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Dedi
ated to the memory of S. G. MikhlinA POSTERIORI ESTIMATES FOR THE STATIONARYSTOKES PROBLEM IN EXTERIOR DOMAINS© D. PAULY, S. REPINThis paper is 
on
erned with the analysis of the inf-sup 
ondition arising inthe stationary Stokes problem in exterior domains and appli
ations to thederivation of 
omputable bounds of the distan
e between the exa
t solutionof the exterior Stokes problem and a 
ertain approximation (whi
h may beof a rather general form). In the �rst part, guaranteed bounds are dedu
edfor the 
onstant in the stability lemma asso
iated with the exterior domain.These bounds depend only on known 
onstants and the stability 
onstantrelated to bounded domains that arise after suitable trun
ations of the un-bounded domains. The lemma in question implies 
omputable estimates ofthe distan
e to the set of divergen
e free �elds de�ned in exterior domains.Su
h estimates are 
ru
ial for the derivation of 
omputable majorants ofthe di�eren
e between the exa
t solution of the Stokes problem in exte-rior domains and an approximation from the admissible (energy) 
lass offun
tions satisfying the Diri
hlet boundary 
ondition but not ne
essarilydivergen
e free (solenoidal). Estimates of this type are often 
alled a pos-teriori estimates of fun
tional type. The 
onstant in the stability lemma(or equivalently in the inf-sup or LBB 
ondition) serves as a penalty fa
torat the term that 
ontrols violations of the divergen
e free 
ondition. In thelast part of the paper, similar estimates are dedu
ed for the distan
e tothe exa
t solution for non
onforming approximations, i.e., for those thatmay violate some 
ontinuity and boundary 
onditions. The 
ase where thedimension of the domain equals 2 requires a spe
ial 
onsideration be
ausethe 
orresponding weighted spa
es di�er from those natural for the dimen-sion 3 (or larger). This spe
ial 
ase is brie�y dis
ussed at the end of thepaper where similar estimates are dedu
ed for the distan
e to the exa
tsolution of the exterior Stokes problem.

Key words: stationary Stokes problem, exterior domains, inf-sup 
ondition, a posterioriestimates. 184



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 185�1. Introdu
tion1.1. Notation and nomen
lature. Throughout the paper we 
onsider do-mains in R
d, d > 2, with Lips
hitz boundaries. The symbol ω is used forbounded domains and the boundary of su
h a domain is denoted by γ (typi-
ally, the latter is 
omposed of two open and disjoint parts γD and γN asso-
iated with the Diri
hlet and Neumann parts). Exterior domains (i.e., thosehaving the form R

d \ ω) are denoted by Ω. By the letter D, we denote do-mains whi
h may be bounded or unbounded depending on the 
ontext (if thisproperty is not ne
essary to outline).For Lebesgue and Sobolev spa
es of fun
tions (s
alar, ve
tor, or tensor val-ued) with generalised square integrale derivatives of the �rst order we use thestandard notation L2(ω) and H1(ω) (or L2(Ω) and H1(Ω)), respe
tively. Thestandard inner produ
t, norm, and orthogonality in L2(ω) will be denoted by
〈 · , · 〉0,ω, ‖ · ‖0,ω, and ⊥0,ω. If γD 6= ∅, then the homogeneous Diri
hlet bound-ary 
onditions are en
oded in the spa
e H1

γD(D), whi
h is de�ned as the 
losureof 
ompa
tly supported smooth fun
tions vanishing on γD in the norm of H1.Also, for bounded domains we use spa
es with vanishing mean values1
L
2
⊥(ω) := L

2(ω) ∩ R
⊥0,ω

=
{
φ ∈ L

2(ω) : 〈φ, 1〉0,ω = 0
}
=

{
φ ∈ L

2(ω) :

∫

ω

φ = 0
}
,

H
1
⊥(ω) := H

1(ω) ∩ L
2
⊥(ω) =

{
φ ∈ H

1(ω) :

∫

ω

φ = 0
}
.To handle the spe
ial 
ase of γD = ∅ using a uni�ed notation, we introdu
ethe spa
e

L
2
γD

(ω) :=

{
L2(ω) if γD 6= γ,

L2⊥(ω) if γD = γ,and for the 
ase where γD = ∅ rede�ne H1
γD

(ω) by setting
H
1
γD

(ω) = H
1
⊥(ω).1Throughout this paper, we do not express the respe
tive measure in the notation ofintegrals, so that, e.g., we often use the notation like this:

∫

ω

f =

∫

ω

fdλ =

∫

ω

fdx,

∫

γ

f =

∫

γ

fdo =

∫

γ

fds.



186 D. PAULY, S. REPINTo further unify our de�nitions and extend them to exterior domains, we 
on-sider a domain (an open and 
onne
ted set) D ⊂ R
d, d > 2. This domain maybe bounded or unbounded. It has a Lips
hitz boundary B, whi
h 
onsists of tworelatively open and disjoint parts BD,BN ⊂ B (su
h that B = BD ∪ BN ) asso-
iated with Diri
hlet and Neumann boundary 
onditions. As before, we denotethe standard Lebesgue and Sobolev spa
es by L2(D) and H1(D), respe
tively. If

BD 6= ∅, we introdu
e homogeneous Diri
hlet boundary 
onditions in H1
BD

(D)de�ned as the 
losure of
C
∞
BD

(D) :=
{
φ|D : u ∈ C

∞(Rd), suppφ is 
ompa
t, dist(suppφ,BD) > 0
}in H1(D). As above we utilise the notations L2B(D) = L2⊥(D), L2BD

(D), and
H1
∅(D) = H1

⊥(D) provided that D is bounded. Next, we introdu
e polynomiallyweighted spa
es
L
2
±1(D) :=

{
φ ∈ L

2
loc(D) : ρ±1φ ∈ L

2(D)
}
,

H
1
−1(D) :=

{
φ ∈ L

2
−1(D) : ∇φ ∈ L

2(D)
}
,where the weight fun
tion ρ is de�ned by ρ(r) := (1 + r2)1/2, and r(x) := |x|.The inner produ
t, norm, and orthogonality in L2±1(D) are denoted by

〈 · , · 〉±1,D :=
〈
ρ±2 · , ·

〉
0,D
, ‖ · ‖±1,D, and ⊥±1,D,respe
tively. In the 
ase of a bounded domain, there is no di�eren
e betweenthe unweighted and weighted spa
es (if we mean that the spa
es 
oin
ide assets and possess di�erent inner produ
ts). However, in analysis of problems inexterior domains a proper sele
tion of weights is important (in �4.6 devotedto the 
ase of d = 2 we de�ne the weighted spa
es di�erently). As before, if

BD 6= ∅, then the homogeneous Diri
hlet boundary 
onditions are en
oded in
H1
−1,BD

(D), the 
losure of C∞
BD

(D) in H1
−1(D). Finally, for the Stokes equations,we introdu
e spa
es of solenoidal �elds

S(D) :=
{
ϕ ∈ H

1(D) : divϕ = 0
}
, SBD

(D) := H
1
BD

(D) ∩ S(D),

S−1(D) :=
{
ϕ ∈ H

1
−1(D) : divϕ = 0

}
, S−1,BD

(D) := H
1
−1,BD

(D) ∩ S−1(D).1.2. Stability lemma and the Stokes problem in bounded domains.The 
lassi
al stationary Stokes problem 
onsists of �nding a ve
tor �eld u



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 187(velo
ity) and a s
alar valued fun
tion p (pressure) that solve the system
−ν∆u+∇ p = f in ω, (1)

div u = 0 in ω, (2)
u = uD on γD, (3)
σn = 0 on γN , (4)where σ := ν∇u−p I, ν (vis
osity) is a positive 
onstant or a positive fun
tiontaking values in [ν⊖, ν⊕], ν⊖, ν⊕ > 0, and f ∈ L2(ω). The boundary 
onditionsare de�ned by the ve
tor valued fun
tion uD. Hen
eforth, we assume that uDis given by a solenoidal ve
tor �eld uD, i.e., the Diri
hlet boundary 
onditionis de�ned by uD ∈ S(ω) in the sense that u = uD on γD, i.e.,
u− uD ∈ H

1
γD(ω).If γ = γD, then we additionally assume that∫

γ

n · uD =

∫

ω

div uD = 〈uD, 1〉0,ω = 0. (5)The existen
e of the 
orresponding generalised solution follows from the well-known solution theory for uniformly ellipti
 linear equations and the stabilitylemma, whi
h plays an important role in the theory of in
ompressible �ow.Lemma 1.1 (stability lemma, [1, 3, 13, 14, 22℄). There exists c > 0 su
h thatfor any g ∈ L2γD(ω) there is a ve
tor �eld ug ∈ H1
γD(ω) with

div ug = g and ‖∇ug‖0,ω 6 c‖g‖0,ω . (6)Hen
eforth, the best 
onstants in (6) and similar inequalities for unboundeddomains are denoted by the letter κ, i.e., κ(ω, γD) is the smallest c in (6). For
u ∈ H1

γD(ω) we also have the Friedri
hs/Poin
ar�e inequality
‖u‖0,ω 6 c‖∇ u‖0,ω,and cFP(ω, γD) denotes the best 
onstant c. Hen
e from Lemma 1.1, we 
on-
lude that ug satis�es the inequalities

