rd). By Lemma 2.2 we have a vetor �eld v ∈ H1
−1(R

d)with curl v = 0 and div v = h in R
d as well as

1

cd
‖v‖−1,Rd 6 ‖∇ v‖0,Rd = ‖div v‖0,Rd = ‖h‖0,Ω. (26)We reall that our ut-o� funtion η satis�es η|Br1

= 0 and η|
Rd\Br2

= 1.Therefore, ηv ∈ H1
−1,Γ(Ω) and supp(ηv) ⊂ R

d \Br1 . In view of Lemma 2.3, ourgoal is to �nd a vetor-valued funtion vh ∈ H1
−1,ΓD

(Ω) suh that div vh = hin Ω and the stability inequality holds true. We suggest to onstrut it in theform
vh := ηv + vω, (27)where vω ∈ H1

ΓD
(Ω) with supp vω ⊂ ω is the extension by zero to Ω of somevetor-valued funtion uω ∈ H1

γD (ω) that is supported in ω̄ and vanishes on Sr2 .
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h = div vh = ηh+∇ η · v + div vω in Ωimposes a ondition on vω and uω. Let
g := (1− η)h−∇ η · v ∈ L

2(ω) in ω.Notie that supp(1− η) ⊂ Br2 , supp∇ η ⊂ Br2 \Br1 and hene supp g ⊂ ω (ifwe view g as a funtion in Ω). Sine
g = (1− η)h+∇(1− η) · v = div

(
(1− η)v

)and by the properties of η we have by the Gauss or Stokes theorem∫

ω

g =

∫

γ

(1− η)n · v =

∫

Γ

n · v = −
∫

Rd\Ω

div v = −
∫

Rd\Ω

h = 0.Hene g has zero mean value independent of the boundary part γ = γD, i.e.,we always have ∫

ω

g = 0. (28)Now, the existene of uω = ug,γD ∈ H1
γD(ω), respetively, uω = ug,γ ∈ H1

γ(ω)suh that div uω = g together with the stability estimate
‖∇uω‖0,ω 6 κ‖g‖0,ω , κ := min

{
κ(ω, γD), κ(ω, γ)

} (29)is provided by Lemma 1.1. Note that uω ∈ H1
γ(ω) an also be regarded as asuitable funtion if the homogeneous Dirihlet boundary onditions are im-posed only on a part ΓD of Γ, so that we an operate with one and the sameonstant κ(ω, γ). Sine uω = 0 on Sr2 ,

vω :=

{
uω in ω,
0 in R

d \Br2meets our needs. Then vh = ηv + vω ∈ H1
−1,ΓD

(Ω) and
div vh = ηh+∇ η · v + g = h in Ω.It remains to estimate ‖∇ vh‖0,Ω. By the properties of η we have

‖∇ η ⊗ v‖0,Rd , ‖∇ η · v‖0,Rd 6 α‖v‖0,Br2
\Br1

, (30)where
α := α(r1, r2, η) := max

x∈Rd

∣∣∇ η(x)
∣∣ = max

x∈Br2
\Br1

∣∣∇ η(x)
∣∣. (31)Sine

‖g‖0,ω 6
∥∥(1− η)h

∥∥
0,ω

+ ‖∇ η · v‖0,ω,
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‖∇ vω‖0,Ω = ‖∇ uω‖0,ω

6 κ ‖g‖0,ω 6 κ
(∥∥(1− η)h

∥∥
0,ω

+ α ‖v‖0,Br2
\Br1

)

6 κ
(
‖h‖0,Ω + α ‖v‖0,Br2

\Br1

)
,

∥∥∇(ηv)
∥∥
0,Ω

6 ‖h‖0,Ω + α ‖v‖0,Br2
\Br1

.

