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Abstract
For a bounded Lipschitz domain with Lipschitz interface we show the following
compactness theorem: Any L2-bounded sequence of vector fields with L2-bounded
rotations and L2-bounded divergences as well as L2-bounded tangential traces on one
part of the boundary and L2-bounded normal traces on the other part of the bound-
ary, contains a strongly L2-convergent subsequence. This generalises recent results
for homogeneous mixed boundary conditions in Bauer et al. (SIAM J Math Anal
48(4):2912-2943, 2016) Bauer et al. (in: Maxwell’s Equations: Analysis and Numer-
ics (Radon Series on Computational and Applied Mathematics 24), De Gruyter, pp.
77-104, 2019). As applications we present a related Friedrichs/Poincaré type esti-
mate, a div-curl lemma, and show that the Maxwell operator with mixed tangential
and impedance boundary conditions (Robin type boundary conditions) has compact
resolvents.
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1 Introduction

Let� ⊂ R
3 be open with boundary �, composed of the boundary parts�0 (tangential)

and�1 (normal). In [2, Theorem4.7] the following version ofWeck’s selection theorem
has been shown:

Theorem 1.1 (compact embedding for vector fields with homogeneous mixed bound-
ary conditions) Let (�, �0) be a bounded strong1 Lipschitz pair and let ε be
admissible2. Then

H�0(curl,�) ∩ ε−1H�1(div,�)
cpt
↪→ L2(�).

Here,
cpt
↪→ denotes a compact embedding, and—in classical terms and in the smooth

case—we have for a vector field E (n denotes the exterior unit normal at �)

E ∈ H�0(curl,�) ⇔ E ∈ L2(�), curl E ∈ L2(�), n × E |�0 = 0,

E ∈ ε−1H�1(div,�) ⇔ εE ∈ L2(�), div εE ∈ L2(�), n · εE |�1 = 0.

For exact definitions and notations see Sect. 2, and for a history of related compact
embedding results see, e.g., [5, 7, 19, 21, 23, 24, 26] and [9]. The general importance
of compact embeddings in a functional analytical setting (FA-ToolBox) for Hilbert
complexes (such as de Rham, elasticity, biharmonic) is described, e.g., in [13–16] and
[1, 17, 18].

In this paper, we shall generalise Theorem 1.1 to the case of inhomogeneous bound-
ary conditions, i.e., we will show that the compact embedding in Theorem 1.1 still
holds if the space

H�0(curl,�) ∩ ε−1H�1(div,�)

is replaced by

̂H�0(curl,�) ∩ ε−1
̂H�1(div,�),

1 Both � and the interface �0 ∩ �1 are locally defined by graphs of Lipschitz functions.
2 See Sect. 2.
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where in classical terms and in the smooth case

E ∈ ̂H�0(curl,�) ⇔ E ∈ L2(�), curl E ∈ L2(�), n × E |�0 ∈ L2(�0),

E ∈ ε−1
̂H�1(div,�) ⇔ εE ∈ L2(�), div εE ∈ L2(�), n · εE |�1 ∈ L2(�1).

The main result (compact embedding) is formulated in Theorem 4.1. Note that
while Theorem 1.1 even holds for bounded weak3 Lipschitz pairs (�, �0), cf. [2,
Theorem 4.7], Theorem 4.1 is only shown for bounded strong Lipschitz pairs. This
comes by using regular decompositions in � which fail in the weak Lipschitz case
as—roughly speaking—the corresponding transformations respect H(curl,�) and
H(div,�) regularity but not H1(�) regularity. Moreover, we emphasise that the addi-
tional L2 regularity at the boundary is crucial since the natural H−1/2 regularity at
the boundary does not allow for compact embeddings. E.g., it is well known that
H(curl,�) ∩ H(div,�) is not compactly embedded into L2(�).