1

cFP(ω, γD)
‖ug‖0,ω 6 ‖∇ug‖0,ω 6 κ(ω, γD)‖div ug‖0,ω.We noti
e that in the theory of ele
trodynami
s the fun
tion ug is 
alled aregular potential as it admits (for Maxwell's equations) an unphysi
al (high)regularity and boundary 
ondition, whi
h is mu
h stronger than the usualnormal boundary 
ondition related to the divergen
e operator.Lemma 1.1 yields several important 
orollaries. First, it guarantees the solv-ability of the stationary Stokes problem (in the velo
ity-pressure posing). By



188 D. PAULY, S. REPINsetting g = div ug, Lemma 1.1 immediately yields the well known inf-sup (orLBB) 
ondition:
inf

g∈L2γD
(ω)

sup
u∈H1

γD
(ω)

〈g,div u〉0,ω
‖g‖0,ω‖∇u‖0,ω

>
1

κ(ω, γD)
=: cLBB (7)Another dire
t 
orollary to Lemma 1.1 is an estimate of the distan
e betweena ve
tor �eld u ∈ H1

γD (ω) and the set SγD(ω) (see [35, 36℄)
dist

(
u,SγD(ω)

)
:= inf

v∈SγD (ω)

∥∥∇(u− v)
∥∥
0,ω
.Corollary 1.2. For any u ∈ H1

γD
(ω) there exists u0 ∈ SγD(ω) su
h that

dist
(
u,SγD(ω)

)
6

∥∥∇(u− u0)
∥∥
0,ω

6 κ(ω, γD)‖div u‖0,ω.Proof. For u ∈ H1
γD(ω), solve the equation

div ũ = div u ∈ L
2
γD

(ω)with ũ ∈ H1
γD(ω) and the stability estimate

‖∇ ũ‖0,ω 6 κ(ω, γD)‖div u‖0,ωby Lemma 1.1. Note that for γD = γ we have∫

γ

n · u =

∫

ω

div u = 〈u, 1〉0,ω = 0. (8)Then
u0 := u− ũ ∈ SγD(ω) and ∥∥∇(u− u0)

∥∥
0,ω

=
∥∥∇ ũ

∥∥
0,ω

6 κ(ω, γD)‖div u‖0,ω. �In [38�40℄, this result was extended to ve
tor �elds satisfying nonhomoge-neous Diri
hlet boundary 
onditions (and also for ve
tor �elds in W1,q(Ω) for
q ∈ (1,∞)) provided that su
h a ve
tor �eld u satis�es div u ∈ L2γD

(Ω), i.e.,the mean value 
ondition (8), if γD = γ. Moreover, it was shown that if themean value 
onditions hold true for a 
olle
tion of subdomains whose unionof 
losures 
oin
ides with the 
losure of ω, then estimates of the distan
e 
anbe based on lo
al 
onstants asso
iated with subdomains. In the 
ase of nonho-mogeneous boundary 
onditions, a modi�ed version of Corollary 1.2 reads asfollows.Corollary 1.3. For any u ∈ H1(ω) with div u ∈ L2γD
(ω) there exists a soleno-idal u0 ∈ S(ω) su
h that u0 − u ∈ H1

γD(ω), i.e., u0|γD = u|γD , and∥∥∇(u0 − u)
∥∥
0,ω

6 κ(ω, γD)‖div u‖0,ω.



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 189It should be noted that Corollary 1.3 
an be also viewed as a lifting lemma,be
ause a boundary datum u|γD is lifted to the domain ω. In this 
ase liftingis performed with the help of a solenoidal representative.Estimates of the 
onstant κ(ω, γD) have been studied in [6, 10, 25, 29, 44℄and some other publi
ations. It is not di�
ult to see that the 
onstant cLBBin (7) is nonnegative and 
annot ex
eed 1 so that κ(ω, γD) > 1. It is knownthat cLBB > 0 for any bounded Lips
hitz domain (e.g., cLBB = 1/
√
d for a ballin R

d). However, the exa
t values of this 
onstant are unknown ex
ept somevery spe
ial 
ases (for example, we do not know the 
onstant even for a 
ube!).In [6℄, simply 
omputable and su�
iently a

urate estimates of the 
onstantwere obtained for domains in R
2 that are in
luded in a ball of radius R andare star-shaped with respe
t to a 
on
entri
 ball of radius ρ. It was shown that

κ(ω, γ) 6

√
2

ζ

(
1 +

√
1− ζ2

)1/2
, (9)where ζ = ρ/R. For d = 3, estimates of cLBB are known only for domains withsu�
iently regular boundaries (see [29℄). A systemati
 numeri
al analysis of
onstants in the inf-sup 
ondition (7) was performed in [11℄, where approxi-mate values of the 
onstants were 
omputed for a wide 
olle
tion of boundeddomains. Computational approa
hes to the evaluation of the distan
e to theset of divergen
e free �elds based on domain de
omposition were suggestedin [38�40℄. In our subsequent analysis, we assume that, using the results andmethods mentioned above, we are able to �nd a majorant of the 
onstant

κ(ω, γD) for bounded domains ω that arise as trun
ations of an unboundeddomain Ω.1.3. A posteriori estimates. Estimates of the distan
e to SγD(ω) are notmerely of theoreti
al value. They are important for the quantitative analysisof boundary value problems generated by in
ompressible media models (e.g.,in the theory of vis
ous in
ompressible �uids). First, estimates of this typeare ne
essary for getting 
omputable bounds for the di�eren
e between theexa
t solution of a boundary value problem and an approximation obtained bysome 
omputational pro
edure. The term �
omputable� means that the 
orre-sponding estimates do not involve unknown fun
tions and 
onstants and 
anindeed be 
omputed by means of an approximate solution only. Estimates ofthis type are often 
alled a posteriori error estimates and nowadays are widelyused in the quantitative analysis of mathemati
al problems. Unlike the a priori(asymptoti
) 
onvergen
e estimates, a posteriori estimates provide an expli
itveri�
ation of the a

ura
y of a parti
ular numeri
al solution. First methodsof a posteriori error 
ontrol for PDEs originates from the works of W. Pragerand J. L. Synge [33℄ and S. G. Mikhlin [19℄. The latter monograph 
ontains



190 D. PAULY, S. REPINa pioneering idea of a new approa
h to error estimation, whi
h di�ers prin
i-pally from asymptoti
 rate 
onvergen
e estimates dominated at that time andseveral de
ades subsequently. For variational problems generated by quadrati
type fun
tionals
J(v) =

1

2
a(v, v) − 〈f, v〉, f ∈ V, (10)where V is a Hilbert spa
e and a : V × V → R is a V -ellipti
 bilinear form,S. Mikhlin dedu
ed the prin
ipal relation

1

2
a(u− v, u− v) = J(v) − J(u). (11)Here u is the minimizer that satis�es

J(u) = min
w∈V

J(w) and v ∈ Vis any fun
tion 
ompared with u. Sin
e the exa
t in�mum is unknown, it isimpossible to use (11) dire
tly. In [19℄, it was suggested to estimate J(u) frombelow using a dual variational problem and further apply the orthogonal pro-je
tion method of H. Weyl [48℄. Certainly, these �rst estimates were derived fora rather limited set of problems and su�ered from serious restri
tions imposedon the set of fun
tions that are admissible in the dual setting. For these reasons,they were rarely used in 
omputational pra
ti
e. Moreover, the methods devel-oped in 1970�1980 for measuring errors of �nite element approximations (su
has the �gradient averaging� and �residual� methods, see, e.g., [47℄ and the refer-en
es therein) were based on di�erent grounds. These methods strongly exploitproperties of a parti
ular approximation 
omputed on a parti
ular mesh. Inessen
e, they provide 
ertain error indi
ators (for mesh adaptive pro
edures)rather than guaranteed error bounds. Subsequent studies fo
used on the prob-lem of guaranteed error 
ontrol (performed in the 1990s) 
on�rmed the idea(en
ompassed in (11)) that the 
orresponding methods should be justi�ed onthe fun
tional level by means of the same mathemati
al tools that are usedin analysis of PDEs without attra
ting spe
i�
 features of approximations andnumeri
al methods. If we have a general (universal) estimate of the distan
ebetween a fun
tion and the exa
t solution of a boundary value problem, then it
an be used with any approximation and requires no 
hanges if one approxima-tion (mesh) is repla
ed by another. In the last two de
ades 
omputable boundsof this type has been derived and tested for a wide spe
trum of problems(see [17, 23, 34, 37℄ and many other publi
ations 
ited in these monographs).For 
lear reasons, they are often 
alled a posteriori estimates of fun
tional type.They di�er from others due to two important properties: the estimates(a) do not 
ontain 
onstants asso
iated with a parti
ular �nite dimensionalsubspa
e (mesh) and a method used to solve the problem and