(32)By (26), the seond terms on the right-hand sides an be estimated as follows:
‖v‖0,Br2

\Br1
6 ρ(r2)‖v‖−1,Rd 6 cd ρ(r2)‖∇ v‖0,Rd = cd ρ(r2)‖h‖0,Ω. (33)Finally, by (27), (32), and (33), we onlude that

‖∇ vh‖0,Ω 6 (1 + κ)
(
‖h‖0,Ω + cd αρ(r2)‖h‖0,Ω

)
= κ⊕(Ω,ΓD)‖h‖0,Ω,�nishing the proof. �3.1. Estimates of the distane to the set S−1,ΓD
(Ω). As in the ase ofbounded domains, the stability Lemma 2.3 implies estimates of the quantity

dist
(
u,S−1,ΓD

(Ω)
)
= inf

ϕ∈S−1,ΓD
(Ω)

∥∥∇(u− ϕ)
∥∥
0,Ω
,whih is a measure of the distane between u ∈ H1

−1,ΓD
(Ω) and the orrespond-ing set of divergene free vetor �elds.Lemma 3.4. For any u ∈ H1

−1,ΓD
(Ω) there exists a solenoidal u0 ∈ S−1,ΓD

(Ω)suh that
dist

(
u,S−1,ΓD

(Ω)
)
6

∥∥∇(u− u0)
∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω.Proof. Let h = div u ∈ L2(Ω). By Lemma 2.3 there exists uh ∈ H1
−1,ΓD

(Ω)suh that div uh = h and
‖∇uh‖0,Ω 6 κ(Ω,ΓD)‖h‖0,Ω.Then u0 := u− uh ∈ S−1,ΓD

(Ω) and we have
∥∥∇(u− u0)

∥∥
0,Ω

=
∥∥∇uh

∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω. �It is easy to extend this result to the ase where v satis�es inhomogeneousDirihlet boundary onditions on a part of the boundary.Corollary 3.5. For any u ∈ H1
−1(Ω) there exists a solenoidal u0 ∈ S−1(Ω)suh that u− u0 ∈ H1

−1,ΓD
(Ω), i.e., u0|ΓD

= u|ΓD
, and

∥∥∇(u− u0)
∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω.



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 201The last assertion shows the existene of a ontinuous lifting operator thatlifts the boundary datum u|ΓD
to the domain Ω with a solenoidal representa-tive. �4. A posteriori estimatesA posteriori estimates of funtional type for various ellipti problems inexterior domains were derived in [27℄. In this setion, we derive estimates ofthe di�erene between the exat solution of the exterior Stokes problem (17)�(21), respetively, (24)�(25) (presented by the �elds of veloity u, pressure p,and stress σ) and the respetive approximations ũ, p̃, and σ̃.First, we introdue two more weighted spaes for tensor valued funtions:

D(Ω) :=
{
τ ∈ L

2(Ω) : Div τ ∈ L
2
1(Ω)

}
,where Div is the divergene operator for tensor �elds ating as the usual row-wise divergene. D(Ω) is a Hilbert spae with norm de�ned by

‖τ‖2D := ‖τ‖20,Ω + ‖Div τ‖21,Ω.By DΓN
(Ω) we denote the losure of C∞

ΓN
(Ω)-tensor �elds in the norm of D(Ω).Then for all ϕ ∈ H1

−1,ΓD
(Ω) and all τ ∈ DΓN

(Ω), we observe that
〈τ,∇ϕ〉0,Ω + 〈Div τ, ϕ〉0,Ω = 0. (34)Notie that

〈Div τ, ϕ〉0,Ω = 〈ρDiv τ, ρ−1ϕ〉0,Ω,so that the seond term in the above relation is well de�ned.4.1. Estimates for the veloity. From now on,
ũ ∈ L

2
−1(Ω) and p̃ ∈ L

2(Ω)are viewed as approximations of our exat solutions
u = uD + û ∈ uD + S−1,ΓD

(Ω) ⊂ S−1(Ω) and p ∈ L
2(Ω)to our exterior Stokes problem (24)�(25), respetively. By

σ̃ ∈ L
2(Ω)we denote an approximation of the tensor �eld

σ = ν∇u− pI,whih an be onstruted by a ertain reonstrution of ũ and p̃ or omputedindependently.First, we onsider the simplest ase where
ũ ∈ uD + S−1,ΓD

(Ω) ⊂ S−1(Ω).



