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This paper is concerned with the analysis of the inf-sup condition arising in
the stationary Stokes problem in exterior domains and applications to the
derivation of computable bounds of the distance between the exact solution
of the exterior Stokes problem and a certain approximation (which may be
of a rather general form). In the first part, guaranteed bounds are deduced
for the constant in the stability lemma associated with the exterior domain.
These bounds depend only on known constants and the stability constant
related to bounded domains that arise after suitable truncations of the un-
bounded domains. The lemma in question implies computable estimates of
the distance to the set of divergence free fields defined in exterior domains.
Such estimates are crucial for the derivation of computable majorants of
the difference between the exact solution of the Stokes problem in exte-
rior domains and an approximation from the admissible (energy) class of
functions satisfying the Dirichlet boundary condition but not necessarily
divergence free (solenoidal). Estimates of this type are often called a pos-
teriori estimates of functional type. The constant in the stability lemma
(or equivalently in the inf-sup or LBB condition) serves as a penalty factor
at the term that controls violations of the divergence free condition. In the
last part of the paper, similar estimates are deduced for the distance to
the exact solution for nonconforming approximations, i.e., for those that
may violate some continuity and boundary conditions. The case where the
dimension of the domain equals 2 requires a special consideration because
the corresponding weighted spaces differ from those natural for the dimen-
sion 3 (or larger). This special case is briefly discussed at the end of the
paper where similar estimates are deduced for the distance to the exact
solution of the exterior Stokes problem.

Key words: stationary Stokes problem, exterior domains, inf-sup condition, a posteriori
estimates.
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§1. Introduction

1.1. Notation and nomenclature. Throughout the paper we consider do-
mains in RY, d > 2, with Lipschitz boundaries. The symbol w is used for
bounded domains and the boundary of such a domain is denoted by 7 (typi-
cally, the latter is composed of two open and disjoint parts vp and vy asso-
ciated with the Dirichlet and Neumann parts). Exterior domains (i.e., those
having the form RY \ @) are denoted by €. By the letter D, we denote do-
mains which may be bounded or unbounded depending on the context (if this
property is not necessary to outline).

For Lebesgue and Sobolev spaces of functions (scalar, vector, or tensor val-
ued) with generalised square integrale derivatives of the first order we use the
standard notation L?(w) and H!'(w) (or L?(R2) and H!(Q)), respectively. The
standard inner product, norm, and orthogonality in L?(w) will be denoted by
(+, Jow, || - llow, and Lo . If yp # @, then the homogeneous Dirichlet bound-
ary conditions are encoded in the space H%D (D), which is defined as the closure
of compactly supported smooth functions vanishing on vp in the norm of H!.

Also, for bounded domains we use spaces with vanishing mean values'

L2 (w) := L}(w) N RL0w

—{oel2w) : @10w =0} = {se P /¢—0

HL () = B! (@) N3 (@) = {6 € HI( /¢—o

To handle the special case of yp = & using a unified notation, we introduce
the space

2 ( ) L {LQ(‘“‘J) if YD 75 Vs

" L3 (w) ifyp =1,
and for the case where 7p = @ redefine H! ' (w) by setting
Hip (@) = H ().

1Throughout this paper, we do not express the respective measure in the notation of
integrals, so that, e.g., we often use the notation like this:

w/f—w/fdk—/fdx, /f /fdof/fds.

w
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To further unify our definitions and extend them to exterior domains, we con-
sider a domain (an open and connected set) D C R?, d > 2. This domain may
be bounded or unbounded. It has a Lipschitz boundary B, which consists of two
relatively open and disjoint parts Bp, By C B (such that B = Bp U By) asso-
ciated with Dirichlet and Neumann boundary conditions. As before, we denote
the standard Lebesgue and Sobolev spaces by L2(D) and H!(D), respectively. If
Bp # &, we introduce homogeneous Dirichlet boundary conditions in H113D (D)
defined as the closure of

5, (D) = {(;S\p :u e C°(RY), supp ¢ is compact, dist(supp ¢, Bp) > 0}

in HY(D). As above we utilise the notations L%(D) = L2 (D), L%D(D), and
HL (D) = H! (D) provided that D is bounded. Next, we introduce polynomially
weighted spaces

L31(D) = {# € LE(D) : o™ 6 € L2(D)].

HL (D)= {9 € L24(D) : Vo e (D).

where the weight function p is defined by p(r) := (1 +72)Y/2, and r(z) := |z|.
The inner product, norm, and orthogonality in L%, (D) are denoted by

+2 Tyt >0,D’ ” . Hil,'D7 and J—il,'Da

(. )10 :=(p
respectively. In the case of a bounded domain, there is no difference between
the unweighted and weighted spaces (if we mean that the spaces coincide as
sets and possess different inner products). However, in analysis of problems in
exterior domains a proper selection of weights is important (in §4.6 devoted
to the case of d = 2 we define the weighted spaces differently). As before, if
Bp # &, then the homogeneous Dirichlet boundary conditions are encoded in
H1_17BD (D), the closure of Cz (D) in H! (D). Finally, for the Stokes equations,
we introduce spaces of solenoidal fields

S(D) := {gp e HY(D) : divp = o}, S, (D) := Hj_ (D) NS(D),

51(D) = {p € HL (D) : dive =0}, S_15,(P) i=H, 5, (P) NS 1(D).

1.2. Stability lemma and the Stokes problem in bounded domains.
The classical stationary Stokes problem consists of finding a vector field «
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(velocity) and a scalar valued function p (pressure) that solve the system

—vAu+Vp=f in w, (1)
dive =0 in w, (2)
u=up on yp, (3)

on =0 on YN, (4)

where 0 := v Vu—pl, v (viscosity) is a positive constant or a positive function
taking values in [vs, vg)], Ve, Ve > 0, and f € L?(w). The boundary conditions
are defined by the vector valued function up. Henceforth, we assume that up
is given by a solenoidal vector field up, i.e., the Dirichlet boundary condition
is defined by up € S(w) in the sense that u = up on vp, i.e.,

u—up € H},D(w).

If v = vp, then we additionally assume that

/n ‘up = /diqu = (up,1)ow =0. (5)
¥ w
The existence of the corresponding generalised solution follows from the well-
known solution theory for uniformly elliptic linear equations and the stability
lemma, which plays an important role in the theory of incompressible flow.

Lemma 1.1 (stability lemma, [1,3,13,14,22|). There exists ¢ > 0 such that
for any g € L%D (w) there is a vector field u, € H}m (w) with

divug =g and ||V ugllow < cllgllow- (6)

Henceforth, the best constants in (6) and similar inequalities for unbounded
domains are denoted by the letter &, i.e., K(w,vyp) is the smallest ¢ in (6). For
u € H}_(w) we also have the Friedrichs/Poincaré inequality

[ullow < el Vullow,

and cpp(w,vp) denotes the best constant ¢. Hence from Lemma 1.1, we con-
clude that u, satisfies the inequalities

1
_— < ||V < di .
oyl <1V ulow < e, )l v g o

We notice that in the theory of electrodynamics the function ug is called a
regular potential as it admits (for Maxwell’s equations) an unphysical (high)
regularity and boundary condition, which is much stronger than the usual
normal boundary condition related to the divergence operator.