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 191(b) are valid for any approximation in the energy spa
e and do not usespe
ial 
onditions required for the exa
t solution (e.g., extra regularity)or its approximation (e.g., Galerkin orthogonality, quasi�uniformity ofmeshes).A posteriori estimates of fun
tional type involve only global 
onstants gen-erated by fun
tional inequalities su
h as various embedding estimates, tra
einequalities, Poin
ar�e, Maxwell, Korn inequalities, et
. It should be noted thatalthough 
onstants of this type do not appear in (11) (and in the estimatesderived in [33℄), the importan
e of studying them was already understood byMikhlin (see [20℄). The reader 
an �nd an overview of the history of a poste-riori error estimation methods and a subsequent exposition of the fun
tionalapproa
h to the problem in [37℄.First estimates of the distan
e between a fun
tion in the energy spa
e andthe exa
t solution of the stationary Stokes problem in a bounded domain werederived in [35℄ (by means of the variational duality method) and in [36℄ (bytransformations of the integral identity that de�nes the 
orresponding weaksolution). It is worth starting a short overview of these results with the erroridentity
ν
∥∥∇(v − u)

∥∥2 + ν−1‖τf − σ‖2 = 2(I(v) − I∗(τf )), (12)whi
h 
an be viewed as an analog of (11) for the stationary Stokes problem.Here v ∈ Sγ(ω) and
τf ∈ L

2
f (ω) :=

{
τ ∈ L

2(ω) : 〈τ,∇w〉0,ω = 〈f,w〉0,ω ∀w ∈ Sγ(ω)
}are regarded as approximations of the exa
t velo
ity �eld u and exa
t stress�elsσ, respe
tively. Identity (12) is ful�lled for any v∈Sγ(ω) and any τf ∈L2f (ω).However, it is not very useful for pra
ti
e for the same reasons as (11), namely,the fun
tions in Sγ(ω) and L2f (ω) are subje
t to di�erential relations. In [35℄ (seealso [37℄), a way was shown to over
ome these di�
ulties by using 
omputableestimates of distan
es to the sets Sγ(ω) and L2f (ω). As a result, the followingestimates for the velo
ity and pressure �elds were derived:

ν
∥∥∇(u− ũ)

∥∥
0,ω

6 ‖τ + p̃ I− ν∇ ũ‖0,ω + cFP(ω, γ)‖Div τ + f‖0,ω
+ 2νκ(ω, γ)‖div ũ‖0,ω,

(13)
1

2κ(ω, γ)
‖p − p̃‖0,ω 6 ‖τ + p̃ I− ν∇ ũ‖0,ω + cFP(ω, γ)‖Div τ + f‖0,ω

+ νκ(ω, γ)‖div ũ‖0,ω
(14)Here ν is a positive 
onstant and ũ ∈ H1(ω) is a ve
tor valued fun
tion sat-isfying the Diri
hlet boundary 
onditions. The fun
tion ũ is regarded as an



192 D. PAULY, S. REPINapproximation of the exa
t velo
ity u. Similarly, p̃ is a square integrable fun
-tion (with zero mean value if the Diri
hlet 
onditions are imposed on the wholeboundary γ) viewed as an approximation of p and τ ∈ L2(ω) is an approxima-tion of the exa
t stress �eld σ. The right-hand sides of (13) and (14) have a
lear meaning: they 
ontain three nonnegative terms that vanish if the approx-imations 
oin
ide with the exa
t velo
ity, pressure, and stress, respe
tively. Inother 
ases, the terms 
an be viewed as penalties for possible violations of thethree basi
 relations that form (1) and (2).It is easy to see that the 
onstant κ(ω, γ) plays an important role in (13)and (14) and, therefore, it is indeed ne
essary to have guaranteed majorants ofthis 
onstant. These 
onstants arise in the a posteriori analysis of a numeri
alsolution if it satis�es the divergen
e free 
ondition only approximately. If the
onstant κ(ω, γD) is known, then by using Corollary 1.2 we 
an dedu
e guaran-teed and fully 
omputable error estimates. For problems in bounded Lips
hitzdomains the respe
tive results are presented in [35�37, 39℄ and other publi
a-tions 
ited therein. Also, it should be mentioned that expli
it bounds of the
onstant κ(ω, γ) are required not only for Stokes type problems. They arise inother 
ontinuous media problems, whi
h are not related to vis
ous �uids (e.g.,see [42℄).Subsequently analogous estimates for the velo
ity and pressure �elds wereobtained for the Stokes problem in the velo
ity-vorti
ity-pressure formula-tion [18℄ and for the generalised Stokes problem [41℄. In [7℄, su
h estimateswere derived for a 
lass of stationary problems asso
iated with nonlinear vis-
ous �uids and in [24℄ for the evolutionary Stokes problem. We note that theapproa
h used in these publi
ations and in the present paper di�ers essentiallyfrom the so-
alled residual method often used in the �nite element 
ommunityfor getting indi
ators of approximation errors (see, e.g., [46℄).1.4. Outline of the paper. In the �rst part of the paper, we re
all someknown results related to the analysis of boundary value problems in exteriordomains paying a spe
ial attention to the stability Lemma 2.3 and the 
orre-sponding 
orollaries.�3 is devoted to 
omputable bounds κ⊕(Ω,ΓD) for the stability 
onstant
κ(Ω,ΓD). In Lemma 3.2, we obtain a desired estimate for κ⊕(Ω,ΓD), whi
hinvolves known 
onstants and the 
onstant κ(ω, γD) asso
iated with a boundeddomain ω (whi
h is a suitable trun
ation of Ω). Estimates of the last 
onstanthave been derived in several publi
ations 
ited above, so that we view thisproblem as solvable (at least in the sense that a 
ertain guaranteed boundof κ(ω, γD) 
an be derived). As a result, we obtain estimates of the distan
ebetween a ve
tor �eld in Ω and the respe
tive set of solenoidal �elds de�ned in Ωand satisfying the same boundary 
onditions (Lemma 3.4). These estimates are



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 193used in �4, we derive a posteriori error estimates of the fun
tional type, whi
hare valid for a wide 
lass of approximate solutions to the stationary Stokesproblem in exterior domains.Estimates for the velo
ity are obtained in three di�erent forms. The �rst(and the simplest) form is valid for approximations in S(Ω), i.e., for solenoidalve
tor-valued fun
tions that satisfy the Diri
hlet boundary 
ondition exa
tly(Theorem 4.1). These estimates do not 
ontain the 
onstant κ(Ω,ΓD). Esti-mates of the se
ond type are valid for approximations in H1(Ω) still satisfyingthe boundary 
ondition exa
tly but admit possibly nonsolenoidal fun
tions(Theorem 4.2). They involve a term that penalises possible violation of thesolenoidality 
ondition and has the 
onstant κ(Ω,ΓD) as a penalty fa
tor. Fi-nally, the most general form of the estimate is appli
able for non
onformingapproximations, whi
h even may not belong to the energy 
lass H1(Ω) (The-orem 4.6). It involves one more term that 
an be viewed as a measure of thedistan
e to the energy 
lass natural for the velo
ity fun
tion. Also, we dedu
eestimates for approximations of the pressure (Theorem 4.4 and Theorem 4.6)and the stress �eld (Subse
tion 4.4). In �4.5 we 
onsider lower bounds and in�4.6 we adapt our results to the spe
ial 
ase of spa
e dimension d = 2.�2. Preliminaries2.1. Exterior domain and main fun
tional inequalities. We 
onsideran exterior domain Ω ⊂ R
d, where d > 3 (the spe
ial 
ase d = 2 is studied inSubse
tion 4.6), with a (strong) Lips
hitz boundary Γ, whi
h is 
omposed oftwo open and disjoint parts ΓD,ΓN ⊂ Γ (Diri
hlet and Neumann part) with

Γ = ΓD ∪ ΓN . Moreover, we assume that there exist 0 < r1 < r2 su
h that
R
d \ Ω ⊂ Br1 and denote (see Figure 1)

ω := Ωr2 := Ω ∩Br2 , γ = Γ ∪ Sr2 , γD := ΓD ∪ Sr2 , (15)where Br and Sr denote the open ball and the sphere of radius r 
entered atthe origin in R
d. By η we denote a Lips
hitz 
ontinuous 
ut-o� fun
tion, whi
hvanishes in the ball2 Br1 , equals 1 in R

d \Br2 , and takes values in [0, 1].The two main ingredients for our proofs are Lemma 1.1 and a few elemen-tary results from the theory of ∇-curl-div�systems in exterior domains andespe
ially R
d (see, e.g., [16, 43℄ or [12, 26℄ and in parti
ular [28℄ as well as ref-eren
es therein), whi
h 
an be summarised in the two subsequent lemmas asfollows.2For the sake of simpli
ity we hen
eforth operate with the balls Br1 and Br2 . However, ifne
essary Br1 
an be repla
ed by a Lips
hitz domain 
ontaining R

2 \Ω and Br2 by anotherLips
hitz domain 
ontaining Br1 .
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ω

Ω

η = 1

η = 0

∇ η 6= 0

R
d \ Ω

Γ

Γ
ΓD

ΓDSr2

Sr1

Figure 1. R
d \ Ω (gray) surrounded by the boundary Γ (thinbla
k lines), the boundary part ΓD (thi
k bla
k lines), and thearti�
ial boundary spheres (dashed lines)Lemma 2.1 (Friedri
hs/Poin
ar�e lemma for exterior domains). The followingweighted Friedri
hs/Poin
ar�e estimates hold true.(i) There exists c > 0 su
h that for all v ∈ H1