202 D. PAULY, S. REPINThen by (24) for all solenoidal ϕ ∈ S−1,ΓD
(Ω) we have

〈
ν∇(u− ũ),∇ϕ

〉
0,Ω

= 〈f, ϕ〉0,Ω − 〈ν∇ ũ,∇ϕ〉0,Ω.Let τ ∈ DΓN
(Ω) and q ∈ L2(Ω). Using Lemma 2.1, identity (34), and therelation

〈q I,∇ϕ〉0,Ω = 0(whih is true for all ϕ ∈ S−1(Ω) beause I : ∇ϕ = divϕ), we �nd that
〈
ν∇(u− ũ),∇ϕ

〉
0,Ω

=〈Div τ+f, ϕ〉0,Ω+〈τ + q I−ν∇ ũ,∇ϕ〉0,Ω (35)
6‖Div τ + f‖1,Ω‖ϕ‖−1,Ω +

∥∥ν−1/2(τ + q I− ν∇ ũ)
∥∥
0,Ω

‖ν1/2 ∇ϕ‖0,Ω

6

(
ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ+f‖1,Ω+

∥∥ν−1/2(τ+q I−ν∇ũ)
∥∥
0,Ω

)
‖ν1/2 ∇ϕ‖0,Ω.Choosing ϕ = u− ũ ∈ S−1,ΓD

(Ω), we arrive at the following estimate.Theorem 4.1. Let ũ ∈ uD + S−1,ΓD
(Ω). Then for all τ ∈ DΓN

(Ω) and all
q ∈ L2(Ω) we have

∥∥ν1/2∇(u− ũ)
∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω
.The upper bound oinides with the norm of the error on the left-hand sideif τ = σ (i.e., τ oinides with the exat stress tensor) and q = p (i.e., qrepresents the exat pressure p). In other words, we have the prinipal erroridentity

∥∥ν1/2 ∇(u− ũ)
∥∥
0,Ω

= min
τ∈DΓN

(Ω),

q∈L2(Ω)

(
ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω +

∥∥ν−1/2(τ + q I− ν∇ ũ)
∥∥
0,Ω

)and the minimum is attained at τ = σ and q = p. Similar identities areful�lled for many other linear ellipti problems. However, Theorem 4.1 hasa drawbak: The estimate is valid only for those approximate vetor �elds ũthat exatly satisfy the solenoidal ondition and the boundary ondition. Inpratie, the solenoidal requirement is di�ult to ful�l and approximationsarising in `real life' omputations often satisfy the solenoidal ondition onlyapproximately. Therefore, our next goal is to extend the estimate to a widerlass of nonsolenoidal vetor �elds. Below we extend the last estimate to awider lass inluding nonsolenoidal vetor funtions and assume only that
ũ ∈ uD + H

1
−1,ΓD

(Ω) ⊂ H
1
−1(Ω),



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 203i.e., ũ is possibly nonsolenoidal but satis�es the boundary ondition exatly.Corollary 3.5 guarantees the existene of
u0 ∈ S−1(Ω)suh that

u0 − ũ ∈ H
1
−1,ΓD

(Ω)and
‖∇(u0 − ũ)‖0,Ω 6 κ(Ω,ΓD)‖div ũ‖0,Ω. (36)Hene u0 = ũ + u0 − ũ ∈ uD + H1

−1,ΓD
(Ω), i.e., u0 ∈ uD + S−1,ΓD

(Ω), and byTheorem 4.1 we have
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

6
∥∥ν1/2 ∇(u− u0)

∥∥
0,Ω

+
∥∥ν1/2 ∇(u0 − ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇u0)

∥∥
0,Ω

+
∥∥ν1/2 ∇(u0 − ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕

∥∥∇(u0 − ũ)
∥∥
0,Ω
.

(37)
In view of (36), we obtain the following result.Theorem 4.2. Let ũ ∈ uD + H1

−1,ΓD
(Ω). Then for all τ ∈ DΓN

(Ω) and all
q ∈ L2(Ω) we have

∥∥ν1/2 ∇(u− ũ)
∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω.If the approximation ũ is solenoidal we reover Theorem 4.1 and, again,the upper bound oinides with the norm of the error on the left-hand side if

τ = σ, q = p. If the approximation ũ is solenoidal only in, e.g., Rd \Br2 thenwe trivially get an estimate by Theorem 4.2, replaing the term ‖div ũ‖0,Ωby ‖div ũ‖0,ω. But with a moderate additional assumption on the deay ofthe approximation we an even do better in this ase, replaing the onstant
κ(Ω,ΓD) by a stability onstant κ(ω, γD) of the bounded domain ω.For this let