As applications we show that the compact embedding implies a related Friedrichs/
Poincaré type estimate, cf. Theorem 5.1, showing well-posedness of related systems
of partial differential equations. Moreover, in Theorem 5.3 we prove that Theorem
4.1 yields a div-curl lemma. Note that corresponding results for exterior domains are
straight forward using weighted Sobolev spaces, see [11, 12]. Another application
is presented in Sect. 5.3 where we show that our compact embedding result implies
compact resolvents of the Maxwell operator with inhomogeneous mixed boundary
conditions, even of impedance type.We finally note in Sect. 5.4 that the corresponding
result holds (in the simpler situation) for the impedance wave equation (acoustics) as
well.

2 Notations

Throughout this paper, let � ⊂ R
3 be an open and bounded strong Lipschitz domain,

and let ε be an admissible tensor (matrix) field, i.e., a symmetric, L∞-bounded, and
uniformly positive definite tensor field ε : � → R

3×3. Moreover, let the boundary
� of � be decomposed into two relatively open and strong Lipschitz subsets �0 and
�1 := � \ �0 forming the interface �0 ∩ �1 for the mixed boundary conditions. See
[2–4] for exact definitions. We call (�, �0) a bounded strong Lipschitz pair.

The usualLebesgue andSobolevHilbert spaces (of scalar or vector valuedfields) are
denoted by L2(�), H1(�), H(curl,�), H(div,�), and by H0(curl,�) and H0(div,�)

we indicate the spaces with vanishing curl and div, respectively. Homogeneous bound-
ary conditions are introduced in the strong sense as closures of respective test fields
from

C∞
�0

(�) :=
{

φ|� : φ ∈ C∞(R3), suppφ compact, dist(suppφ, �0) > 0
}

,

3 Both � and the interface �0 ∩ �1 are Lipschitz submanifolds.
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i.e.,

H1
�0

(�) := C∞
�0

(�)
H1(�)

, H�0(curl,�) := C∞
�0

(�)
H(curl,�)

,

H�0(div,�) := C∞
�0

(�)
H(div,�)

,

and we set H1
∅(�) := H1(�), H∅(curl,�) := H(curl,�), and H∅(div,�) :=

H(div,�). Spaces with vanishing curl and div are again denoted by H�0,0(curl,�)

and H�0,0(div,�), respectively. Moreover, we introduce the cohomology space of
Dirichlet/Neumann fields (generalised harmonic fields)

H�0,�1,ε(�) := H�0,0(curl,�) ∩ ε−1H�1,0(div,�).

The L2(�)-inner product and norm (of scalar or vector valued L2(�)-spaces) will be
denoted by 〈 · , · 〉L2(�) and ‖ · ‖L2(�), respectively, and the weighted Lebesgue space

L2ε(�) is defined as L2(�) (of vector fields) but being equipped with the weighted
L2(�)-inner product and norm 〈 · , · 〉L2ε(�) := 〈ε · , · 〉L2(�) and ‖ · ‖L2ε(�), respectively.

The norms in, e.g., H1(�) and H(curl,�) are denoted by ‖ · ‖H1(�) and ‖ · ‖H(curl,�),

respectively. Orthogonality and orthogonal sum in L2(�) and L2ε(�) are indicated by
⊥L2(�), ⊥L2ε(�), and ⊕L2(�), ⊕L2ε(�), respectively.

Finally, we introduce inhomogeneous tangential and normal L2-boundary condi-
tions in

̂H�0(curl,�) :=
{

E ∈ H(curl,�) : τ�0 E ∈ L2(�0)
}

,

̂H�1(div,�) :=
{

E ∈ H(div,�) : ν�1 E ∈ L2(�1)
}

with norms given by, e.g., ‖E‖2
̂H�0 (curl,�)

:= ‖E‖2H(curl,�) + ‖τ�0 E‖2
L2(�0)

. The defini-

tions of the latter Hilbert spaces and traces need some explanations:

Definition and Remark 2.1 (L2-traces.)