−1,ΓD
(Ω) we have

‖v‖−1,Ω 6 c‖∇ v‖0,Ω.The best 
onstant c is 
alled the Friedri
hs/Poin
ar�e 
onstant and wedenote it by cFP(Ω,ΓD).(ii) If ΓD = Γ, then cFP(Ω,Γ) = cF(Ω) (the Friedri
hs 
onstant) and
cF(Ω) 6 cd :=

2

d− 2
.Hen
e for all v∈H1

−1,Γ(Ω) the Friedri
hs estimate ‖v‖−1,Ω6cd‖∇v‖0,Ωholds true. If ΓD = ∅, then cFP(Ω,∅) is repla
ed by the Poin
ar�e 
on-stant cP(Ω). In this 
ase, the Poin
ar�e estimate
‖v‖−1,Ω 6 cP(Ω)‖∇ v‖0,Ωis ful�lled for all v ∈ H1

−1(Ω).
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d, then the Friedri
hs and Poin
ar�e 
onstants 
oin
ide and,moreover,

cFP(R
d) = cF(R

d) = cP(R
d) 6 cd.Hen
e for all v ∈ H1

−1(R
d) we have ‖v‖−1,Rd 6 cd‖∇ v‖0,Rd .Note that no boundary or mean value 
onditions are needed in Lemma 2.1(be
ause 
onstant fun
tions are not integrable in L2−1(Ω)).Lemma 2.2 (∇-curl-div lemma for exterior domains). Let Ω = R

d and h ∈
L2(Rd). Then there exists a unique v ∈ H1

−1(R
d) su
h that curl v = 0 and

div v = h. Moreover,
1

cd
‖v‖−1,Rd 6 ‖∇ v‖0,Rd = ‖div v‖0,Rd = ‖h‖0,Rd .The results of Lemma 2.2 are well known and follow dire
tly by Fourieranalysis, see, e.g., [16, 30�32℄ or [12, 26℄. Noti
e that the well-known equation

−∆ = curl∗ curl−∇ div implies the identity
‖∇ v‖20,Rd = ‖ curl v‖20,Rd + ‖div v‖20,Rd (16)for all v ∈ C∞(Rd) having 
ompa
t support. By density and 
ontinuity argu-ments it 
an be extended to all v ∈ H1

−1(R
d). Hen
e the relation

‖∇ v‖0,Rd = ‖div v‖0,Rdin Lemma 2.2 follows immediately.2.2. Stability lemma and Stokes problem in exterior domains. Forexterior domains we have a result similar to Lemma 1.1 (see [9℄).Lemma 2.3 (stability lemma for exterior domains). There exists c > 0 su
hthat for any h ∈ L2(Ω) there is a ve
tor �eld
uh ∈ H

1
−1,ΓD

(Ω)with
div uh = h and ‖∇ uh‖0,Ω 6 c‖h‖0,Ω.The best 
onstant is denoted by κ(Ω,ΓD).In the subsequent Lemma 3.2 we present 
omputable upper bounds for

κ(Ω,ΓD).Remark 2.4. In [9℄ only the 
ase of ΓD = Γ was 
onsidered, but it is trivialthat then the stability lemma is true for general ΓD as well. It should benoted that unlike in the 
ase of a bounded domain, no mean value 
onditionis imposed on h even if ΓD = Γ.Lemma 2.3 immediately implies the inf-sup 
ondition.



196 D. PAULY, S. REPINCorollary 2.5 (inf-sup lemma for exterior domains). We have
inf

h∈L2(Ω)
sup

u∈H1
−1,ΓD

(Ω)

〈h,div u〉0,Ω
‖h‖0,Ω‖∇u‖0,Ω

>
1

κ(Ω,ΓD)
.From now on, let f ∈ L21(Ω), uD ∈ S−1(Ω) be given data. The 
lassi
alStokes problem in an exterior domain Ω 
onsists of �nding a ve
tor-valuedfun
tion u (velo
ity) and a s
alar valued fun
tion p (pressure) satysfying thesystem

−Div σ = f in Ω, (17)
σ = ν∇u− p I in Ω, (18)

div u = 0 in Ω, (19)
u = uD on ΓD, (20)
σn = 0 on ΓN , (21)where u additionally satis�es a proper de
ay 
onditions at in�nity, so that

u ∈ S−1(Ω) or u ∈ H1
−1(Ω), i.e.,
u ∈ L

2
−1(Ω) and ∇u ∈ L

2(Ω).The 
lassi
al (point-wise) 
ondition reads
u(x)

|x|→∞−−−−→ 0. (22)The 
orresponding generalised solution
u ∈ uD + S−1,ΓD

(Ω)is de�ned by the integral identity (see, e.g., [9, 13℄)
〈ν∇u,∇ϕ〉0,Ω = 〈f, ϕ〉0,Ω ∀ϕ ∈ S−1,ΓD

(Ω). (23)Note that, sin
e
〈f, ϕ〉0,Ω =

〈
ρ f, ρ−1ϕ

〉
0,Ω
,the right-hand side of (23) is well de�ned. Using the Ansatz u = uD + û with

û ∈ S−1,ΓD
(Ω), we redu
e this formulation to �nd û ∈ S−1,ΓD

(Ω) su
h that forall ϕ ∈ S−1,ΓD
(Ω) we have
〈ν∇ û,∇ϕ〉0,Ω = 〈f, ϕ〉0,Ω − 〈ν∇uD,∇ϕ〉0,Ω.Another formulation taking the pressure into a

ount leads to the followingsaddle point formulation: �nd

(u, p) ∈
(
uD + H

1
−1,ΓD

(Ω)
)
× L

2(Ω)
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h that for all (ϕ, φ) ∈ H1
−1,ΓD

(Ω)× L2(Ω) we have
〈ν∇u,∇ϕ〉0,Ω − 〈p,divϕ〉0,Ω = 〈f, ϕ〉0,Ω, (24)

〈div û, φ〉0,Ω = 0. (25)By standard arguments (see, e.g., [8,9,13℄) and the inf-sup lemma, we knowthat for f ∈ L21(Ω) and uD ∈ S−1(Ω) the Stokes system is uniquely solvablewith u ∈ uD + S−1,ΓD
(Ω) and p ∈ L2(Ω). Moreover, the solution meets theestimates

ν‖∇ û‖0,Ω 6 cFP(Ω,ΓD)‖f‖1,Ω + ν‖∇uD‖0,Ω,
ν‖∇u‖0,Ω 6 cFP(Ω,ΓD)‖f‖1,Ω + 2ν‖∇ uD‖0,Ω,

‖p‖0,Ω 6 2κ(Ω,ΓD)
(
cFP(Ω,ΓD)‖f‖1,Ω + ν‖∇uD‖0,Ω

)
.�3. Estimates of κ(Ω,ΓD)Our goal is to dedu
e majorants for the 
onstant in Lemma 2.3 that in-volve only known 
onstants (su
h as cd) and stability 
onstants for a boundeddomain ω generated by a 
ertain trun
ation of Ω.First we dis
uss the simplest 
ase of a 
ompa
tly supported right-hand side.Lemma 3.1. There exists c > 0 su
h that for all h ∈ L2(Ω) with supph ⊂ ωand h ∈ L2γD (ω), i.e., ∫Ω h =

∫
ω h = 0 if ΓD = Γ, there exists a ve
tor �eld

uh ∈ H1
−1,ΓD

(Ω) su
h that
div uh = h and ‖∇ uh‖0,Ω 6 c‖h‖0,Ω.The fun
tion uh 
an be 
hosen with 
ompa
t support in ω, in parti
ular,

uh ∈ H
1
γD(ω) ⊂ H

1
ΓD

(Ω).In this 
ase, κ(Ω,ΓD) 6 κ(ω, γD).Hen
e we arrive at the rather obvious 
on
lusion that for a 
ompa
tly sup-ported h the 
onstant κ(Ω,ΓD) 
an be estimated by κ(ω, γD).Proof of Lemma 3.1. Set
g := h|ω ∈ L

2
γD

(ω).By Lemma 1.1 there exist κ(ω, γD) > 0 and ug ∈ H1
γD

(ω), ug = 0 on Sr2 su
hthat div ug = g and ‖∇ug‖0,ω 6 κ(ω, γD)‖g‖0,ω . Let uh be the extension byzero of ug to Ω. Then uh ∈ H1
ΓD

(Ω) and suppuh = suppug ⊂ ω. Moreover,
div uh = h and

‖∇uh‖0,Ω = ‖∇ug‖0,ω 6 κ(ω, γD)‖g‖0,ω = κ(ω, γD)‖h‖0,Ω,
ompleting the proof. �
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h provides an upper bound for the best
onstant κ(Ω,ΓD) in the stability Lemma 2.3 for exterior domains as well asan alternative proof of this lemma.Lemma 3.2. Let Ω and ω be de�ned by (15). Then
κ(Ω,ΓD) 6 κ⊕(Ω,ΓD) := (1 + κ)

(
1 + cd αρ(r2)