Lemma 1.1 yields several important corollaries. First, it guarantees the solv-
ability of the stationary Stokes problem (in the velocity-pressure posing). By
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setting g = divugy, Lemma 1.1 immediately yields the well known inf-sup (or
LBB) condition:

di 1
inf sup <g) v U>0,w >

> =:c (7)
9€L2 ), @) uehy (@) 9llowll Vullow = wlw;vp) o

Another direct corollary to Lemma 1.1 is an estimate of the distance between
a vector field u € H} (w) and the set S, (w) (see [35,36])

dist (u, Sy, (w)) == vesi?Df(w) H V(u— ’U)HOM.

Corollary 1.2. For any u € Hl (w) there exists ug € Sy, (w) such that
dist (u, Syp (w)) < H V(u— uO)Ho,w < K(w,vp) | div ul|o -
Proof. For u € H}m (w), solve the equation
divii = divu € L2 (w)
with & € H! (w) and the stability estimate

I Villow < rlw,yp) divulo

by Lemma 1.1. Note that for yp =+ we have

/n~u:/divu: (u,1)pw = 0. (8)

¥ w
Then
up:=u—U€S,,(w) and || V(u-— UO)HO,w

= ||V, < &lw,p)ll divufo.. 0

In [38-40], this result was extended to vector fields satisfying nonhomoge-
neous Dirichlet boundary conditions (and also for vector fields in W4(Q) for
q € (1,00)) provided that such a vector field u satisfies divu € Lgm (Q), ie.,
the mean value condition (8), if yp = 7. Moreover, it was shown that if the
mean value conditions hold true for a collection of subdomains whose union
of closures coincides with the closure of w, then estimates of the distance can
be based on local constants associated with subdomains. In the case of nonho-
mogeneous boundary conditions, a modified version of Corollary 1.2 reads as
follows.

Corollary 1.3. For any u € H'(w) with divu € L%/D (w) there exists a soleno-
idal ug € S(w) such that ug —u € H! (W), i.e., uglyp = ulyy,, and

H V(ug — u)HOM < K(w,vp) | div ul|o -
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It should be noted that Corollary 1.3 can be also viewed as a lifting lemma,
because a boundary datum ul,,, is lifted to the domain w. In this case lifting
is performed with the help of a solenoidal representative.

Estimates of the constant x(w,7vyp) have been studied in [6, 10,25, 29, 44|
and some other publications. It is not difficult to see that the constant c;gg
in (7) is nonnegative and cannot exceed 1 so that k(w,yp) = 1. It is known
that c pg > 0 for any bounded Lipschitz domain (e.g., cLgg = 1/\/3 for a ball
in RY). However, the exact values of this constant are unknown except some
very special cases (for example, we do not know the constant even for a cube!).
In [6], simply computable and sufficiently accurate estimates of the constant
were obtained for domains in R? that are included in a ball of radius R and
are star-shaped with respect to a concentric ball of radius p. It was shown that

K(w,7) < ? (1+vi=a)"”, ©)

where ¢ = p/R. For d = 3, estimates of c. g are known only for domains with
sufficiently regular boundaries (see [29]). A systematic numerical analysis of
constants in the inf-sup condition (7) was performed in [11], where approxi-
mate values of the constants were computed for a wide collection of bounded
domains. Computational approaches to the evaluation of the distance to the
set of divergence free fields based on domain decomposition were suggested
in [38-40]. In our subsequent analysis, we assume that, using the results and
methods mentioned above, we are able to find a majorant of the constant
k(w,vp) for bounded domains w that arise as truncations of an unbounded
domain 2.

1.3. A posteriori estimates. Estimates of the distance to S, (w) are not
merely of theoretical value. They are important for the quantitative analysis
of boundary value problems generated by incompressible media models (e.g.,
in the theory of viscous incompressible fluids). First, estimates of this type
are necessary for getting computable bounds for the difference between the
exact solution of a boundary value problem and an approximation obtained by
some computational procedure. The term “computable” means that the corre-
sponding estimates do not involve unknown functions and constants and can
indeed be computed by means of an approximate solution only. Estimates of
this type are often called a posteriori error estimates and nowadays are widely
used in the quantitative analysis of mathematical problems. Unlike the a priori
(asymptotic) convergence estimates, a posteriori estimates provide an explicit
verification of the accuracy of a particular numerical solution. First methods
of a posteriori error control for PDEs originates from the works of W. Prager
and J. L. Synge [33] and S. G. Mikhlin [19]. The latter monograph contains
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a pioneering idea of a new approach to error estimation, which differs princi-
pally from asymptotic rate convergence estimates dominated at that time and
several decades subsequently. For variational problems generated by quadratic
type functionals

Jw) = salw,0) = (), SV, (10)

where V' is a Hilbert space and a : V x V — R is a V-elliptic bilinear form,
S. Mikhlin deduced the principal relation

%a(u —v,u—v)=J(@) - J(u). (11)

Here v is the minimizer that satisfies

J(u) zlrlljaeng(w) and veV

is any function compared with u. Since the exact infimum is unknown, it is
impossible to use (11) directly. In [19], it was suggested to estimate J(u) from
below using a dual variational problem and further apply the orthogonal pro-
jection method of H. Weyl [48]. Certainly, these first estimates were derived for
a rather limited set of problems and suffered from serious restrictions imposed
on the set of functions that are admissible in the dual setting. For these reasons,
they were rarely used in computational practice. Moreover, the methods devel-
oped in 1970-1980 for measuring errors of finite element approximations (such
as the “gradient averaging” and “residual” methods, see, e.g., [47] and the refer-
ences therein) were based on different grounds. These methods strongly exploit
properties of a particular approximation computed on a particular mesh. In
essence, they provide certain error indicators (for mesh adaptive procedures)
rather than guaranteed error bounds. Subsequent studies focused on the prob-
lem of guaranteed error control (performed in the 1990s) confirmed the idea
(encompassed in (11)) that the corresponding methods should be justified on
the functional level by means of the same mathematical tools that are used
in analysis of PDEs without attracting specific features of approximations and
numerical methods. If we have a general (universal) estimate of the distance
between a function and the exact solution of a boundary value problem, then it
can be used with any approximation and requires no changes if one approxima-
tion (mesh) is replaced by another. In the last two decades computable bounds
of this type has been derived and tested for a wide spectrum of problems
(see [17,23,34,37] and many other publications cited in these monographs).
For clear reasons, they are often called a posteriori estimates of functional type.
They differ from others due to two important properties: the estimates

(a) do not contain constants associated with a particular finite dimensional
subspace (mesh) and a method used to solve the problem and
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(b) are valid for any approximation in the energy space and do not use
special conditions required for the exact solution (e.g., extra regularity)
or its approximation (e.g., Galerkin orthogonality, quasi-—uniformity of
meshes).