ũ = uD + w ∈ uD + H
1
−1,ΓD

(Ω)



204 D. PAULY, S. REPINwith div ũ = divw = 0 in R
d \Br2 and if γD = γ (i.e., ΓD = Γ) then ũ satis�es

div ũ ∈ L2⊥(ω). To meet the last ondition, we additionally assume for the aseof ΓD = Γ that
|w| 6 c r−m, m > d− 1 (38)as r → ∞ with some c > 0 independent of r (notie that r−m ∈ L2−1(R

d \B1)if m > d/2− 1). Indeed, it is easy to see that
∣∣∣∣
∫

ω

div ũ

∣∣∣∣ =
∣∣∣∣
∫

ω

divw
∣∣ =

∣∣∣∣
∫

Sr

n · w
∣∣∣∣ 6 c rd−1−m r→∞−−−→ 0for r > r2. Now we onsider the Ansatz

u0 := ũ+

{
uω in ω,
0 in R

d \Br2 ,where uω ∈ H1
γD

(ω). Utilising Lemma 1.1, we �nd uω ∈ H1
γD

(ω) suh that
div uω = − div ũ in ωtogether with the stability estimate

‖∇uω‖0,ω 6 κ(ω, γD)‖div ũ‖0,ω.The funtion u0 so onstruted satis�es the boundary ondition on ΓD and itis a solenoidal �eld, i.e.,
u0 ∈ uD + S−1,ΓD

(Ω).Using u0 as an admissible vetor �eld in (37) yields the estimate
∥∥ν1/2∇(u− ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕

∥∥∇(u0 − ũ)
∥∥
0,Ω︸ ︷︷ ︸

=‖∇uω‖0,ω

.Hene we have the following improved estimate for the ase of a partiallysolenoidal approximation.Corollary 4.3. Let ũ ∈ uD + H1
−1,ΓD

(Ω) and let
div ũ = 0 in R

d \Br2 .



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 205If ΓD = Γ, then we additionally impose ondition (38). Then for all τ ∈
DΓN

(Ω) and all q ∈ L2(Ω) we have
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(ω, γD)‖div ũ‖0,ω.Here the last term on the right-hand side is a penalty for a possible violationof the solenoidal ondition in ω.4.2. Estimates for the pressure. By Lemma 2.3 there exists a vetor �eld

ψ ∈ H1
−1,ΓD

(Ω) suh that
divψ = p− p̃ and ‖∇ψ‖0,Ω 6 κ(Ω,ΓD)‖p− p̃‖0,Ω. (39)For all ũ ∈ uD + H1

−1,ΓD
(Ω) and all τ ∈ DΓN

(Ω) we have
‖p−p̃‖20,Ω=〈p−p̃,divψ〉0,Ω

=
〈
ν∇(u−ũ),∇ψ

〉
0,Ω

−〈Div τ+f, ψ〉0,Ω+〈ν∇ ũ−p̃ I−τ,∇ψ〉0,Ω

6

(∥∥ν∇(u− ũ)
∥∥
0,Ω

+ cFP(Ω,ΓD)‖Div τ

+ f‖1,Ω + ‖ν∇ ũ− p̃ I− τ‖0,Ω
)
‖∇ψ‖0,Ω,where we have used Lemma 2.1 for ψ and the relation divψ = I : ∇ψ. By (39)we obtain

‖p− p̃‖0,Ω 6 κ(Ω,ΓD)
(
ν
1/2
⊕

∥∥ν1/2 ∇(u− ũ)
∥∥
0,Ω

+ cFP(Ω,ΓD)‖Div τ + f‖1,Ω
+ ν

1/2
⊕

∥∥ν−1/2(τ + p̃ I− ν∇ ũ)
∥∥
0,Ω

)
.In order to estimate the �rst term on the right-hand side, we use Theorem 4.2with q = p̃ and arrive at the desired estimate for the pressure �eld.Theorem 4.4. Let p̃ ∈ L2(Ω). Then for all τ ∈ DΓN

(Ω) and all
ũ ∈ uD + H

1
−1,ΓD

(Ω)we have
‖p − p̃‖0,Ω 6 κ(Ω,ΓD)

(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− ν∇ ũ)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div ũ‖0,Ω
)
.