)with κ(Ω,ΓD) from Lemma 2.3, where α and κ are de�ned in (29) and (31),i.e.,
α = α(r1, r2, η) = max

x∈Br2
\Br1

∣∣∇ η(x)
∣∣, κ = min

{
κ(ω, γD), κ(ω, γ)

}
.Remark 3.3. It should be noted that κ 6 κ(ω, γD) and κ 6 κ(ω, γ), where these
ond bound means that κ 
an be estimated independently of the boundarypart ΓD of Γ. Moreover, the 
onstant κ⊕(Ω,ΓD) depends on the dimension d,the radii r1, r2, and the Lips
hitz 
ontinuous 
ut-o� fun
tion η. Optimal val-ues of these parameters (whi
h minimise the 
onstant) are not known a prioriand should be de�ned by solving an additional algebrai
 problem. If η is 
on-stru
ted, e.g., by a simple a�ne fun
tion with r2 = r1 + 1, then α = 1 and wehave one possible upper bound

κ⊕(Ω,ΓD) 6 (1 + κ)
(
1 + cd

√
1 + r22

)
6

(
1 + κ(ω, γ)

)(
1 +

2
√
2

d− 2
r2

)
.In some 
ases, this bound may be rather 
oarse, but, anyhow, it presents aguaranteed upper bound of the stability 
onstant κ⊕(Ω,ΓD) asso
iated withthe exterior domain Ω.Proof of Lemma 3.2. We extend h by 0 to R

d \Ω and identify the extendedfun
tion with h ∈ L2(Rd). By Lemma 2.2 we have a ve
tor �eld v ∈ H1
−1(R

d)with curl v = 0 and div v = h in R
d as well as

1

cd
‖v‖−1,Rd 6 ‖∇ v‖0,Rd = ‖div v‖0,Rd = ‖h‖0,Ω. (26)We re
all that our 
ut-o� fun
tion η satis�es η|Br1

= 0 and η|
Rd\Br2

= 1.Therefore, ηv ∈ H1
−1,Γ(Ω) and supp(ηv) ⊂ R

d \Br1 . In view of Lemma 2.3, ourgoal is to �nd a ve
tor-valued fun
tion vh ∈ H1
−1,ΓD

(Ω) su
h that div vh = hin Ω and the stability inequality holds true. We suggest to 
onstru
t it in theform
vh := ηv + vω, (27)where vω ∈ H1

ΓD
(Ω) with supp vω ⊂ ω is the extension by zero to Ω of someve
tor-valued fun
tion uω ∈ H1

γD (ω) that is supported in ω̄ and vanishes on Sr2 .
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h = div vh = ηh+∇ η · v + div vω in Ωimposes a 
ondition on vω and uω. Let
g := (1− η)h−∇ η · v ∈ L

2(ω) in ω.Noti
e that supp(1− η) ⊂ Br2 , supp∇ η ⊂ Br2 \Br1 and hen
e supp g ⊂ ω (ifwe view g as a fun
tion in Ω). Sin
e
g = (1− η)h+∇(1− η) · v = div

(
(1− η)v

)and by the properties of η we have by the Gauss or Stokes theorem∫

ω

g =

∫

γ

(1− η)n · v =

∫

Γ

n · v = −
∫

Rd\Ω

div v = −
∫

Rd\Ω

h = 0.Hen
e g has zero mean value independent of the boundary part γ = γD, i.e.,we always have ∫

ω

g = 0. (28)Now, the existen
e of uω = ug,γD ∈ H1
γD(ω), respe
tively, uω = ug,γ ∈ H1

γ(ω)su
h that div uω = g together with the stability estimate
‖∇uω‖0,ω 6 κ‖g‖0,ω , κ := min

{
κ(ω, γD), κ(ω, γ)

} (29)is provided by Lemma 1.1. Note that uω ∈ H1
γ(ω) 
an also be regarded as asuitable fun
tion if the homogeneous Diri
hlet boundary 
onditions are im-posed only on a part ΓD of Γ, so that we 
an operate with one and the same
onstant κ(ω, γ). Sin
e uω = 0 on Sr2 ,

vω :=

{
uω in ω,
0 in R

d \Br2meets our needs. Then vh = ηv + vω ∈ H1
−1,ΓD

(Ω) and
div vh = ηh+∇ η · v + g = h in Ω.It remains to estimate ‖∇ vh‖0,Ω. By the properties of η we have

‖∇ η ⊗ v‖0,Rd , ‖∇ η · v‖0,Rd 6 α‖v‖0,Br2
\Br1

, (30)where
α := α(r1, r2, η) := max

x∈Rd

∣∣∇ η(x)
∣∣ = max

x∈Br2
\Br1

∣∣∇ η(x)
∣∣. (31)Sin
e

‖g‖0,ω 6
∥∥(1− η)h

∥∥
0,ω

+ ‖∇ η · v‖0,ω,
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‖∇ vω‖0,Ω = ‖∇ uω‖0,ω

6 κ ‖g‖0,ω 6 κ
(∥∥(1− η)h

∥∥
0,ω

+ α ‖v‖0,Br2
\Br1

)

6 κ
(
‖h‖0,Ω + α ‖v‖0,Br2

\Br1

)
,

∥∥∇(ηv)
∥∥
0,Ω

6 ‖h‖0,Ω + α ‖v‖0,Br2
\Br1

.

(32)By (26), the se
ond terms on the right-hand sides 
an be estimated as follows:
‖v‖0,Br2

\Br1
6 ρ(r2)‖v‖−1,Rd 6 cd ρ(r2)‖∇ v‖0,Rd = cd ρ(r2)‖h‖0,Ω. (33)Finally, by (27), (32), and (33), we 
on
lude that

‖∇ vh‖0,Ω 6 (1 + κ)
(
‖h‖0,Ω + cd αρ(r2)‖h‖0,Ω

)
= κ⊕(Ω,ΓD)‖h‖0,Ω,�nishing the proof. �3.1. Estimates of the distan
e to the set S−1,ΓD
(Ω). As in the 
ase ofbounded domains, the stability Lemma 2.3 implies estimates of the quantity

dist
(
u,S−1,ΓD

(Ω)
)
= inf

ϕ∈S−1,ΓD
(Ω)

∥∥∇(u− ϕ)
∥∥
0,Ω
,whi
h is a measure of the distan
e between u ∈ H1

−1,ΓD
(Ω) and the 
orrespond-ing set of divergen
e free ve
tor �elds.Lemma 3.4. For any u ∈ H1

−1,ΓD
(Ω) there exists a solenoidal u0 ∈ S−1,ΓD

(Ω)su
h that
dist

(
u,S−1,ΓD

(Ω)
)
6

∥∥∇(u− u0)
∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω.Proof. Let h = div u ∈ L2(Ω). By Lemma 2.3 there exists uh ∈ H1
−1,ΓD

(Ω)su
h that div uh = h and
‖∇uh‖0,Ω 6 κ(Ω,ΓD)‖h‖0,Ω.Then u0 := u− uh ∈ S−1,ΓD

(Ω) and we have
∥∥∇(u− u0)

∥∥
0,Ω

=
∥∥∇uh

∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω. �It is easy to extend this result to the 
ase where v satis�es inhomogeneousDiri
hlet boundary 
onditions on a part of the boundary.Corollary 3.5. For any u ∈ H1
−1(Ω) there exists a solenoidal u0 ∈ S−1(Ω)su
h that u− u0 ∈ H1

−1,ΓD
(Ω), i.e., u0|ΓD

= u|ΓD
, and

∥∥∇(u− u0)
∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω.
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e of a 
ontinuous lifting operator thatlifts the boundary datum u|ΓD
to the domain Ω with a solenoidal representa-tive. �4. A posteriori estimatesA posteriori estimates of fun
tional type for various ellipti
 problems inexterior domains were derived in [27℄. In this se
tion, we derive estimates ofthe di�eren
e between the exa
t solution of the exterior Stokes problem (17)�(21), respe
tively, (24)�(25) (presented by the �elds of velo
ity u, pressure p,and stress σ) and the respe
tive approximations ũ, p̃, and σ̃.First, we introdu
e two more weighted spa
es for tensor valued fun
tions:

D(Ω) :=
{
τ ∈ L

2(Ω) : Div τ ∈ L
2
1(Ω)

}
,where Div is the divergen
e operator for tensor �elds a
ting as the usual row-wise divergen
e. D(Ω) is a Hilbert spa
e with norm de�ned by

‖τ‖2D := ‖τ‖20,Ω + ‖Div τ‖21,Ω.By DΓN
(Ω) we denote the 
losure of C∞

ΓN
(Ω)-tensor �elds in the norm of D(Ω).Then for all ϕ ∈ H1

−1,ΓD
(Ω) and all τ ∈ DΓN

(Ω), we observe that
〈τ,∇ϕ〉0,Ω + 〈Div τ, ϕ〉0,Ω = 0. (34)Noti
e that

〈Div τ, ϕ〉0,Ω = 〈ρDiv τ, ρ−1ϕ〉0,Ω,so that the se
ond term in the above relation is well de�ned.4.1. Estimates for the velo
ity. From now on,
ũ ∈ L

2
−1(Ω) and p̃ ∈ L

2(Ω)are viewed as approximations of our exa
t solutions
u = uD + û ∈ uD + S−1,ΓD

(Ω) ⊂ S−1(Ω) and p ∈ L
2(Ω)to our exterior Stokes problem (24)�(25), respe
tively. By