A posteriori estimates of functional type involve only global constants gen-
erated by functional inequalities such as various embedding estimates, trace
inequalities, Poincaré, Maxwell, Korn inequalities, etc. It should be noted that
although constants of this type do not appear in (11) (and in the estimates
derived in [33]), the importance of studying them was already understood by
Mikhlin (see [20]). The reader can find an overview of the history of a poste-
riori error estimation methods and a subsequent exposition of the functional
approach to the problem in [37].

First estimates of the distance between a function in the energy space and
the exact solution of the stationary Stokes problem in a bounded domain were
derived in [35] (by means of the variational duality method) and in [36] (by
transformations of the integral identity that defines the corresponding weak
solution). It is worth starting a short overview of these results with the error
identity

V|| V(o =)l + iy~ o* = 21(0) = I"(7)). (12)

which can be viewed as an analog of (11) for the stationary Stokes problem.
Here v € S (w) and

rr € Bw)i= {r e L2(w) : (nVw)ow = (fw)ow Yw e Syw)}

are regarded as approximations of the exact velocity field v and exact stress
fielso, respectively. Identity (12) is fulfilled for any v€ S, (w) and any 7 € L?(w).
However, it is not very useful for practice for the same reasons as (11), namely,
the functions in S, (w) and L% (w) are subject to differential relations. In [35] (see
also [37]), a way was shown to overcome these difficulties by using computable
estimates of distances to the sets S, (w) and Lfc(w). As a result, the following
estimates for the velocity and pressure fields were derived:

v|| V(u =)o, < I +DL— v Vilow + cpr(w,7)| Divr + fllow

o (13)
+ 2vk(w, )| div o,

1
————llp ~ Bllow < |7 + P - v V@ )| Di
Qﬂ(wﬁ)ﬂp Pllow < |7+ T = v Vilow + ceop(w, VI Div T + fllow "

+ vk(w, )| divalow

Here v is a positive constant and u € H!(w) is a vector valued function sat-
isfying the Dirichlet boundary conditions. The function u is regarded as an
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approximation of the exact velocity w. Similarly, p is a square integrable func-
tion (with zero mean value if the Dirichlet conditions are imposed on the whole
boundary 7) viewed as an approximation of p and 7 € L?(w) is an approxima-
tion of the exact stress field o. The right-hand sides of (13) and (14) have a
clear meaning: they contain three nonnegative terms that vanish if the approx-
imations coincide with the exact velocity, pressure, and stress, respectively. In
other cases, the terms can be viewed as penalties for possible violations of the
three basic relations that form (1) and (2).

It is easy to see that the constant x(w,~) plays an important role in (13)
and (14) and, therefore, it is indeed necessary to have guaranteed majorants of
this constant. These constants arise in the a posteriori analysis of a numerical
solution if it satisfies the divergence free condition only approximately. If the
constant x(w,yp) is known, then by using Corollary 1.2 we can deduce guaran-
teed and fully computable error estimates. For problems in bounded Lipschitz
domains the respective results are presented in [35-37,39| and other publica-
tions cited therein. Also, it should be mentioned that explicit bounds of the
constant k(w,7y) are required not only for Stokes type problems. They arise in
other continuous media problems, which are not related to viscous fluids (e.g.,
see [42]).

Subsequently analogous estimates for the velocity and pressure fields were
obtained for the Stokes problem in the velocity-vorticity-pressure formula-
tion [18] and for the generalised Stokes problem [41|. In [7], such estimates
were derived for a class of stationary problems associated with nonlinear vis-
cous fluids and in [24] for the evolutionary Stokes problem. We note that the
approach used in these publications and in the present paper differs essentially
from the so-called residual method often used in the finite element community
for getting indicators of approximation errors (see, e.g., [46]).

1.4. Outline of the paper. In the first part of the paper, we recall some
known results related to the analysis of boundary value problems in exterior
domains paying a special attention to the stability Lemma 2.3 and the corre-
sponding corollaries.

§3 is devoted to computable bounds kg (€2, I'p) for the stability constant
k(2,T'p). In Lemma 3.2, we obtain a desired estimate for xg(£2,I'p), which
involves known constants and the constant x(w,yp) associated with a bounded
domain w (which is a suitable truncation of 2). Estimates of the last constant
have been derived in several publications cited above, so that we view this
problem as solvable (at least in the sense that a certain guaranteed bound
of k(w,yp) can be derived). As a result, we obtain estimates of the distance
between a vector field in €2 and the respective set of solenoidal fields defined in €2
and satisfying the same boundary conditions (Lemma 3.4). These estimates are
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used in §4, we derive a posteriori error estimates of the functional type, which
are valid for a wide class of approximate solutions to the stationary Stokes
problem in exterior domains.

Estimates for the velocity are obtained in three different forms. The first
(and the simplest) form is valid for approximations in S(2), i.e., for solenoidal
vector-valued functions that satisfy the Dirichlet boundary condition exactly
(Theorem 4.1). These estimates do not contain the constant x(2,T'p). Esti-
mates of the second type are valid for approximations in H!(£2) still satisfying
the boundary condition exactly but admit possibly nonsolenoidal functions
(Theorem 4.2). They involve a term that penalises possible violation of the
solenoidality condition and has the constant x(€2,I'p) as a penalty factor. Fi-
nally, the most general form of the estimate is applicable for nonconforming
approximations, which even may not belong to the energy class H'(Q2) (The-
orem 4.6). It involves one more term that can be viewed as a measure of the
distance to the energy class natural for the velocity function. Also, we deduce
estimates for approximations of the pressure (Theorem 4.4 and Theorem 4.6)
and the stress field (Subsection 4.4). In §4.5 we consider lower bounds and in
§4.6 we adapt our results to the special case of space dimension d = 2.

§2. Preliminaries

2.1. Exterior domain and main functional inequalities. We consider
an exterior domain Q C R?, where d > 3 (the special case d = 2 is studied in
Subsection 4.6), with a (strong) Lipschitz boundary I', which is composed of
two open and disjoint parts I'p,I'y C I' (Dirichlet and Neumann part) with
T = T'p UTy. Moreover, we assume that there exist 0 < r; < 75 such that
R4\ Q C B,, and denote (see Figure 1)

w:=Q, =QNB,, v=TUS,, vp:=IpUS,, (15)

where B, and S, denote the open ball and the sphere of radius r centered at
the origin in R?. By n we denote a Lipschitz continuous cut-off function, which
vanishes in the ball? B,,, equals 1 in R?\ B,,, and takes values in [0, 1].

The two main ingredients for our proofs are Lemma 1.1 and a few elemen-
tary results from the theory of V-curl-div—systems in exterior domains and
especially R? (see, e.g., [16,43] or [12,26] and in particular [28] as well as ref-
erences therein), which can be summarised in the two subsequent lemmas as
follows.

2For the sake of simplicity we henceforth operate with the balls By, and Br,. However, if
necessary B,, can be replaced by a Lipschitz domain containing R? \ Q and B,, by another
Lipschitz domain containing B, .
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Figure 1. R?\ Q (gray) surrounded by the boundary I' (thin
black lines), the boundary part I'p (thick black lines), and the
artificial boundary spheres (dashed lines)

Lemma 2.1 (Friedrichs/Poincaré lemma for exterior domains). The following
weighted Friedrichs/Poincaré estimates hold true.