(40)



206 D. PAULY, S. REPINRemark 4.5. The upper bound (40) onsists of the same terms as the upperbound of Theorem 4.2 and vanishes if ũ = u, τ = σ, p̃ = p. However, in thisase, the estimate stronger depends on the stability onstant κ(Ω,ΓD). A simi-lar e�et ours in the estimates related to bounded domains (see [35, 36℄).4.3. Estimates for nononforming approximations. The term nonon-forming is usually applied to approximations that belong to a funtional lasswider than the natural energy lass of the problem in question. For exam-ple, nononformity of approximations may arise due to violation of ontinuityonditions or main boundary onditions. Nowadays suh type approximationsare widely used in omputational pratie (e.g., mortar, �nite volume, anddisontinuous Galerkin approximations) beause they o�er more freedom forvarious mesh adaptive proedures. Appliation of funtional type a posterioriestimates to nononforming approximations of ellipti problems was studiedearlier in [4, 15, 37, 45℄. In this setion, we brie�y disuss this question in theontext of the exterior Stokes problem.Let us now assume that we have a nononforming approximation
Υ̃ ∈ L

2(Ω)of the exat strain tensor �eld
Υ := ∇u, u = uD + û ∈ uD + S−1,ΓD

(Ω) ⊂ S−1(Ω).For example, Υ̃ as a �broken gradient� tensor �el, the output of some dis-ontinuous Galerkin method. By the triangle inequality, we estimate the dif-ferene between these tensor �elds using a ertain onforming approximation
ũ ∈ uD + H1

−1,ΓD
(Ω) and obtain

∥∥ν1/2(Υ− Υ̃)
∥∥
0,Ω

6
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

+
∥∥ν1/2(∇ ũ− Υ̃)

∥∥
0,Ω
.Theorem 4.2 implies the estimate

∥∥ν1/2(Υ − Υ̃)
∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω +

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ω
.Using the triangle inequality and Theorem 4.4 we obtain a posteriori errorestimates for nononforming approximations.



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 207Theorem 4.6. Let Υ̃ ∈ L2(Ω) and let p̃ ∈ L2(Ω). Then for all τ ∈ DΓN
(Ω),

q ∈ L2(Ω), and ũ ∈ uD + H1
−1,ΓD

(Ω) we have
∥∥ν1/2(Υ− Υ̃)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− νΥ̃)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω + 2

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ωand

‖p − p̃‖0,Ω 6 κ(Ω,ΓD)
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− νΥ̃)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div ũ‖0,Ω

+ 2ν
1/2
⊕

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ω

)
.It is easy to see that in the ase where Υ̃ = ∇ ũ is generated by the onform-ing approximation ũ ∈ uD +H1

−1,ΓD
(Ω), the last term vanishes and we reoverTheorem 4.2 and Theorem 4.4.4.4. Estimates for the stress �eld. Error estimates for the stress tensor�eld follow diretly from the estimates derived above for the veloity vetor�eld and the pressure funtion. Indeed, let σ̃ ∈ L2(Ω) be an approximation ofthe exat stress tensor

σ = ν∇u− p I = νΥ− p I.Moreover, let Υ̃ ∈ L2(Ω) and p̃ ∈ L2(Ω). Then, the respetive error estimatefollows from the triangle inequality
‖σ̃ − σ‖0,Ω 6 ‖σ̃ − νΥ̃ + p̃ I‖0,Ω + ν

1/2
⊕

∥∥ν1/2(Υ− Υ̃)
∥∥
0,Ω

+ d1/2‖p− p̃‖0,Ω.In partiular, we an set Υ̃ = ∇ ũ, where ũ ∈ uD + H1
−1,ΓD

(Ω). The �rst termon the right-hand side involves only known tensor �elds and the seond andthird ones are estimated by, e.g., Theorem 4.2, Theorem 4.4, and Theorem 4.6.4.5. Lower bounds of the error. Let
ũ ∈ uD + H

1
−1,ΓD

(Ω),



208 D. PAULY, S. REPINi.e., u− ũ ∈ H1
−1,ΓD

(Ω). Obviously (sine the subsequent max-property is truefor any Hilbert3 spae), by (24) we have
∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

= max
ϕ∈H1

−1,ΓD
(Ω)