(i) The tangential trace of a vector field E ∈ H(curl,�) is a well-defined tangential
vector field τ� E ∈ H−1/2(�) generalising the classical tangential trace τ�

˜E =
−n × n × ˜E |� for smooth vector fields ˜E . By the notation τ�0 E ∈ L2(�0) we
mean, that there exists a tangential vector field E�0 ∈ L2(�0), such that for all
vector fields 	 ∈ H1

�1
(�) it holds

〈curl	, E〉L2(�) − 〈	, curl E〉L2(�) = 〈τ×
�0

	, E�0〉L2(�0).

Then we set τ�0 E := E�0 ∈ L2(�0). Here and in the following, the twisted tan-
gential trace of the smooth vector field 	 is given by the tangential vector field
τ×
� 	 = n×	|� ∈ L2(�)with τ×

�1
	 = τ×

� 	|�1 = 0 and τ×
�0

	 = τ×
� 	|�0 ∈ L2(�0).

Note that τ�0 E is well defined as τ×
�0
H1

�1
(�) is dense in L2t (�0) = {

v ∈ L2(�0) :
n · v = 0

}

.
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(ii) Analogously, the normal trace of a vector field E ∈ H(div,�) is a well-defined
function ν� E ∈ H−1/2(�) generalising the classical normal trace ν�

˜E = n · ˜E |�
for smooth vector fields ˜E . Again, by the notation ν�1 E ∈ L2(�1) we mean, that
for all functions φ ∈ H1

�0
(�) it holds

〈∇ φ, E〉L2(�) + 〈φ, div E〉L2(�) = 〈σ�1φ, ν�1 E〉L2(�1).

Here, the well-known scalar trace of the smooth function φ is given by σ�φ =
φ|� ∈ L2(�)

with σ�0φ = σ�φ|�0 = 0 and σ�1φ = σ�φ|�1 ∈ L2(�1). Note that ν�1 E is well
defined as σ�1H

1
�0

(�) is dense in L2(�1).

Remark 2.2 (L2-traces.) Analogously to Definition and Remark 2.1 (i) and as

τ×
�0

˜E · τ�0
˜H = (n × ˜E) · (−n × n × ˜H) = (n × n × ˜E) · (n × ˜H) = −τ�0

˜E · τ×
�0

˜H

holds on �0 for smooth vector fields ˜E , ˜H , we can define the twisted tangential trace
τ×
�0

E ∈ L2(�0) of a vector field E ∈ H(curl,�) as well by

〈curl	, E〉L2(�) − 〈	, curl E〉L2(�) = −〈τ�0	, τ×
�0

E〉L2(�0)

for all vector fields 	 ∈ H1
�1

(�).

3 Preliminaries

In [4, Theorem 5.5], see [3, Theorem 7.4] for more details and compare to [2], the
following theorem about the existence of regular potentials for the rotation with homo-
geneous mixed boundary conditions has been shown.

Theorem 3.1 (regular potential for curl with homogeneous mixed boundary condi-
tions)

H�1,0(div,�) ∩ H�0,�1(�)
⊥L2(�) = curlH�1(curl,�) = curlH1

�1
(�)

holds together with a regular potential operator mapping curlH�1(curl,�) to H1
�1

(�)

continuously. In particular, the latter ranges are closed subspaces of L2(�).

Moreover, we need [4, Theorem 5.2]:

Theorem 3.2 (Helmholtz decompositions with homogeneous mixed boundary condi-
tions) The ranges ∇ H1

�0
(�) and curlH�1(curl,�) are closed subspaces of L2(�), and

the L2ε(�)-orthogonal Helmholtz decompositions
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L2ε(�) = ∇ H1
�0

(�) ⊕L2ε(�) ε−1H�1,0(div,�)

= H�0,0(curl,�) ⊕L2ε(�) ε−1 curlH�1(curl,�)

= ∇ H1
�0

(�) ⊕L2ε(�) H�0,�1,ε(�) ⊕L2ε(�) ε−1 curlH�1(curl,�)

hold (with continuous potential operators). Moreover, H�0,�1,ε(�) has finite dimen-
sion.

Combining Theorem 3.1 and Theorem 3.2 shows immediately the following.