(i) There exists ¢ > 0 such that for all v € Hl—l,rD(Q) we have
[o]l-1.0 < el Volloq-

The best constant c is called the Friedrichs/Poincaré constant and we

denote it by cpp(Q2,T'p).
(ii) If T'p =T, then cpp(,T) = cx(Q) (the Friedrichs constant) and
2
d-2
Hence for allve Hl_l’F(Q) the Friedrichs estimate ||v||—1.0 <cq||Vvllo.0
holds true. If I'p = @&, then cpp($2, @) is replaced by the Poincaré con-
stant cp(§2). In this case, the Poincaré estimate

[o]l-1.0 < ce (D) Vollo.0

is fulfilled for all v € H! ().

cr(Q) <cqg:
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(iii) If Q = RY, then the Friedrichs and Poincaré constants coincide and,
moreover,

CFP(Rd) = CF(Rd) == CP(Rd) < Cd.
Hence for all v € HL | (R?) we have |[v]| 1 ga < cal V vl|oga-
Note that no boundary or mean value conditions are needed in Lemma 2.1
(because constant functions are not integrable in L2 (£2)).

Lemma 2.2 (V-curl-div lemma for exterior domains). Let Q = RY and h €
L2(R?). Then there ewists a unique v € H [ (R?) such that curlv = 0 and
divv = h. Moreover,

1 .
C—dHUH—l,Rd <[ Vollpre = [[divollgra = [|hlo ge-

The results of Lemma 2.2 are well known and follow directly by Fourier
analysis, see, e.g., [16,30-32| or [12,26|. Notice that the well-known equation
—A = curl” curl — V div implies the identity

2 2 2
HVUHO,Rd = chrlv”OJRd + ”dlvv”oRd (16)
for all v € C*°(R?) having compact support. By density and continuity argu-
ments it can be extended to all v € H! | (R?). Hence the relation
IV vllgra = [|divvll pa
in Lemma 2.2 follows immediately.

2.2. Stability lemma and Stokes problem in exterior domains. For
exterior domains we have a result similar to Lemma 1.1 (see [9]).

Lemma 2.3 (stability lemma for exterior domains). There ezxists ¢ > 0 such
that for any h € L2(Q) there is a vector field
Up € H1_1,FD(Q)
with
divup, =h and || Vuplloa < c|lh]oan.

The best constant is denoted by k(2,Tp).

In the subsequent Lemma 3.2 we present computable upper bounds for
K‘(Qv FD)

Remark 2.4. In [9] only the case of I'p = I' was considered, but it is trivial
that then the stability lemma is true for general I'p as well. It should be
noted that unlike in the case of a bounded domain, no mean value condition
is imposed on h even if I'p =T.

Lemma 2.3 immediately implies the inf-sup condition.
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Corollary 2.5 (inf-sup lemma for exterior domains). We have

inf sup {h, div w)o.q > L
nel2@) uent, (@ Iloel Vulog = #(2,Tp)’

From now on, let f € L?(Q), up € S_1(R) be given data. The classical
Stokes problem in an exterior domain 2 consists of finding a vector-valued
function u (velocity) and a scalar valued function p (pressure) satysfying the
system

—Dive=f in Q, (17)
c=vVu—pl in Q, (18)

divu =0 in Q, (19)
u=1up on I'p, (20)

on =0 on I'y, (21)

where u additionally satisfies a proper decay conditions at infinity, so that
u€S_1(Q) or ue HL | (Q), i.e.,

wel?(Q) and Vuel?Q).
The classical (point-wise) condition reads

The corresponding generalised solution

|z| =00

0. (22)

u € up + S_l,pD(Q)
is defined by the integral identity (see, e.g., [9,13])
vVu,Vola=_(f,eoa  VeeS_1r,(Q). (23)

Note that, since
<f7 30>0,Q = <p f’ p_1§0>079)

the right-hand side of (23) is well defined. Using the Ansatz u = up + u with
u € S_1r,(Q), we reduce this formulation to find @ € S_; r,,(€2) such that for
all ¢ € S_11,(Q2) we have

(vVu, Vo= (feoeao—(¥Vup,Vya.

Another formulation taking the pressure into account leads to the following
saddle point formulation: find

(u,p) € (up +HLy 1, () x L*(Q)



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 197

such that for all (¢, ¢) € H1_17FD () x L2(Q) we have
<V \Y u, \Y 90>0,Q - <p7 div 90>0,Q = <f7 30>0,Q) (24)
(divu, ¢)on = 0. (25)

By standard arguments (see, e.g., [8,9,13|) and the inf-sup lemma, we know
that for f € L3(Q) and up € S_1(2) the Stokes system is uniquely solvable
with u € up + S_1r,(2) and p € L?(2). Moreover, the solution meets the
estimates

v|| Voo < cre(Q,Tp) | fllno + v Vupllog,
v|| Vulloo < cre(Q,Tp) | fllno + 2v] Vuplloq,
Ipllo.e < 26(2,Tp) (cer (L) fll0 + ¥[| Vunllog)-

§3. Estimates of k(2,T'p)

Our goal is to deduce majorants for the constant in Lemma 2.3 that in-
volve only known constants (such as ¢4) and stability constants for a bounded
domain w generated by a certain truncation of €.

First we discuss the simplest case of a compactly supported right-hand side.

Lemma 3.1. There exists ¢ > 0 such that for all h € L2(Q2) with supph C @
and h € L%D (w), e, Joh= [ h=0ifTp =T, there exists a vector field
up € H1_17FD(Q) such that

divup, =h and || Vupllon < cllh]oan.
The function up can be chosen with compact support in @, in particular,
up, € H! (w) C Hp, ().
In this case, (2, Tp) < K(w, VD).

Hence we arrive at the rather obvious conclusion that for a compactly sup-
ported h the constant x(2,T'p) can be estimated by x(w,vp).

Proof of Lemma 3.1. Set
g:=h|, € Lgm (w).

By Lemma 1.1 there exist x(w,yp) > 0 and u, € H}/D (w), ug =0 on S,, such
that divuy = g and || Vugllow < k(w,vp)|l9llow- Let up, be the extension by
zero of ug to Q. Then uy € H%D(Q) and suppuj, = suppuy, C wW. Moreover,
divuy, = h and

IV unlloo =1V ugllow < r(w, vp)llgllow = Klw,vp)lRllo.g;
completing the proof. O
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Now we present the main result, which provides an upper bound for the best
constant k(€2,I'p) in the stability Lemma 2.3 for exterior domains as well as
an alternative proof of this lemma.