(
2
〈
ν∇(u− ũ),∇ϕ

〉
0,Ω

− ‖ν1/2 ∇ϕ‖20,Ω
)

> 2〈ν∇u,∇ϕ〉0,Ω − 2〈ν∇ ũ,∇ϕ〉0,Ω − ‖ν1/2 ∇ϕ‖20,Ω
= 2〈f, ϕ〉0,Ω + 2〈q,divϕ〉0,Ω −

〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ω

+ 2〈p − q,divϕ〉0,Ωand the maximum is attained at ϕ = u − ũ ∈ H1
−1,ΓD

(Ω). The last term anbe simply (but rather oarsly) estimated by Theorem 4.4 (p̃ = q), what yieldsthe estimate presented below.Theorem 4.7. For all ũ, v ∈ uD + H1
−1,ΓD

(Ω) and all ϕ ∈ H1
−1,ΓD

(Ω), τ ∈
DΓN

(Ω), and q ∈ L2(Ω) we have
∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω + 2〈q,divϕ〉0,Ω −
〈
ν∇(2ũ + ϕ),∇ϕ

〉
0,Ω

− 2κ(Ω,ΓD)‖divϕ‖0,Ω
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + q I− ν∇ v)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div v‖0,Ω
)
.In partiular v = ũ is possible. If ϕ ∈ S−1,ΓD

(Ω) then the simple lower bound
∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ωis true. Moreover, equality ours for ϕ = u−ũ, provided that the approximation

ũ is also solenoidal, i.e., ũ ∈ uD + S−1,ΓD
(Ω).To handle a nononforming approximation Υ̃ ∈ L2(Ω), we an simply utilisethe triangle inequality and apply Theorem 4.7.Theorem 4.8. Let Υ̃ ∈ L2(Ω). Then for all ϕ ∈ H1

−1,ΓD
(Ω), τ ∈ DΓN

(Ω),
q ∈ L2(Ω), and ũ, v ∈ uD + H1

−1,ΓD
(Ω), we have

∥∥ν1/2(Υ− Υ̃)
∥∥
0,Ω

>
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

−
∥∥ν1/2(∇ ũ− Υ̃)

∥∥
0,Ω
,3In any Hilbert spae H is true ‖x‖2 = maxy∈H

(

2〈x, y〉 − ‖y‖2
), in our ase we an set

H = L2(Ω).
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∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω + 2〈q,div ϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ω

− 2κ(Ω,ΓD)‖divϕ‖0,Ω
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + q I− ν∇ v)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div v‖0,Ω
)
.4.6. Speial ase: 2D exterior domains. For a Lipshitz domain D ⊂ R

2we introdue somewhat di�erent weighted spaes by using logarithmi weights,namely,
L
2
±1,ln(D) :=

{
φ ∈ L

2
loc(D) :

(
ρ ln(e+ ρ)

)±1
φ ∈ L

2(D)
}
,

H
1
−1,ln(D) :=

{
φ ∈ L

2
−1,ln(D) : ∇φ ∈ L

2(D)
}
,where e is the Euler number, see, e.g., [9, 16, 43℄. We notie that at in�nity(

ρ ln(e+ρ)
)±1 behaves like (r ln r)±1. The inner produt in L2±1,ln(D) is de�nedby the relation

〈φ , ψ 〉±1,ln,D :=
〈(
ρ ln(e+ ρ)

)±2
φ , ψ

〉
0,D
.All other weighted spaes and norms are modi�ed and de�ned in a similar way.The sets Ω ⊂ R

2 and ω ⊂ R
2 are de�ned as in �2, i.e., Ω ⊂ R

2 is an exteriorLipshitz domain and ω is a ertain trunation of Ω. The situation is nowdi�erent from the ase of d > 3 beause the onstants4 will be integrable inour weighted spaes, i.e., 1 ∈ L2−1,ln(Ω). Introduing additionally
H
1
−1,ln,∅(Ω) := H

1
−1,ln(Ω) ∩ R

⊥−1,ln,Ωwe have the following Friedrihs/Poinar�e estimate for exterior domains.Lemma 4.9. There exists c > 0 suh that
‖v‖−1,ln,Ω 6 c‖∇ v‖0,Ωfor all v ∈ H1