Corollary 3.3 (regular Helmholtz decomposition with homogeneous mixed boundary
conditions) The L2ε(�)-orthogonal regular Helmholtz decomposition

L2ε(�) = ∇ H1
�0

(�) ⊕L2ε(�) H�0,�1,ε(�) ⊕L2ε(�) ε−1 curlH1
�1

(�)

holds (with continuous potential operators) and H�0,�1,ε(�) has finite dimension.
More precisely, any E ∈ L2ε(�) may be L2ε(�)-orthogonally (and regularly) decom-
posed into

E = ∇ u∇ + EH + ε−1 curl Ecurl

with u∇ ∈ H1
�0

(�), Ecurl ∈ H1
�1

(�), and EH ∈ H�0,�1,ε(�), and there exists a constant
c > 0, independent of E, u∇ , EH, Ecurl, such that

‖EH‖L2ε(�) ≤ ‖E‖L2ε(�),

c‖u∇‖H1
�0

(�) ≤ ‖∇ u∇‖L2ε(�) ≤ ‖E‖L2ε(�),

c‖Ecurl‖H1
�1

(�) ≤ ‖ε−1 curl Ecurl‖L2ε(�) ≤ ‖E‖L2ε(�).

4 Compact embeddings

Our main result reads as follows:

Theorem 4.1 (compact embedding for vector fields with inhomogeneous mixed
boundary conditions)

̂H�0(curl,�) ∩ ε−1
̂H�1(div,�)

cpt
↪→ L2(�).

Proof Let (E�) be a bounded sequence in ̂H�0(curl,�) ∩ ε−1
̂H�1(div,�). By the

Helmholtz decomposition in Corollary 3.3 we L2ε(�)-orthogonally and regularly
decompose

E� = ∇ u∇,� + EH,� + ε−1 curl Ecurl,�
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with u∇,� ∈ H1
�0

(�), Ecurl,� ∈ H1
�1

(�), and EH,� ∈ H�0,�1,ε(�), and there exists a
constant c > 0 such that for all �

‖u∇,�‖H1
�0

(�) + ‖EH,�‖L2ε(�) + ‖Ecurl,�‖H1
�1

(�) ≤ c‖E�‖L2ε(�).

As H�0,�1,ε(�) is finite dimensional we may assume (after extracting a subse-

quence) that EH,� converges strongly in L2ε(�). Since H1(�)
cpt
↪→ L2(�) by Rellich’s

selection theorem, we may assume that also the regular potentials u∇,� and Ecurl,�
converge strongly in L2(�). Moreover, u∇,�|� and Ecurl,�|� are bounded in H1/2(�)

by the (scalar) trace theorem, and thus we may assume by the compact embedding

H1/2(�)
cpt
↪→ L2(�) that u∇,�|� and Ecurl,�|� converge strongly in L2(�). In particular,

u∇,�|�1 and Ecurl,�|�0 converge strongly in L2(�1) and L2(�0), respectively. After all
this successively taking subsequences we obtain (using L2ε(�)-orthogonality and the
definition of the L2(�1)-traces of ν�1εE� and the L2(�0)-traces of τ�0 E� fromDefinition
and Remark 2.1)

‖∇(u∇,� − u∇,k )‖2
L2ε (�)

= 〈∇(u∇,� − u∇,k ), E� − Ek 〉L2ε (�)

= −〈u∇,� − u∇,k , div ε(E� − Ek )〉L2(�)
+ 〈σ�1 (u∇,� − u∇,k ), ν�1ε(E� − Ek )〉L2(�1)

≤ c‖u∇,� − u∇,k‖L2(�)
+ c‖(u∇,� − u∇,k )|�1‖L2(�1) → 0

and

‖ε−1 curl(Ecurl,� − Ecurl,k )‖2
L2ε (�)

= 〈ε−1 curl(Ecurl,� − Ecurl,k ), E� − Ek 〉L2ε (�)

= 〈Ecurl,� − Ecurl,k , curl(E� − Ek )〉L2(�)
+ 〈τ×

�0
(Ecurl,� − Ecurl,k ), τ�0 (E� − Ek )〉L2(�0)

≤ c‖Ecurl,� − Ecurl,k‖L2(�)
+ c‖(Ecurl,� − Ecurl,k )|�0‖L2(�0) → 0.