Lemma 3.2. Let Q and w be defined by (15). Then
K(Q,Tp) < kg(Q,Tp) = (1 + k) (1+cgap(r))
with kK(Q,T'p) from Lemma 2.3, where o and k are defined in (29) and (31),

i.e.,
a=ofrrzn)= max |Vy@)|. & =min{xwp).xw.7)}.

x€Bry\Bry

Remark 3.3. It should be noted that x < k(w,vp) and k < k(w,7y), where the

second bound means that x can be estimated independently of the boundary

part I'p of I'. Moreover, the constant kg (£2,T'p) depends on the dimension d,

the radii 71, ro, and the Lipschitz continuous cut-off function 7. Optimal val-

ues of these parameters (which minimise the constant) are not known a priori

and should be defined by solving an additional algebraic problem. If  is con-

structed, e.g., by a simple affine function with ro =y + 1, then a = 1 and we

have one possible upper bound

In some cases, this bound may be rather coarse, but, anyhow, it presents a
guaranteed upper bound of the stability constant rg (€2, 'p) associated with
the exterior domain €.

Proof of Lemma 3.2. We extend h by 0 to R\ Q and identify the extended
function with A € L2(R%). By Lemma 2.2 we have a vector field v € H! | (R9)
with curlv = 0 and dive = h in R? as well as

1

vllire < IV olloge = [1divollogrs = |I7flo.0 (26)
We recall that our cut-off function 7 satisfies n|p,, = 0 and n‘Rd\Br2 = 1.
Therefore, nv € H1_17F(Q) and supp(nv) C R?\ B,,. In view of Lemma 2.3, our

goal is to find a vector-valued function v, € H1_17FD (Q) such that divep, = h
in 2 and the stability inequality holds true. We suggest to construct it in the
form

U =N+ U, (27)
where v, € H%D (Q) with suppw, C @ is the extension by zero to Q of some
vector-valued function u,, € H}/D (w) that is supported in w and vanishes on S, .
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The relation
h=divy, =nh+Vn-v+divy, in Q
imposes a condition on v, and u,. Let
gi=1—-nh-Vn-vel*w) inw.

Notice that supp(1 —7) C B, supp V7 C B,, \ B,, and hence suppg C @ (if
we view g as a function in ). Since

g=1—=nh+V(1—-n) v=div((1-n0)
and by the properties of  we have by the Gauss or Stokes theorem

/g:/(l—n)n-v:/n~v:—/divv:—/hzo.

r RI\Q RI\Q

Hence g has zero mean value independent of the boundary part v = ~p, i.e.,

we always have
/ g=0. (28)

w

Now, the existence of u, = ug~, € H}YD (w), respectively, u, = ug, € H}Y(w)
such that divu, = g together with the stability estimate

IV ullow < Kllgllow, # = min {x(w,p),k(w,7)} (29)

is provided by Lemma 1.1. Note that u, € H}/(w) can also be regarded as a
suitable function if the homogeneous Dirichlet boundary conditions are im-
posed only on a part I'p of I', so that we can operate with one and the same
constant x(w,7y). Since u, = 0 on S,,,

- Uy 1N W,
“T 0 imRY\B,
meets our needs. Then vy, = nv + v, € H1_17FD (©) and
divop=nh+Vn-v+g=h in Q.

It remains to estimate || V vp|lo.o. By the properties of 7 we have

IVn@vlgre, [V vlore < allvllyp 5, (30)
where
a:=a(r;,re,n) ==max |Vn(z)| = max |Vn(z)| (31)
zeR4 TEBry\Bry
Since

lglloe < [[(X =m)hf|g, + 11V 0 vllow,
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by (30) we find
IV osloe =1V uolow

< liglow < w (1 = Ao, + a0l 55, )
(32)
<a(bllog +alolly 5, \5,, )

< |Pllo.q + vl s,,\3,, -
By (26), the second terms on the right-hand sides can be estimated as follows:

lollo.s, 5, < 2wl 150 < cap(ra)| Vollogs = cap(ra)lhllog.  (33)
Finally, by (27), (32), and (33), we conclude that
IV onlloe < (1+K)([|Allo, + caap(ra)|hlloe) = #a(2,To)|hlos,

finishing the proof. g

3.1. Estimates of the distance to the set S_;r,(€). As in the case of
bounded domains, the stability Lemma 2.3 implies estimates of the quantity

dist (u,S—1,r,(Q)) = ves @) | V(u~ SO)HQ,Q?

which is a measure of the distance between u € H1—1,1“D (©2) and the correspond-
ing set of divergence free vector fields.

Lemma 3.4. For any u € Hl—l,FD(Q) there exists a solenoidal ug € S—_11,(£2)
such that

dist (1, S_1,0, () < || V(u ~(2,Tp)|| div uflo.0.

w)lq <

Proof. Let h = divu € L%(Q). By Lemma 2.3 there exists u; € Hl_LFD(Q)
such that divu, = h and

| Vunllo, < £(€2,Tp)||R[o,0-
Then ug :=u —up € S—1,r, () and we have

19— w0)llg = | T unlly < K T) vl =

It is easy to extend this result to the case where v satisfies inhomogeneous
Dirichlet boundary conditions on a part of the boundary.

Corollary 3.5. For any u € HY {(Q) there exists a solenoidal ug € S_1()
such that u — ug € Hl—l,FD(Q)7 i.e., uolr, = ulr,, and

|V (= u)| o < (2 Tp)|l divuloo.
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The last assertion shows the existence of a continuous lifting operator that
lifts the boundary datum u|p, to the domain © with a solenoidal representa-
tive.

84. A posteriori estimates

A posteriori estimates of functional type for various elliptic problems in
exterior domains were derived in [27]. In this section, we derive estimates of
the difference between the exact solution of the exterior Stokes problem (17)—
(21), respectively, (24)-(25) (presented by the fields of velocity u, pressure p,
and stress o) and the respective approximations u, p, and o.

First, we introduce two more weighted spaces for tensor valued functions:

D(Q) = {T € L2(Q) : Divr e L%(Q)},
where Div is the divergence operator for tensor fields acting as the usual row-
wise divergence. D(Q) is a Hilbert space with norm defined by
71 := lI7l3.q + | Div 2.
By Dr, (£2) we denote the closure of Cf° (£2)-tensor fields in the norm of D(Q2).
Then for all ¢ € H1_17FD (2) and all 7 € Dy (Q2), we observe that
(1,V)oa+ Divr,e)oa =0. (34)
Notice that
(Div T, p)0.0 = (pDivT, p~ ') q,
so that the second term in the above relation is well defined.
4.1. Estimates for the velocity. From now on,
uel?,(Q) and pel?(Q)
are viewed as approximations of our exact solutions
u=up+ud€up+S_11,(Q) CS_1() and peL*Q)
to our exterior Stokes problem (24)—(25), respectively. By
7 e L3(Q)
we denote an approximation of the tensor field
oc=vVu-—pl

which can be constructed by a certain reconstruction of @ and p or computed
independently.
First, we consider the simplest case where

u € up+ S—LFD(Q) C S_1(92).
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Then by (24) for all solenoidal ¢ € S_; 1, (£2) we have
(vV(u—-1u),V S0>07Q = (f,voa— (vVu,Vpa.