−1,ln,ΓD
(Ω). The best onstant c is denoted by cFP(Ω,ΓD). In thespeial ase where Be ⊂ R

d \ Ω and ΓD = Γ, we have cFP(Ω,Γ) 6 2.This theorem follows from [27, Appendix 4.2, Lemma 4.1, Corollary 4.2,Remark 4.3℄, see also [43, Lemma 4.1℄ and [16, 28℄. It is should be noted thatin this ase we need boundary or mean value onditions as in the ase of abounded domain. Now, all results from the setions for d > 3 follow with theobvious modi�ations. In partiular, the stability Lemma 3.2 reads as follows.4Spei�ally, (r ln r)−1 ∈ L
2(Bǫ), (r ln r)−1 6∈ L

2(B1+ǫ \B1−ǫ), (r ln r)−1 ∈ L
2(R2 \B1+ǫ)for 0 < ǫ < 1.



210 D. PAULY, S. REPINLemma 4.10. There exists c > 0 suh that for any h ∈ L2(Ω) there exists
uh ∈ H1

−1,ln,ΓD
(Ω) with

div uh = h and ‖∇ uh‖0,Ω 6 c‖h‖0,Ω.The best onstant is denoted by κ(Ω,ΓD) and satis�es the estimate
κ(Ω,ΓD) 6 κ⊕(Ω,ΓD) := (1 + κ)

(
1 + cP(R

2)α ρ(r2) ln(e+ ρ(r2))
)with

α = α(r1, r2, η) = max
x∈Br2

\Br1

∣∣∇ η(x)
∣∣ and κ = min

{
κ(ω, γD), κ(ω, γ)

}
.If h has ompat support in ω and (if ΓD = Γ) additionally ∫

Ω h =
∫
ω h = 0,then uh an be hosen with a ompat support in ω as well, in partiular uh ∈

H1
γD

(ω) ⊂ H1
ΓD

(Ω). In this ase, κ(Ω,ΓD) 6 κ(ω, γD).Estimates of the distane to the set of solenoidal �elds are derived quitesimilarly.Corollary 4.11. For any u ∈ H1
−1,ln,ΓD

(Ω) there exists a solenoidal u0 ∈
S−1,ln,ΓD

(Ω) suh that
dist

(
u,S−1,ln,ΓD

(Ω)
)
6

∥∥∇(u− u0)
∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω.For any u ∈ H1
−1,ln(Ω) there exists a solenoidal u0 ∈ S−1,ln(Ω) suh that

u− u0 ∈ H
1
−1,ln,ΓD

(Ω),i.e., u0|ΓD
= u|ΓD

, and
∥∥∇(u− u0)

∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω.Another obvious orollary is the inf-sup lemma for 2D exterior domains.Corollary 4.12. We have
inf

h∈L2(Ω)
sup

u∈H1
−1,ln,ΓD

(Ω)

〈h,div u〉0,Ω
‖h‖0,Ω‖∇ u‖0,Ω

>
1

κ(Ω,ΓD)
.As in the ase of d > 3, the solvability of the Stokes problem and respetiveenergy estimates follow. Below we reall these results. Let

L
2
1,ln,ΓN

(Ω) :=

{
L21,ln(Ω) if ΓD 6= ∅,

L21,ln,⊥(Ω) if ΓD = ∅,and
L
2
1,ln,⊥(Ω) := L

2
1,ln(Ω) ∩ (R2)⊥0,Ω =

{
φ ∈ L

2
1,ln(Ω) :

∫

Ω

φi = 0
}
.
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(Ω), and uD ∈ S−1,ln(Ω) the 2D Stokessystem is uniquely solvable with a solenoidal vetor �eld u = uD + û ∈ uD +

S−1,ln,ΓD
(Ω) ⊂ S−1,ln(Ω) and p ∈ L2(Ω). Moreover,
ν‖∇ û‖0,Ω 6 cFP(Ω,ΓD)‖f‖1,ln,Ω + ν‖∇uD‖0,Ω,
ν‖∇u‖0,Ω 6 cFP(Ω,ΓD)‖f‖1,ln,Ω + 2ν‖∇ uD‖0,Ω,