Hence, (E�) contains a strongly L2ε(�)-convergent (and thus strongly L2(�)-
convergent) subsequence. ��

Remark 4.2 (compact embedding for vector fields with inhomogeneous mixed bound-
ary conditions.) Theorem 4.1 even holds for weaker boundary data. For this, let

0 ≤ s < 1/2. Taking into account the compact embedding H1/2(�)
cpt
↪→ Hs(�) and

looking at the latter proof, we see that

{

E ∈ H(curl,�) : τ�0 E ∈ H−s(�0)
} ∩

{

E ∈ ε−1H(div,�) : ν�1εE ∈ H−s(�1)
} cpt

↪→ L2(�).
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5 Applications

5.1 Friedrichs/poincaré type estimates

A first application is the following estimate:

Theorem 5.1 (Friedrichs/Poincaré type estimate for vector fields with inhomogeneous
mixed boundary conditions) There exists a positive constant c such that for all vector

fields E in̂H�0(curl,�) ∩ ε−1
̂H�1(div,�) ∩ H�0,�1,ε(�)

⊥L2ε (�) it holds

c‖E‖L2ε(�) ≤ ‖curl E‖L2(�) + ‖div εE‖L2(�) + ‖τ�0 E‖L2(�0) + ‖ν�1εE‖L2(�1).

Proof For a proof we use a standard compactness argument using Theorem 4.1.
If the estimate was wrong, then there exists a sequence (E�) ∈ ̂H�0(curl,�) ∩
ε−1

̂H�1(div,�) ∩ H�0,�1,ε(�)
⊥L2ε (�) with ‖E�‖L2ε(�) = 1 and

‖curl E�‖L2(�) + ‖div εE�‖L2(�) + ‖τ�0 E�‖L2(�0) + ‖ν�1εE�‖L2(�1) → 0.

Thus, by Theorem 4.1 (after extracting a subsequence)

E� → E in ̂H�0(curl,�) ∩ ε−1
̂H�1(div,�) ∩ H�0,�1,ε(�)

⊥L2ε (�) (strongly)

and curl E = 0 and div εE = 0 (by testing). Moreover, for all 	 ∈ C∞
�1

(�) and for all
φ ∈ C∞

�0
(�)

〈curl	, E�〉L2(�) − 〈	, curl E�〉L2(�) = 〈τ×
�0

	, τ�0 E�〉L2(�0) ≤ c‖τ�0 E�‖L2(�0) → 0,

〈∇ φ, εE�〉L2(�) + 〈φ, div εE�〉L2(�) = 〈σ�1φ, ν�1εE�〉L2(�1)
≤ c‖ν�1εE�‖L2(�1) → 0,

cf. Definition and Remark 2.1, implying

〈curl	, E〉L2(�) = 〈∇ φ, εE〉L2(�) = 0.

Hence, E ∈ H�0,0(curl,�) ∩ ε−1H�1,0(div,�) = H�0,�1,ε(�) by [4, Theorem 4.7]
(weak and strong homogeneous boundary conditions coincide). This shows E = 0 as
E ⊥L2ε(�) H�0,�1,ε(�), in contradiction to 1 = ‖E�‖L2ε(�) → ‖E‖L2ε(�) = 0. ��

Remark 5.2 (Friedrichs/Poincaré type estimate for vector fields with inhomogeneous
mixed boundary conditions.) As in Remark 4.2 there are corresponding generalised
Friedrichs/Poincaré type estimates for weaker boundary data, where the L2(�0/1)-
spaces and norms are replaced by H−s(�0/1)-spaces and norms.
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5.2 A div-curl lemma

Another immediate consequence is a div-curl-lemma.