Let 7 € Dr,(Q) and ¢ € L2(Q2). Using Lemma 2.1, identity (34), and the
relation

(qL,Veloo=0
(which is true for all ¢ € S_1(€2) because I : V ¢ = div ¢), we find that
(vV(u—1), V)
=Divr+f,p)oa+(r+ql-rVu,Ve)a (35)
<IDivr + flhellell-ve + [[v 72 + qL = v V@), oIv'? V ellog

< (ygl/%Fp(Q,rD)n Div¢+f||1,g+Hu—1/2(7+q11_yva)||m) 1112V ¢lo.0-

Choosing ¢ = u—u € S_1r,(2), we arrive at the following estimate.

Theorem 4.1. Let u € up + S_11,(2). Then for all 7 € Dr,(Q) and all
q € L2(Q) we have

|12V (u — 71i)Ho,Q < yélﬂch(Q, Lp)||Div 7+ fllie

+ Hy_1/2(7' +ql — VVEZ)HO,Q.

The upper bound coincides with the norm of the error on the left-hand side
if 7 = o (i.e.,, 7 coincides with the exact stress tensor) and ¢ = p (i.e., ¢
represents the exact pressure p). In other words, we have the principal error
identity

49w =)
= fuing, (7" e @D+ flra+ 2 + T =T D))
qel?(Q)

and the minimum is attained at 7 = o and ¢ = p. Similar identities are
fulfilled for many other linear elliptic problems. However, Theorem 4.1 has
a drawback: The estimate is valid only for those approximate vector fields @
that exactly satisfy the solenoidal condition and the boundary condition. In
practice, the solenoidal requirement is difficult to fulfil and approximations
arising in ‘real life’ computations often satisfy the solenoidal condition only
approximately. Therefore, our next goal is to extend the estimate to a wider
class of nonsolenoidal vector fields. Below we extend the last estimate to a
wider class including nonsolenoidal vector functions and assume only that

uEup + H1_1,1“D(Q) - Hl—l(Q)’
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i.e., uw is possibly nonsolenoidal but satisfies the boundary condition exactly.
Corollary 3.5 guarantees the existence of

ug € S_l(Q)
such that
up—ueH, 1 (Q)
and

IV (uo = w)llo.0 < w(,Tp)| divaloq. (36)

Hence ug = u +ug —u € up + H_LFD(Q), i.e., up € up +S—_1r,(Q), and by
Theorem 4.1 we have

72 (= @)l

< H’/l/z V(u —ug HOQ + H’/1/2 V(ug — a)HO,Q

g 1/51/ Crp (Q FD)H DIVT+ f||1Q (37)
+ [l 2+ gl = v Vuo)lfg o + [ Vo = )]

< v 2en (Q,Tp) | Divr + fll0
o2+ g1 = w V)| g+ 202 Vo — ) 0

In view of (36), we obtain the following result.

Theorem 4.2. Let u € up + H! | rp(80). Then for all T € Dry(Q2) and all
q € L2(Q) we have

12 9 (=) g < v *ern(Q.Tp)I| Diver + fll10
+ v + gl - v V)|
+ 21/@/ £(22,T'p)|ldivallo,0-

If the approximation wu is solenoidal we recover Theorem 4.1 and, again,
the upper bound coincides with the norm of the error on the left-hand side if
T = 0, ¢ = p. If the approximation % is solenoidal only in, e.g., R?\ B,, then
we trivially get an estimate by Theorem 4.2, replacing the term || divuljp o
by || dival/gw. But with a moderate additional assumption on the decay of
the approximation we can even do better in this case, replacing the constant
k(2,T'p) by a stability constant k(w,7yp) of the bounded domain w.

For this let

U= up +w € up + Hl_l’FD(Q)
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with divi = divw = 0 in R¥\ B,, and if yp = v (i.e.,, 'p = I') then @ satisfies
div € L2 (w). To meet the last condition, we additionally assume for the case
of 'p =T that

lwl| <er™, m>d-1 (38)

as r — oo with some ¢ > 0 independent of 7 (notice that r=™ € L? ;(R?\ B;)
if m > d/2 —1). Indeed, it is easy to see that

‘/dlvu ‘/dlvw‘ ‘/n w‘ < cpd—l-m 2%,

for r > ro. Now we consider the Ansatz

o = 4 Uy 1IN W,
0 0 inRI\B,,

where u,, € H! (w). Utilising Lemma 1.1, we find u, € H} (w) such that
divu, = —dive nw
together with the stability estimate
IV upllow < w(w,vp)l div o

The function ug so constructed satisfies the boundary condition on I'p and it
is a solenoidal field, i.e.,

Uy € up + S_l,pD(Q).
Using ug as an admissible vector field in (37) yields the estimate
2V (= @) < vaeer(@.Tp)| Div T + fll10

+ [Jp1/2 r+q]1—uvﬂ)||o,9+2’/l/2HV(“O @l -

=[I'V uwllow

Hence we have the following improved estimate for the case of a partially
solenoidal approximation.

Corollary 4.3. Let u € up + H! () and let

divi=0 in R\ B,,.
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If Tp = T, then we additionally impose condition (38). Then for all T €
Dr, () and all g € L2(Q) we have

HV1/2 V(u —u) HOQ Ve /QCFP(QarD)”DiVT+fHLQ
+ v+ qI - v V)|,
+ 20 (0, 30 v

Here the last term on the right-hand side is a penalty for a possible violation
of the solenoidal condition in w.

4.2. Estimates for the pressure. By Lemma 2.3 there exists a vector field
(NS H1_17FD (©2) such that

divgg=p—p and [[V¢loa < (2 Tp)llp - plog- (39)
For all uw € up + H1_17FD(Q) and all 7 € Dr, (©2) we have
Ip—Bllg.0=(p—p,dive)og
= <I/V(U—ﬁ),v1/}>07ﬂ—<DiVT+f, Q;Z)>0,Q—|_<VV ﬂ—ﬁH—T,v Qzl)>0,Q
< (HN(U ~)||g 0 + e (2, Tp)|| Div

+ flo +1lv V- 51700 ) IV ¢l

where we have used Lemma 2.1 for ¢ and the relation divy) =1: V. By (39)
we obtain

Ip = Floa < w(2,Tp) (v *[[+"/* V(= @)
+ cep (0, Ip) || Div T + fll1,0
1/QHI/_I/2 T+pl—vVa) HOQ).

In order to estimate the first term on the right-hand side, we use Theorem 4.2
with ¢ = p and arrive at the desired estimate for the pressure field.

Theorem 4.4. Let p € L%(Q). Then for all T € Dr,,(Q) and all
u€up+Hp (Q)
we have
Ip = Blloe < (2 Tp) (520 + Dewe (2. Tp) | Div r + fll0

+ 20 2| (r 4 PT— v V)| (40)

+ 20 k(Q, Tp) | div anw).
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Remark 4.5. The upper bound (40) consists of the same terms as the upper
bound of Theorem 4.2 and vanishes if w = u, 7 = o, p = p. However, in this
case, the estimate stronger depends on the stability constant x(2,I'p). A simi-
lar effect occurs in the estimates related to bounded domains (see [35,36]).