σ̃ ∈ L
2(Ω)we denote an approximation of the tensor �eld

σ = ν∇u− pI,whi
h 
an be 
onstru
ted by a 
ertain re
onstru
tion of ũ and p̃ or 
omputedindependently.First, we 
onsider the simplest 
ase where
ũ ∈ uD + S−1,ΓD

(Ω) ⊂ S−1(Ω).
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(Ω) we have

〈
ν∇(u− ũ),∇ϕ

〉
0,Ω

= 〈f, ϕ〉0,Ω − 〈ν∇ ũ,∇ϕ〉0,Ω.Let τ ∈ DΓN
(Ω) and q ∈ L2(Ω). Using Lemma 2.1, identity (34), and therelation

〈q I,∇ϕ〉0,Ω = 0(whi
h is true for all ϕ ∈ S−1(Ω) be
ause I : ∇ϕ = divϕ), we �nd that
〈
ν∇(u− ũ),∇ϕ

〉
0,Ω

=〈Div τ+f, ϕ〉0,Ω+〈τ + q I−ν∇ ũ,∇ϕ〉0,Ω (35)
6‖Div τ + f‖1,Ω‖ϕ‖−1,Ω +

∥∥ν−1/2(τ + q I− ν∇ ũ)
∥∥
0,Ω

‖ν1/2 ∇ϕ‖0,Ω

6

(
ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ+f‖1,Ω+

∥∥ν−1/2(τ+q I−ν∇ũ)
∥∥
0,Ω

)
‖ν1/2 ∇ϕ‖0,Ω.Choosing ϕ = u− ũ ∈ S−1,ΓD

(Ω), we arrive at the following estimate.Theorem 4.1. Let ũ ∈ uD + S−1,ΓD
(Ω). Then for all τ ∈ DΓN

(Ω) and all
q ∈ L2(Ω) we have

∥∥ν1/2∇(u− ũ)
∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω
.The upper bound 
oin
ides with the norm of the error on the left-hand sideif τ = σ (i.e., τ 
oin
ides with the exa
t stress tensor) and q = p (i.e., qrepresents the exa
t pressure p). In other words, we have the prin
ipal erroridentity

∥∥ν1/2 ∇(u− ũ)
∥∥
0,Ω

= min
τ∈DΓN

(Ω),

q∈L2(Ω)

(
ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω +

∥∥ν−1/2(τ + q I− ν∇ ũ)
∥∥
0,Ω

)and the minimum is attained at τ = σ and q = p. Similar identities areful�lled for many other linear ellipti
 problems. However, Theorem 4.1 hasa drawba
k: The estimate is valid only for those approximate ve
tor �elds ũthat exa
tly satisfy the solenoidal 
ondition and the boundary 
ondition. Inpra
ti
e, the solenoidal requirement is di�
ult to ful�l and approximationsarising in `real life' 
omputations often satisfy the solenoidal 
ondition onlyapproximately. Therefore, our next goal is to extend the estimate to a wider
lass of nonsolenoidal ve
tor �elds. Below we extend the last estimate to awider 
lass in
luding nonsolenoidal ve
tor fun
tions and assume only that
ũ ∈ uD + H

1
−1,ΓD

(Ω) ⊂ H
1
−1(Ω),
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ondition exa
tly.Corollary 3.5 guarantees the existen
e of
u0 ∈ S−1(Ω)su
h that

u0 − ũ ∈ H
1
−1,ΓD

(Ω)and
‖∇(u0 − ũ)‖0,Ω 6 κ(Ω,ΓD)‖div ũ‖0,Ω. (36)Hen
e u0 = ũ + u0 − ũ ∈ uD + H1

−1,ΓD
(Ω), i.e., u0 ∈ uD + S−1,ΓD

(Ω), and byTheorem 4.1 we have
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

6
∥∥ν1/2 ∇(u− u0)

∥∥
0,Ω

+
∥∥ν1/2 ∇(u0 − ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇u0)

∥∥
0,Ω

+
∥∥ν1/2 ∇(u0 − ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕

∥∥∇(u0 − ũ)
∥∥
0,Ω
.

(37)
In view of (36), we obtain the following result.Theorem 4.2. Let ũ ∈ uD + H1

−1,ΓD
(Ω). Then for all τ ∈ DΓN

(Ω) and all
q ∈ L2(Ω) we have

∥∥ν1/2 ∇(u− ũ)
∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω.If the approximation ũ is solenoidal we re
over Theorem 4.1 and, again,the upper bound 
oin
ides with the norm of the error on the left-hand side if

τ = σ, q = p. If the approximation ũ is solenoidal only in, e.g., Rd \Br2 thenwe trivially get an estimate by Theorem 4.2, repla
ing the term ‖div ũ‖0,Ωby ‖div ũ‖0,ω. But with a moderate additional assumption on the de
ay ofthe approximation we 
an even do better in this 
ase, repla
ing the 
onstant
κ(Ω,ΓD) by a stability 
onstant κ(ω, γD) of the bounded domain ω.For this let

ũ = uD + w ∈ uD + H
1
−1,ΓD

(Ω)
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d \Br2 and if γD = γ (i.e., ΓD = Γ) then ũ satis�es

div ũ ∈ L2⊥(ω). To meet the last 
ondition, we additionally assume for the 
aseof ΓD = Γ that
|w| 6 c r−m, m > d− 1 (38)as r → ∞ with some c > 0 independent of r (noti
e that r−m ∈ L2−1(R

d \B1)if m > d/2− 1). Indeed, it is easy to see that
∣∣∣∣
∫

ω

div ũ

∣∣∣∣ =
∣∣∣∣
∫

ω

divw
∣∣ =

∣∣∣∣
∫

Sr

n · w
∣∣∣∣ 6 c rd−1−m r→∞−−−→ 0for r > r2. Now we 
onsider the Ansatz

u0 := ũ+

{
uω in ω,
0 in R

d \Br2 ,where uω ∈ H1
γD

(ω). Utilising Lemma 1.1, we �nd uω ∈ H1
γD

(ω) su
h that
div uω = − div ũ in ωtogether with the stability estimate

‖∇uω‖0,ω 6 κ(ω, γD)‖div ũ‖0,ω.The fun
tion u0 so 
onstru
ted satis�es the boundary 
ondition on ΓD and itis a solenoidal �eld, i.e.,
u0 ∈ uD + S−1,ΓD

(Ω).Using u0 as an admissible ve
tor �eld in (37) yields the estimate
∥∥ν1/2∇(u− ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕

∥∥∇(u0 − ũ)
∥∥
0,Ω︸ ︷︷ ︸

=‖∇uω‖0,ω

.Hen
e we have the following improved estimate for the 
ase of a partiallysolenoidal approximation.Corollary 4.3. Let ũ ∈ uD + H1
−1,ΓD

(Ω) and let
div ũ = 0 in R

d \Br2 .
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ondition (38). Then for all τ ∈
DΓN

(Ω) and all q ∈ L2(Ω) we have
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(ω, γD)‖div ũ‖0,ω.Here the last term on the right-hand side is a penalty for a possible violationof the solenoidal 
ondition in ω.4.2. Estimates for the pressure. By Lemma 2.3 there exists a ve
tor �eld

ψ ∈ H1
−1,ΓD

(Ω) su
h that
divψ = p− p̃ and ‖∇ψ‖0,Ω 6 κ(Ω,ΓD)‖p− p̃‖0,Ω. (39)For all ũ ∈ uD + H1

−1,ΓD
(Ω) and all τ ∈ DΓN

(Ω) we have
‖p−p̃‖20,Ω=〈p−p̃,divψ〉0,Ω

=
〈
ν∇(u−ũ),∇ψ

〉
0,Ω

−〈Div τ+f, ψ〉0,Ω+〈ν∇ ũ−p̃ I−τ,∇ψ〉0,Ω

6

(∥∥ν∇(u− ũ)
∥∥
0,Ω

+ cFP(Ω,ΓD)‖Div τ

+ f‖1,Ω + ‖ν∇ ũ− p̃ I− τ‖0,Ω
)
‖∇ψ‖0,Ω,where we have used Lemma 2.1 for ψ and the relation divψ = I : ∇ψ. By (39)we obtain

‖p− p̃‖0,Ω 6 κ(Ω,ΓD)
(
ν
1/2
⊕

∥∥ν1/2 ∇(u− ũ)
∥∥
0,Ω

+ cFP(Ω,ΓD)‖Div τ + f‖1,Ω
+ ν

1/2
⊕

∥∥ν−1/2(τ + p̃ I− ν∇ ũ)
∥∥
0,Ω

)
.In order to estimate the �rst term on the right-hand side, we use Theorem 4.2with q = p̃ and arrive at the desired estimate for the pressure �eld.Theorem 4.4. Let p̃ ∈ L2(Ω). Then for all τ ∈ DΓN

(Ω) and all
ũ ∈ uD + H

1
−1,ΓD

(Ω)we have
‖p − p̃‖0,Ω 6 κ(Ω,ΓD)

(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− ν∇ ũ)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div ũ‖0,Ω
)
.