Theorem 5.3 (div-curl lemma for vector fields with inhomogeneous mixed boundary
conditions) Let (En) and (Hn) be bounded sequences in̂H�0(curl,�) and̂H�1(div,�),
respectively. Then there exist E ∈ ̂H�0(curl,�) and H ∈ ̂H�1(div,�) as well as
subsequences, again denoted by (En) and (Hn), such that En⇀E in̂H�0(curl,�) and
Hn⇀H in̂H�1(div,�) as well as

〈En, Hn〉L2(�) → 〈E, H〉L2(�).

Proof We follow in closed lines the proof of [14, Theorem 3.1]. Let (En) and (Hn) be
as stated. First, we pick subsequences, again denoted by (En) and (Hn), and E and H ,
such that En⇀E in ̂H�0(curl,�) and Hn⇀H in ̂H�1(div,�). In particular, Hn⇀H
and div Hn⇀ div H in L2(�) as well as

ν�1 Hn⇀ν�1 H in L2(�1). (1)

To see (1), let ν�1 Hn⇀H�1 in L
2(�1). Since for all φ ∈ H1

�0
(�)

〈σ�1φ, H�1〉L2(�1) ← 〈σ�1φ, ν�1 Hn〉L2(�1) = 〈∇ φ, Hn〉L2(�) + 〈φ, div Hn〉L2(�)

→ 〈∇ φ, H〉L2(�) + 〈φ, div H〉L2(�),

we get H ∈ ̂H�1(div,�) and ν�1 H = H�1 . Moreover, 〈σ�1φ, ν�1 Hn〉L2(�1) →
〈σ�1φ, ν�1 H〉L2(�1). As σ�1H

1
�0

(�) is dense in L2(�1) and
(〈 · , ν�1 Hn〉L2(�1)

)

is uni-
formly bounded with respect to n we obtain (1).

By Theorem 3.2 we have the orthogonal Helmholtz decomposition

̂H�0(curl,�) � En = ∇ un + ˜En

with un ∈ H1
�0

(�) and ˜En ∈ ̂H�0(curl,�) ∩ H�1,0(div,�) as ∇ H1
�0

(�) ⊂
H�0,0(curl,�) ⊂ ̂H�0(curl,�). By orthogonality and the Friedrichs/Poincaré esti-
mate, (un) is bounded in H1

�0
(�) and hence contains a strongly L2(�)-convergent

subsequence, again denoted by (un). (For�0 = ∅wemayhave to add a constant to each

un .) Moreover, as (un|�) is bounded in H1/2(�)
cpt
↪→ L2(�)we may assume that (un|�)

converges strongly in L2(�). In particular, (σ�1un) = (un|�1) converges strongly in
L2(�1). The sequence (˜En) is bounded in̂H�0(curl,�)∩H�1,0(div,�) by orthogonal-
ity and since curl ˜En = curl En and τ�0

˜En = τ�0 En . Theorem 4.1 yields a strongly
L2(�)-convergent subsequence, again denoted by (˜En). Hence, there exist u ∈ H1

�0
(�)

and ˜E ∈ ̂H�0(curl,�)∩H�1,0(div,�) such that un⇀u inH1
�0

(�) and un → u in L2(�)

and σ�1un → σ�1u in L2(�1) as well as ˜En⇀˜E in ̂H�0(curl,�) ∩ H�1,0(div,�) and
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˜En → ˜E in L2(�). Finally, we compute

〈En, Hn〉L2(�) = 〈∇ un, Hn〉L2(�) + 〈˜En, Hn〉L2(�)

= −〈un, div Hn〉L2(�) + 〈σ�1un, ν�1 Hn〉L2(�1) + 〈˜En, Hn〉L2(�)

→ −〈u, div H〉L2(�) + 〈σ�1u, ν�1 H〉L2(�1) + 〈˜E, H〉L2(�)

= 〈∇ u, div H〉L2(�) + 〈˜E, H〉L2(�) = 〈E, H〉L2(�),

since indeed E = ∇ u + ˜E holds by the weak convergence. ��

Remark 5.4 (div-curl lemma for vector fields with inhomogeneous mixed boundary
conditions.) As in Remark 4.2 and Remark 5.2 there are corresponding generalised
div-curl lemmas for weaker boundary data, where the L2(�0/1)-spaces and norms are
replaced by H−s(�0/1)-spaces and norms.