4.3. Estimates for nonconforming approximations. The term noncon-
forming is usually applied to approximations that belong to a functional class
wider than the natural energy class of the problem in question. For exam-
ple, nonconformity of approximations may arise due to violation of continuity
conditions or main boundary conditions. Nowadays such type approximations
are widely used in computational practice (e.g., mortar, finite volume, and
discontinuous Galerkin approximations) because they offer more freedom for
various mesh adaptive procedures. Application of functional type a posteriori
estimates to nonconforming approximations of elliptic problems was studied
earlier in [4,15,37,45]. In this section, we briefly discuss this question in the
context of the exterior Stokes problem.
Let us now assume that we have a nonconforming approximation

T e L2(Q)
of the exact strain tensor field
T :=Vu, u:uD—kﬁEuD—i—S_l,pD(Q) C S_1(92).

For example, T as a “broken gradient” tensor fiel, the output of some dis-
continuous Galerkin method. By the triangle inequality, we estimate the dif-
ference between these tensor fields using a certain conforming approximation
u € up + Hl_LFD (©2) and obtain

1720 =)o o < [ V= @) o + (VT =T

Mo

Theorem 4.2 implies the estimate

1720 = 1)l < v5 " 2eer(Q.Tp) [ Div 7 + fll10
+ Hl/_1/2(7' +ql— I/Vﬁ)HQQ
+ 205 25(Q, Tp) | divilloq + [[»/2(VE = T)| -

Using the triangle inequality and Theorem 4.4 we obtain a posteriori error
estimates for nonconforming approximations.
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Theorem 4.6. Let T € L2(Q) and let p € L2(Q). Then for all T € Dr, (©),
q €L%(Q), and u € up + Hl_LFD(Q) we have
20 = )., < v52eer(@,Tp)|I Divr + fll1 .0
+ T2+ qT= 2Tl

1/2

+ 205 *k(Q, Tp)|| div oo + 2| /*(Va - T)

oo

and
Ip = Bllo.c < 5(2To) (5 *va/® + Dewn (2. Tp) | Divr + fll0
+ 2052 |[y 2 (r + L= vT)| o + 2v6r(Q. Tp) | div oo

+ 202 [ AT = T) ).

It is easy to see that in the case where T=Viuis generated by the conform-
ing approximation u € up + Hl—l,FD (€2), the last term vanishes and we recover
Theorem 4.2 and Theorem 4.4.

4.4. Estimates for the stress field. Error estimates for the stress tensor
field follow directly from the estimates derived above for the velocity vector
field and the pressure function. Indeed, let & € L?(Q2) be an approximation of
the exact stress tensor

c=vVu—pl=vY —-pl

Moreover, let T € L2(€) and p € L2(Q). Then, the respective error estimate
follows from the triangle inequality

15 = olloq < 16 — T + 5llloq + vg *[[v/2(C = 1)y ¢ + d/?lIp — Floo-
In particular, we can set T = V u, where u € up + HI_LFD (©2). The first term

on the right-hand side involves only known tensor fields and the second and
third ones are estimated by, e.g., Theorem 4.2, Theorem 4.4, and Theorem 4.6.

4.5. Lower bounds of the error. Let

u€up+H,p (Q),



208 D. PAULY, S. REPIN

ie,u—uc€ Hl_LFD (©2). Obviously (since the subsequent max-property is true
for any Hilbert® space), by (24) we have

Tl = g 2T T g - [ Vel
’ <P€H—1,FD(Q) ’

>2(0Vu, Vo — 2 Vi, Ve — IV Velig
=2(f.)o0 +2(¢,divp)oo — (¥ V(2u+¢), V)
+2(p — ¢, divp)on

and the maximum is attained at p = u —u € Hl—l,FD (€2). The last term can
be simply (but rather coarsly) estimated by Theorem 4.4 (p = ¢), what yields
the estimate presented below.

Theorem 4.7. For all u,v € up + Hl_lID(Q) and all ¢ € Hl_LFD(Q), T €
Dr, (), and q € L2(Q) we have

#1729 (= @5
> 2(f,0)o,0 +2(¢,divp)oo — (¥ V(2u+ ),V 90>07Q
— 26(Q,Tp) | div pllo0 (v 20/ + Ve (2. Tp)|| Div r + fll0
+ 21/32“1/_1/2(7' +ql—v V’U)Hoﬂ + 2ugk(Q,Tp)|| divv||0,g).
In particular v = is possible. If ¢ € S_1 1, () then the simple lower bound

HI/1/2 V(u— ﬁ)HéQ > 2(f, poa — <1/V(2ﬁ+ SO)’VSO>07Q

is true. Moreover, equality occurs for ¢ = u—u, provided that the approzimation
u is also solenoidal, i.e., w € up +S_11,(Q).

To handle a nonconforming approximation Te L2(£2), we can simply utilise
the triangle inequality and apply Theorem 4.7.

Theorem 4.8. Let Y € L2(Q). Then for all ¢ € HL . (Q), 7 € Dr,(Q),
q € L%Q), and u,v € up + H1—1,FD(Q); we have

11200 = D)0 > 012 V(=)o = [V = D]

Mo Mo

3In any Hilbert space H is true ||z]|? = max,ecn (2(z,y) — [ly|I*), in our case we can set
H=L*Q).
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2 ~\ (12
112V (= )[4
> 2(f, )o,0 + 2{q. divp)oo — (¥ V(2 +¢), V)
— 26(Q,Tp) | div pllo.0 (#5*vs/ + Dee (@, To) I Div T + flh0
+ 21/59/2H1/_1/2(7' +ql— I/VU)HO’Q + 2vgk(2,Tp)|| div v||079).

4.6. Special case: 2D exterior domains. For a Lipschitz domain D C R?
we introduce somewhat different weighted spaces by using logarithmic weights,
namely,

(D) i= {6 € Le(D) = (pln(e+p) "0 € L*(D)},

HL (D) i= {6 € 12,,,(D) : Vo € LX(D)

where e is the Euler number, see, e.g., [9,16,43]. We notice that at infinity

(p ln(e+p))i1 behaves like (r In7)*!. The inner product in Lil’ln(D) is defined
by the relation

(¢, V)r1mp = {(pIn(e + P))ﬂ ¢, 9 >o,D'

All other weighted spaces and norms are modified and defined in a similar way.

The sets Q C R? and w C R? are defined as in §2, i.e., Q C R? is an exterior
Lipschitz domain and w is a certain truncation of €. The situation is now
different from the case of d > 3 because the constants* will be integrable in
our weighted spaces, i.e., 1 € L2_1’1n(Q). Introducing additionally

H ) no(€) = HL | (@) NRE-1ime
we have the following Friedrichs/Poincaré estimate for exterior domains.
Lemma 4.9. There exists ¢ > 0 such that
[v]-1m0 < | Volloo
for all v € Hl_l’lnID (Q). The best constant c is denoted by cpp(2,Tp). In the
special case where B, C RY\ Q and Tp =T, we have cpp(Q,T) < 2.