‖p‖0,Ω 6 2κ(Ω,ΓD)
(
cFP(Ω,ΓD)‖f‖1,ln,Ω + ν‖∇uD‖0,Ω

)
.Now we address the subjet of a posteriori error estimation and introduethe sets

D(Ω) :=
{
τ ∈ L

2(Ω) : Div τ ∈ L
2
1,ln(Ω)

}and DΓN
(Ω) as the losure of C∞

ΓN
(Ω)-tensor �elds in the norm of D(Ω). Forerrors enompassed in approximation of the veloity �eld we have the followingresults, whih repeat (with some modi�ations) those derived for d > 3. First,we present an analog of Theorem 4.2.Theorem 4.14. Let ũ ∈ uD + H1

−1,ln,ΓD
(Ω). Then for all τ ∈ DΓN

(Ω) and
q ∈ L2(Ω) we have
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω.As in the ase of d > 3, the estimate is simpli�ed if div ṽ = 0 in R

2 \ Br2and additionally (if ΓD = Γ) ondition (38) is satis�ed. Then, in Theorem 4.14we an replae the onstant κ(Ω,ΓD) by κ(ω, γD). If the approximation ũ issolenoidal in Ω, then the last term vanishes and we arrive at estimates similarto Theorem 4.1. They possess the same property: the upper bound oinideswith the norm of the error on the left-hand side if τ = σ and p = q (i.e.,the estimate is sharp in the sense that there is no �gap� between its left- andright-hand sides).For the approximation of the pressure funtion, Theorem 4.4 is modi�ed asfollows.Theorem 4.15. Let p̃ ∈ L2(Ω). Then for all τ ∈ DΓN
(Ω) and all ũ ∈ uD +

H1
−1,ln,ΓD

(Ω)we have
‖p− p̃‖0,Ω 6 κ(Ω,ΓD)

(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− ν∇ ũ)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div ũ‖0,Ω
)
.Finally, we onsider a nononforming approximation ũ and obtain analogsof the theorems exposed in Subsetion 4.3.



212 D. PAULY, S. REPINTheorem 4.16. Suppose that Υ̃ ∈ L2(Ω) and p̃ ∈ L2(Ω). Then for all ũ ∈
uD + H1

−1,ln,ΓD
(Ω), τ ∈ DΓN

(Ω), and q ∈ L2(Ω) we have
∥∥ν1/2(Υ− Υ̃)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω +

∥∥ν−1/2(τ + q I− ν∇ ũ)
∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω +

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω +

∥∥ν−1/2(τ + q I− νΥ̃)
∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω + 2

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ωand

‖p− p̃‖0,Ω
6 κ(Ω,ΓD)

(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− νΥ̃)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div ũ‖0,Ω

+ 2ν
1/2
⊕ ‖ν1/2(∇ ũ− Υ̃)‖0,Ω

)
.For Υ̃ = ∇ ũ, where ũ ∈ uD + H1

−1,ln,ΓD
(Ω) we reover Theorem 4.14 andTheorem 4.15. As in �4.4, error estimates for the stress tensor �eld σ followimmediately by the triangle inequality.Finally, we brie�y present lower bounds of the error derived in the spiritof �4.5.Theorem 4.17. For all ũ, v ∈ uD + H1

−1,ln,ΓD
(Ω) and all ϕ ∈ H1

−1,ln,ΓD
(Ω),

τ ∈ DΓN
(Ω), and q ∈ L2(Ω) we have

∥∥ν1/2 ∇(u− ũ)
∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω + 2〈q,divϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ω

− 2κ(Ω,ΓD)‖divϕ‖0,Ω
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + q I− ν∇ v)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div v‖0,Ω
)
.In partiular, v = ũ is possible. If ϕ ∈ S−1,ln,ΓD

(Ω), the estimate simpli�es to
∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ωand equality ours for ϕ = u− ũ, provided that ũ ∈ uD + S−1,ln,ΓD

(Ω).



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 213Finally, to handle nononforming approximations Υ̃ ∈ L2(Ω) we use againthe triangle inequality to estimate
∥∥ν1/2(Υ− Υ̃)

∥∥
0,Ω

>
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

−
∥∥ν1/2(∇ ũ− Υ̃)

∥∥
0,Ω
,whenever ũ ∈ uD + H1

−1,ln,ΓD
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