5.3 Maxwell’s equations withmixed impedance type boundary conditions

Let ε, μ be admissible and time-independent matrix fields, and let T , k ∈ R+. In
I × � with I := (0, T ) we consider Maxwell’s equations with mixed tangential and
impedance boundary conditions

∂t E − ε−1 curl H = F, (Ampère/Maxwell law) (2a)

∂t H + μ−1 curl E = G, (Faraday/Maxwell law) (2b)

div εE = ρ, (Gaußlaw) (2c)

divμH = 0, (Gauß law for magnetism) (2d)

τ�0 E = 0, (perfect conductor bc) (2e)

ν�0 H = f , (normal trace bc) (2f)

τ�1 E + kτ×
�1

H = 0, (impedance bc) (2g)

E(0) = E0, (electric initial value) (2h)

H(0) = H0. (magnetic initial value) (2i)

Here, F , G are time-dependent sources and E0, H0, ρ, and f are time-independent
source terms. Note that the impedance boundary condition (also called Leontovich
boundary condition) is of Robin type and that the impedance is given by λ = 1/k =√

ε/μ if ε, μ are positive scalars.
Despite of other recent and very powerful approaches such as the concept of “evo-

lutionary equations”, see the pioneering work of Rainer Picard, e.g., [10, 20], one can
use classical semigroup theory for solving the Maxwell system (2).
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We will split the system (2) into two static systems and a dynamic system. For
simplicity we set ε = μ = 1 and F = G = 0. The static systems are

curl E = 0, curl H = 0, (3a)

div E = ρ, div H = 0, (3b)

τ�0 E = 0, ν�0 H = f , (3c)

τ�1 E = −kg, τ×
�1

H = g, (3d)

where g is any suitable tangential vector field in L2(�1). For simplicity we put g = 0,
then these two systems are solvable by [2, Theorem 5.6]. However, the same result
also gives conditions for which g �= 0 this system is solvable. The dynamic system is

∂t E = curl H , (4a)

∂t H = − curl E, (4b)

div E = 0, (4c)

div H = 0, (4d)

ν�0 H = 0, (4e)

τ�0 E = 0, (4f)

τ�1 E + kτ×
�1

H = 0. (4g)

The initial conditions for the dynamic system are E(0) = E0 − Es and H(0) =
H0 − Hs , where Es and Hs are the solutions of the two static systems (3). We can
write (4a) and (4b) as

∂t

[

E
H

]

=
[

0 curl
− curl 0

]

︸ ︷︷ ︸

=:A0

[

E
H

]

,

and the boundary conditions (4f) and (4g) shall be covered by the domain of A0:

domA0 :=
{

(E, H)∈̂H�(curl,�) × ̂H�1(curl,�)

∣

∣

∣

∣

τ�0 E =0, τ�1 E + kτ×
�1

H =0

}

.

Here, we did ignore the equations div E = 0, div H = 0 and ν�0 H = 0. However, A0
is a generator of a C0-semigroup by [22, Example 8.10] or [25, Section 5], where the
input function is u = 0. (In these sources they regard boundary control systems and
system nodes, respectively. One condition of those concepts is that the system with
u = 0 is described by a generator of a C0-semigroup). The following lemma provides
a tool to show that the remaining conditions from (4) are also satisfied.

Lemma 5.5 Let T(·) be a C0-semigroup on a Banach space X, and let A be its genera-
tor. Then every subspace V ⊇ ran A is invariant under T(·). Moreover, A

∣

∣

V generates
the strongly continuous semigroup TV (·) := T(·)∣∣V , if V is additionally closed in X.