This theorem follows from [27, Appendix 4.2, Lemma 4.1, Corollary 4.2,
Remark 4.3], see also [43, Lemma 4.1] and [16,28]. It is should be noted that
in this case we need boundary or mean value conditions as in the case of a
bounded domain. Now, all results from the sections for d > 3 follow with the
obvious modifications. In particular, the stability Lemma 3.2 reads as follows.

4Specifically, (rInr)~! € L2(B.), (rinr) ™! € L2(Biyc \ Bi—e), (rlnr) "' € L2(R?\ Bi4.)
for0 <e< 1.
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Lemma 4.10. There exists ¢ > 0 such that for any h € L%(Q) there exists
up € Hl—l,ln,rD (Q) with

divup, =h and ||Vuplloa < c|hloq-
The best constant is denoted by k(2,T'p) and satisfies the estimate
K(Q,Tp) < kg (2,Tp) == (1+5)(1 + cp(R*) o p(r2) In(e + p(r2)))
with

a=a(r,re,n) = max |Vn(z)| and & =min{k(w,7p),rw,7)}
IEBTQ\BTI

If h has compact support in@ and (if Up =T') additionally [oh = [ h =0,
then uy, can be chosen with a compact support in w as well, in particular u;, €
H! (w) C H%D(Q). In this case, k(Q,Tp) < k(w,vDp).

Estimates of the distance to the set of solenoidal fields are derived quite
similarly.

Corollary 4.11. For any u € Hl_l’lnID(Q) there exists a solenoidal uy €
S_1inrp () such that

dist (u, S_l,lnID(Q)) < H V(u—

For any u € HL Q) there exists a solenoidal ug € S_11,(Q2) such that
1,111 )

o) |g.q < A Tp)|l divullo,o.

u—ug € Hl—l,ln,FD (Q)v
i.e., ug|r, = ulr,, and

| V(u~ K(Q,Tp)|| div ullo.o.

wo)lo0 <
Another obvious corollary is the inf-sup lemma for 2D exterior domains.
Corollary 4.12. We have

nf (h,divu)on < 1
in sup > .
hel2@) uent, (@) 1ol Vulloe ™ #(€2,Tp)

As in the case of d > 3, the solvability of the Stokes problem and respective
energy estimates follow. Below we recall these results. Let

L2 (Q) — L% ln(Q) if I'p 7é g,
Lin, Py 557 Liln, () ifTp=0
and

1211 (Q) = hmﬁnﬂﬁ%“@={¢6hmm)w/@:0}

Q
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Corollary 4.13. For v, f € Liln’rN(Q), and up € S_11,(2) the 2D Stokes
system is uniquely solvable with a solenoidal vector field w = up +U € up +
S 1mrp(Q) CS_11(Q) and p € L%(Q). Moreover,

v Villo,n < crp (0, o) fll1me + v Vuplloq,
v[|Vullo,o < cpp(,Tp)[| fll1m0 + 2¢[] Vuploq,

Ipllo.e < 26(2,Tp) (cer (LTI fllma + v Vupllon)-

Now we address the subject of a posteriori error estimation and introduce
the sets

D(Q) = {T € L%(Q) : Divr e L{ln(sz)}

and Dr (2) as the closure of Cf° (2)-tensor fields in the norm of D(§2). For
errors encompassed in approximation of the velocity field we have the following
results, which repeat (with some modifications) those derived for d > 3. First,
we present an analog of Theorem 4.2.

Theorem 4.14. Let u € up + Hl_Un’FD(Q). Then for all 7 € Dr, () and
q € L2(Q) we have
12

HV1/2 V(U_ﬁ)uo@ Ve ' Tepp(2,T'p)|| Div T + fll1,1n,0

1/2

+ ”V—1/2(7_ +ql— VV@HO,Q + 2vg “K(Q2,Ip)| divaloo.

As in the case of d > 3, the estimate is simplified if divyo = 0 in R2 \Em
and additionally (if I'p = I') condition (38) is satisfied. Then, in Theorem 4.14
we can replace the constant «(Q2,I'p) by k(w,yp). If the approximation w is
solenoidal in €2, then the last term vanishes and we arrive at estimates similar
to Theorem 4.1. They possess the same property: the upper bound coincides
with the norm of the error on the left-hand side if 7 = o and p = ¢ (i.e.,
the estimate is sharp in the sense that there is no “gap” between its left- and
right-hand sides).

For the approximation of the pressure function, Theorem 4.4 is modified as
follows.

Theorem 4.15. Let p € L%(Q). Then for all 7 € Dr (Q) and all @ € up +
Hl_l’lnID(Q)we have

Ip = Bllo.c < £(2Tp) (5" *v/ + V)een (2 Tp) [ Div T + fllume
t+ 20 * [ V2 (r + FL— v V)|, + 2ves( Tp)|| div a||0,9).

Finally, we consider a nonconforming approximation % and obtain analogs
of the theorems exposed in Subsection 4.3.
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Theorem 4.16. Suppose that T € L2(Q) and p € L%(Q). Then for all U €
up + Hl—l,ln,FD(Q)a 7€ Dry(Q), and q € L2(Q) we have

H’/l/z(T - T)Ho Q

< V5 2een (0, Tp) | Divr + flluma + |l /2(r +q1— v V)|

+ 202 k(Q,Tp) || divaloq + |[/2(V i - 9]/

52 ( QT Div T + Flume + 1727+ q1 = 07)| o

+ 203 25(Q, Tp) | divilloq + 2|2 (Vi — 1)

<V

oo

and

Hp—ﬁHO,Q
A(,Tp) (05208 + Derp (D) Div 7 + flline

1/2

+ 20 * |l A (r 4+ P - VT)HO o+ 2vek(QL,T )| divilog

+ 222V T - T og)-
For Y = V@, where & € up + Hl—l,ln,rD (©) we recover Theorem 4.14 and
Theorem 4.15. As in §4.4, error estimates for the stress tensor field o follow
immediately by the triangle inequality.

Finally, we briefly present lower bounds of the error derived in the spirit
of §4.5.

Theorem 4.17. For all u,v € up + Hl_LlnID(Q) and all ¢ € H1_171n7FD(Q),
7€ Dry(Q), and q € L2(Q) we have

|2 V=5
2(f,¢)o,0 + 2{g, divp)o.o — (¥ V(24 +¢), Vo)
— 26(2,Tp) | div plloe (7520 + Dere (@ To)IIDiv T + fllmo

1/2
+ 2vg

o2+ 10T+ 2 )i o).
In particular, v = is possible. If ¢ € S_1mr, (), the estimate simplifies to
72V (= )5 = 2(F: P)on = (¥ V(2 +9), VYo q

and equality occurs for ¢ = u — u, provided that u € up + S_1 1n,r, ().
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Finally, to handle nonconforming approximations T e L2(2) we use again
the triangle inequality to estimate

o2 = Dl 2 ¥ = g~ 20T~ T

whenever u € up + H! || r,, (). Theorem 4.17 applied to the first term on
the right-hand side yields the estimate similar to Theorem 4.8.
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