(40)



206 D. PAULY, S. REPINRemark 4.5. The upper bound (40) 
onsists of the same terms as the upperbound of Theorem 4.2 and vanishes if ũ = u, τ = σ, p̃ = p. However, in this
ase, the estimate stronger depends on the stability 
onstant κ(Ω,ΓD). A simi-lar e�e
t o

urs in the estimates related to bounded domains (see [35, 36℄).4.3. Estimates for non
onforming approximations. The term non
on-forming is usually applied to approximations that belong to a fun
tional 
lasswider than the natural energy 
lass of the problem in question. For exam-ple, non
onformity of approximations may arise due to violation of 
ontinuity
onditions or main boundary 
onditions. Nowadays su
h type approximationsare widely used in 
omputational pra
ti
e (e.g., mortar, �nite volume, anddis
ontinuous Galerkin approximations) be
ause they o�er more freedom forvarious mesh adaptive pro
edures. Appli
ation of fun
tional type a posterioriestimates to non
onforming approximations of ellipti
 problems was studiedearlier in [4, 15, 37, 45℄. In this se
tion, we brie�y dis
uss this question in the
ontext of the exterior Stokes problem.Let us now assume that we have a non
onforming approximation
Υ̃ ∈ L

2(Ω)of the exa
t strain tensor �eld
Υ := ∇u, u = uD + û ∈ uD + S−1,ΓD

(Ω) ⊂ S−1(Ω).For example, Υ̃ as a �broken gradient� tensor �el, the output of some dis-
ontinuous Galerkin method. By the triangle inequality, we estimate the dif-feren
e between these tensor �elds using a 
ertain 
onforming approximation
ũ ∈ uD + H1

−1,ΓD
(Ω) and obtain

∥∥ν1/2(Υ− Υ̃)
∥∥
0,Ω

6
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

+
∥∥ν1/2(∇ ũ− Υ̃)

∥∥
0,Ω
.Theorem 4.2 implies the estimate

∥∥ν1/2(Υ − Υ̃)
∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω +

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ω
.Using the triangle inequality and Theorem 4.4 we obtain a posteriori errorestimates for non
onforming approximations.



THE STATIONARY STOKES PROBLEM IN EXTERIOR DOMAINS 207Theorem 4.6. Let Υ̃ ∈ L2(Ω) and let p̃ ∈ L2(Ω). Then for all τ ∈ DΓN
(Ω),

q ∈ L2(Ω), and ũ ∈ uD + H1
−1,ΓD

(Ω) we have
∥∥ν1/2(Υ− Υ̃)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+
∥∥ν−1/2(τ + q I− νΥ̃)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω + 2

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ωand

‖p − p̃‖0,Ω 6 κ(Ω,ΓD)
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− νΥ̃)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div ũ‖0,Ω

+ 2ν
1/2
⊕

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ω

)
.It is easy to see that in the 
ase where Υ̃ = ∇ ũ is generated by the 
onform-ing approximation ũ ∈ uD +H1

−1,ΓD
(Ω), the last term vanishes and we re
overTheorem 4.2 and Theorem 4.4.4.4. Estimates for the stress �eld. Error estimates for the stress tensor�eld follow dire
tly from the estimates derived above for the velo
ity ve
tor�eld and the pressure fun
tion. Indeed, let σ̃ ∈ L2(Ω) be an approximation ofthe exa
t stress tensor

σ = ν∇u− p I = νΥ− p I.Moreover, let Υ̃ ∈ L2(Ω) and p̃ ∈ L2(Ω). Then, the respe
tive error estimatefollows from the triangle inequality
‖σ̃ − σ‖0,Ω 6 ‖σ̃ − νΥ̃ + p̃ I‖0,Ω + ν

1/2
⊕

∥∥ν1/2(Υ− Υ̃)
∥∥
0,Ω

+ d1/2‖p− p̃‖0,Ω.In parti
ular, we 
an set Υ̃ = ∇ ũ, where ũ ∈ uD + H1
−1,ΓD

(Ω). The �rst termon the right-hand side involves only known tensor �elds and the se
ond andthird ones are estimated by, e.g., Theorem 4.2, Theorem 4.4, and Theorem 4.6.4.5. Lower bounds of the error. Let
ũ ∈ uD + H

1
−1,ΓD

(Ω),
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−1,ΓD

(Ω). Obviously (sin
e the subsequent max-property is truefor any Hilbert3 spa
e), by (24) we have
∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

= max
ϕ∈H1

−1,ΓD
(Ω)

(
2
〈
ν∇(u− ũ),∇ϕ

〉
0,Ω

− ‖ν1/2 ∇ϕ‖20,Ω
)

> 2〈ν∇u,∇ϕ〉0,Ω − 2〈ν∇ ũ,∇ϕ〉0,Ω − ‖ν1/2 ∇ϕ‖20,Ω
= 2〈f, ϕ〉0,Ω + 2〈q,divϕ〉0,Ω −

〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ω

+ 2〈p − q,divϕ〉0,Ωand the maximum is attained at ϕ = u − ũ ∈ H1
−1,ΓD

(Ω). The last term 
anbe simply (but rather 
oarsly) estimated by Theorem 4.4 (p̃ = q), what yieldsthe estimate presented below.Theorem 4.7. For all ũ, v ∈ uD + H1
−1,ΓD

(Ω) and all ϕ ∈ H1
−1,ΓD

(Ω), τ ∈
DΓN

(Ω), and q ∈ L2(Ω) we have
∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω + 2〈q,divϕ〉0,Ω −
〈
ν∇(2ũ + ϕ),∇ϕ

〉
0,Ω

− 2κ(Ω,ΓD)‖divϕ‖0,Ω
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + q I− ν∇ v)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div v‖0,Ω
)
.In parti
ular v = ũ is possible. If ϕ ∈ S−1,ΓD

(Ω) then the simple lower bound
∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ωis true. Moreover, equality o

urs for ϕ = u−ũ, provided that the approximation

ũ is also solenoidal, i.e., ũ ∈ uD + S−1,ΓD
(Ω).To handle a non
onforming approximation Υ̃ ∈ L2(Ω), we 
an simply utilisethe triangle inequality and apply Theorem 4.7.Theorem 4.8. Let Υ̃ ∈ L2(Ω). Then for all ϕ ∈ H1

−1,ΓD
(Ω), τ ∈ DΓN

(Ω),
q ∈ L2(Ω), and ũ, v ∈ uD + H1

−1,ΓD
(Ω), we have

∥∥ν1/2(Υ− Υ̃)
∥∥
0,Ω

>
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

−
∥∥ν1/2(∇ ũ− Υ̃)

∥∥
0,Ω
,3In any Hilbert spa
e H is true ‖x‖2 = maxy∈H

(

2〈x, y〉 − ‖y‖2
), in our 
ase we 
an set

H = L2(Ω).
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∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω + 2〈q,div ϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ω

− 2κ(Ω,ΓD)‖divϕ‖0,Ω
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + q I− ν∇ v)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div v‖0,Ω
)
.4.6. Spe
ial 
ase: 2D exterior domains. For a Lips
hitz domain D ⊂ R

2we introdu
e somewhat di�erent weighted spa
es by using logarithmi
 weights,namely,
L
2
±1,ln(D) :=

{
φ ∈ L

2
loc(D) :

(
ρ ln(e+ ρ)

)±1
φ ∈ L

2(D)
}
,

H
1
−1,ln(D) :=

{
φ ∈ L

2
−1,ln(D) : ∇φ ∈ L

2(D)
}
,where e is the Euler number, see, e.g., [9, 16, 43℄. We noti
e that at in�nity(

ρ ln(e+ρ)
)±1 behaves like (r ln r)±1. The inner produ
t in L2±1,ln(D) is de�nedby the relation

〈φ , ψ 〉±1,ln,D :=
〈(
ρ ln(e+ ρ)

)±2
φ , ψ

〉
0,D
.All other weighted spa
es and norms are modi�ed and de�ned in a similar way.The sets Ω ⊂ R

2 and ω ⊂ R
2 are de�ned as in �2, i.e., Ω ⊂ R

2 is an exteriorLips
hitz domain and ω is a 
ertain trun
ation of Ω. The situation is nowdi�erent from the 
ase of d > 3 be
ause the 
onstants4 will be integrable inour weighted spa
es, i.e., 1 ∈ L2−1,ln(Ω). Introdu
ing additionally
H
1
−1,ln,∅(Ω) := H

1
−1,ln(Ω) ∩ R

⊥−1,ln,Ωwe have the following Friedri
hs/Poin
ar�e estimate for exterior domains.Lemma 4.9. There exists c > 0 su
h that
‖v‖−1,ln,Ω 6 c‖∇ v‖0,Ωfor all v ∈ H1

−1,ln,ΓD
(Ω). The best 
onstant c is denoted by cFP(Ω,ΓD). In thespe
ial 
ase where Be ⊂ R

d \ Ω and ΓD = Γ, we have cFP(Ω,Γ) 6 2.This theorem follows from [27, Appendix 4.2, Lemma 4.1, Corollary 4.2,Remark 4.3℄, see also [43, Lemma 4.1℄ and [16, 28℄. It is should be noted thatin this 
ase we need boundary or mean value 
onditions as in the 
ase of abounded domain. Now, all results from the se
tions for d > 3 follow with theobvious modi�
ations. In parti
ular, the stability Lemma 3.2 reads as follows.4Spe
i�
ally, (r ln r)−1 ∈ L
2(Bǫ), (r ln r)−1 6∈ L

2(B1+ǫ \B1−ǫ), (r ln r)−1 ∈ L
2(R2 \B1+ǫ)for 0 < ǫ < 1.