123



ANNALI DELL’UNIVERSITA’ DI FERRARA

Proof Let t ≥ 0 and let x ∈ V . Then ran A � A
∫ t
0 T(s)x ds = T(t)x − x and hence

T(t)x ∈ V . The remaining assertion follows from [6, Chapter II, Section 2.3]. ��

Therefore, it is left to show that the remaining conditions establish a closed and
invariant subspace under the semigroup T0 generated by A0 or contains ran A0. Note
that by Theorem 3.1

S := {

(E, H)
∣

∣ div E = 0, div H = 0, ν�0 H = 0
}

= H0(div,�) × H�0,0(div,�)

= (

curlH(curl,�) × curlH�0(curl,�)
) ⊕ (H�,∅(�) × H�1,�0(�)

)

.

This space is closed as the intersection of kernels of closed operators. Clearly,
H�,∅(�) × H�1,�0(�) is invariant under T0, since every (E, H) ∈ H�,∅(�) ×
H�1,�0(�) is a constant in time solution of the system (4), i.e.,

T0(t)

[

E
H

]

=
[

E
H

]

.

By

curlH(curl,�) × curlH�0(curl,�) =
[

0 curl
− curl 0

]

(

H�0(curl,�) × H(curl,�)
)

⊇ ran A0

and Lemma 5.5 we have that also curlH(curl,�)×curlH�0(curl,�) is invariant under
T0. Hence, Lemma 5.5 and Theorem 4.1 imply the next theorem.

Theorem 5.6 A := A0
∣

∣

S is a generator of a C0-semigroup and

domA ⊆ (

Ĥ�(curl,�) ∩ H(div,�)
) × (

Ĥ�1(curl,�) ∩ H�0(div,�)
) cpt

↪→ L2(�).

Consequently, every resolvent operator of A is compact.

IfH�,∅(�) = {0} andH�1,�0(�) = {0}, then 0 is in the resolvent set ofA andA−1 is
compact. Alternatively, we can further restrict A toH�,∅(�)

⊥L2(�) ×H�1,�0(�)
⊥L2(�) .

This would also match our separation of static solutions and dynamic solutions, since
solutions with initial condition in H�,∅(�) × H�1,�0(�) are constant in time.

5.4 Wave equation withmixed impedance type boundary conditions

For the scalar wave equation the situation is even simpler since traces of H1(�)-
functions already belong to L2(�), even to H1/2(�). In I × � we consider the wave
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equation in first order form (linear acoustics) with mixed scalar and impedance bound-
ary conditions

∂tw − div v = 0,

∂tv − ∇ w = 0,

σ�0w = 0,

σ�1w + kν�1v = 0,

w(0) = w0 ∈ L2(�),

v(0) = v0 ∈ L2(�).

We write the system as

∂t

[

w

v

]

=
[

0 div
∇ 0

]

︸ ︷︷ ︸

=:A0

[

w

v

]

with

domA0 :=
{

(w, v) ∈ H1
�0

(�) × ̂H�1(div,�)

∣

∣

∣ σ�1w + kν�1 = 0
}

.

Asbefore, by [8,Theorem4.4] or [22,Example 8.9],A0 is a generator ofC0-semigroup.
Again, we want to separate the static solutions from the dynamic system. The static
solutions are given by ker A0, which can be characterise by

ker A0 = {0} × H�1,0(div,�),

where we assumed �0 �= ∅, otherwise the first component can also be constant and
the second component would be in ̂H�1,0(div,�). By Theorem 3.2, the orthogonal
complement of ker A0 is

S := L2(�) × ∇ H1
�0

(�).

Note that S contains ran A0 and is therefore (by Lemma 5.5) an invariant subspace
under the semigroup generated byA0.Moreover, note that∇ H1

�0
(�) ⊆ H�0,0(curl,�)

and that S is closed. Hence, Lemma 5.5 and Theorem 4.1 imply the next theorem.

Theorem 5.7 A := A0
∣

∣

S is a generator of C0-semigroup and

domA ⊆ H1�0(�) × (

Ĥ�1(div,�) ∩ H�0, 0(curl,�)
) cpt

↪→ L2(�).

Consequently, every resolvent operator of A is compact.

Alternatively, we can also regard the classical formulation of the wave equation and
see that it is necessary for the second component in our formulation to be in∇ H1

�0
(�),

if we want the solutions to correspond.
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