210 D. PAULY, S. REPINLemma 4.10. There exists c > 0 su
h that for any h ∈ L2(Ω) there exists
uh ∈ H1

−1,ln,ΓD
(Ω) with

div uh = h and ‖∇ uh‖0,Ω 6 c‖h‖0,Ω.The best 
onstant is denoted by κ(Ω,ΓD) and satis�es the estimate
κ(Ω,ΓD) 6 κ⊕(Ω,ΓD) := (1 + κ)

(
1 + cP(R

2)α ρ(r2) ln(e+ ρ(r2))
)with

α = α(r1, r2, η) = max
x∈Br2

\Br1

∣∣∇ η(x)
∣∣ and κ = min

{
κ(ω, γD), κ(ω, γ)

}
.If h has 
ompa
t support in ω and (if ΓD = Γ) additionally ∫

Ω h =
∫
ω h = 0,then uh 
an be 
hosen with a 
ompa
t support in ω as well, in parti
ular uh ∈

H1
γD

(ω) ⊂ H1
ΓD

(Ω). In this 
ase, κ(Ω,ΓD) 6 κ(ω, γD).Estimates of the distan
e to the set of solenoidal �elds are derived quitesimilarly.Corollary 4.11. For any u ∈ H1
−1,ln,ΓD

(Ω) there exists a solenoidal u0 ∈
S−1,ln,ΓD

(Ω) su
h that
dist

(
u,S−1,ln,ΓD

(Ω)
)
6

∥∥∇(u− u0)
∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω.For any u ∈ H1
−1,ln(Ω) there exists a solenoidal u0 ∈ S−1,ln(Ω) su
h that

u− u0 ∈ H
1
−1,ln,ΓD

(Ω),i.e., u0|ΓD
= u|ΓD

, and
∥∥∇(u− u0)

∥∥
0,Ω

6 κ(Ω,ΓD)‖div u‖0,Ω.Another obvious 
orollary is the inf-sup lemma for 2D exterior domains.Corollary 4.12. We have
inf

h∈L2(Ω)
sup

u∈H1
−1,ln,ΓD

(Ω)

〈h,div u〉0,Ω
‖h‖0,Ω‖∇ u‖0,Ω

>
1

κ(Ω,ΓD)
.As in the 
ase of d > 3, the solvability of the Stokes problem and respe
tiveenergy estimates follow. Below we re
all these results. Let

L
2
1,ln,ΓN

(Ω) :=

{
L21,ln(Ω) if ΓD 6= ∅,

L21,ln,⊥(Ω) if ΓD = ∅,and
L
2
1,ln,⊥(Ω) := L

2
1,ln(Ω) ∩ (R2)⊥0,Ω =

{
φ ∈ L

2
1,ln(Ω) :

∫

Ω

φi = 0
}
.
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(Ω), and uD ∈ S−1,ln(Ω) the 2D Stokessystem is uniquely solvable with a solenoidal ve
tor �eld u = uD + û ∈ uD +

S−1,ln,ΓD
(Ω) ⊂ S−1,ln(Ω) and p ∈ L2(Ω). Moreover,
ν‖∇ û‖0,Ω 6 cFP(Ω,ΓD)‖f‖1,ln,Ω + ν‖∇uD‖0,Ω,
ν‖∇u‖0,Ω 6 cFP(Ω,ΓD)‖f‖1,ln,Ω + 2ν‖∇ uD‖0,Ω,

‖p‖0,Ω 6 2κ(Ω,ΓD)
(
cFP(Ω,ΓD)‖f‖1,ln,Ω + ν‖∇uD‖0,Ω

)
.Now we address the subje
t of a posteriori error estimation and introdu
ethe sets

D(Ω) :=
{
τ ∈ L

2(Ω) : Div τ ∈ L
2
1,ln(Ω)

}and DΓN
(Ω) as the 
losure of C∞

ΓN
(Ω)-tensor �elds in the norm of D(Ω). Forerrors en
ompassed in approximation of the velo
ity �eld we have the followingresults, whi
h repeat (with some modi�
ations) those derived for d > 3. First,we present an analog of Theorem 4.2.Theorem 4.14. Let ũ ∈ uD + H1

−1,ln,ΓD
(Ω). Then for all τ ∈ DΓN

(Ω) and
q ∈ L2(Ω) we have
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω

+
∥∥ν−1/2(τ + q I− ν∇ ũ)

∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω.As in the 
ase of d > 3, the estimate is simpli�ed if div ṽ = 0 in R

2 \ Br2and additionally (if ΓD = Γ) 
ondition (38) is satis�ed. Then, in Theorem 4.14we 
an repla
e the 
onstant κ(Ω,ΓD) by κ(ω, γD). If the approximation ũ issolenoidal in Ω, then the last term vanishes and we arrive at estimates similarto Theorem 4.1. They possess the same property: the upper bound 
oin
ideswith the norm of the error on the left-hand side if τ = σ and p = q (i.e.,the estimate is sharp in the sense that there is no �gap� between its left- andright-hand sides).For the approximation of the pressure fun
tion, Theorem 4.4 is modi�ed asfollows.Theorem 4.15. Let p̃ ∈ L2(Ω). Then for all τ ∈ DΓN
(Ω) and all ũ ∈ uD +

H1
−1,ln,ΓD

(Ω)we have
‖p− p̃‖0,Ω 6 κ(Ω,ΓD)

(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− ν∇ ũ)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div ũ‖0,Ω
)
.Finally, we 
onsider a non
onforming approximation ũ and obtain analogsof the theorems exposed in Subse
tion 4.3.



212 D. PAULY, S. REPINTheorem 4.16. Suppose that Υ̃ ∈ L2(Ω) and p̃ ∈ L2(Ω). Then for all ũ ∈
uD + H1

−1,ln,ΓD
(Ω), τ ∈ DΓN

(Ω), and q ∈ L2(Ω) we have
∥∥ν1/2(Υ− Υ̃)

∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω +

∥∥ν−1/2(τ + q I− ν∇ ũ)
∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω +

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ω

6 ν
−1/2
⊖ cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω +

∥∥ν−1/2(τ + q I− νΥ̃)
∥∥
0,Ω

+ 2ν
1/2
⊕ κ(Ω,ΓD)‖div ũ‖0,Ω + 2

∥∥ν1/2(∇ ũ− Υ̃)
∥∥
0,Ωand

‖p− p̃‖0,Ω
6 κ(Ω,ΓD)

(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + p̃ I− νΥ̃)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div ũ‖0,Ω

+ 2ν
1/2
⊕ ‖ν1/2(∇ ũ− Υ̃)‖0,Ω

)
.For Υ̃ = ∇ ũ, where ũ ∈ uD + H1

−1,ln,ΓD
(Ω) we re
over Theorem 4.14 andTheorem 4.15. As in �4.4, error estimates for the stress tensor �eld σ followimmediately by the triangle inequality.Finally, we brie�y present lower bounds of the error derived in the spiritof �4.5.Theorem 4.17. For all ũ, v ∈ uD + H1

−1,ln,ΓD
(Ω) and all ϕ ∈ H1

−1,ln,ΓD
(Ω),

τ ∈ DΓN
(Ω), and q ∈ L2(Ω) we have

∥∥ν1/2 ∇(u− ũ)
∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω + 2〈q,divϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ω

− 2κ(Ω,ΓD)‖divϕ‖0,Ω
(
(ν

−1/2
⊖ ν

1/2
⊕ + 1)cFP(Ω,ΓD)‖Div τ + f‖1,ln,Ω

+ 2ν
1/2
⊕

∥∥ν−1/2(τ + q I− ν∇ v)
∥∥
0,Ω

+ 2ν⊕κ(Ω,ΓD)‖div v‖0,Ω
)
.In parti
ular, v = ũ is possible. If ϕ ∈ S−1,ln,ΓD

(Ω), the estimate simpli�es to
∥∥ν1/2 ∇(u− ũ)

∥∥2
0,Ω

> 2〈f, ϕ〉0,Ω −
〈
ν∇(2ũ+ ϕ),∇ϕ

〉
0,Ωand equality o

urs for ϕ = u− ũ, provided that ũ ∈ uD + S−1,ln,ΓD

(Ω).
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onforming approximations Υ̃ ∈ L2(Ω) we use againthe triangle inequality to estimate
∥∥ν1/2(Υ− Υ̃)

∥∥
0,Ω

>
∥∥ν1/2 ∇(u− ũ)

∥∥
0,Ω

−
∥∥ν1/2(∇ ũ− Υ̃)

∥∥
0,Ω
,whenever ũ ∈ uD + H1

−1,ln,ΓD
(Ω). Theorem 4.17 applied to the �rst term onthe right-hand side yields the estimate similar to Theorem 4.8.Referen
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