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Abstract
In this short note we show that Hilbert complexes are strongly related to what we shall
call annihilating sets of skew-selfadjoint operators. This provides for a new perspective
on the classical topic of Hilbert complexes viewed as families of commuting normal
operators.
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1 Introduction

The classical differential geometry topic of “chain complexes” has entered functional
analysis as the topic of so-called “Hilbert complexes”. The purpose of this note is to
inspect Hilbert complexes from another functional analytical perspective linked to a
four decades old construction of the skew-selfadjoint extended Maxwell operator

SDir =

⎛
⎜⎜⎝

0 div 0 0
˚grad 0 − curl 0
0 ˚curl 0 grad
0 0 ˚div 0

⎞
⎟⎟⎠ ,

see [21, 22]. For some pre-history and the scope of this construction see [23]. We
merely mention here that the extended Maxwell system provides not only a deeper
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structural insight into the system of Maxwell’s equations but also shows a deep con-
nection to the Dirac equation. Indeed, the extended Maxwell operator has proven to
be useful in important applications such as boundary integral equations in electrody-
namics at low frequencies, see e.g. [13] and [24–27].

As it will turn out Hilbert complexes are intimately related to, indeed generalized
by, an abstract concept, which we shall refer to as annihilating sets of skew-selfadjoint
operators, which in turn is based on observationsmade in connectionwith the extended
Maxwell system. This is the subject of the main part in Section 2. Our final section,
Section 3 serves to illustrate the abstract setting by a number of more or less classical
applications.

This paper is close in spirit to the ideas Alain Bossavit is an eminent proponent of,
namely to use a differential geometric approach to the study of Maxwell’s equations,
see e.g. [4–6]. His strong advocacy to use differential forms and their calculational
counterpart, the Whitney forms, in discussing electrodynamics, in particular, in the
context of amimetic viewpoint for numericalmethods, see e.g. [7–11] and the literature
quoted, is a continued effort of his research orientation.

Linking these powerful concepts with an operator theoretical perspective is what
leads to a workable approach to calculational issues in electrodynamics and possibly
other fields such as elasticity. Time will tell, if the perspective on the structure of
complexes presented herewill be able to contribute to the further refinement ofmimetic
calculational schemes.

2 Annihilating sets of skew-selfadjoint operators and Hilbert
complexes

2.1 Finite sets of annihilating skew-selfadjoint operators

We start with particular finite sets of commuting skew-selfadjoint operators S on a
Hilbert space H , i.e.,

S : dom(S) ⊂ H → H , S∗ = −S,

whichwe shall refer to as a – pair-wise – annihilating set of skew-selfadjoint operators.

Definition 1 A finite set S of skew-selfadjoint operators satisfying

ran (S) ⊆ ker (T ) , S �= T , S, T ∈ S ,

is called an annihilating set of skew-selfadjoint operators.

For the rest of this section, letS be an annihilating set of skew-selfadjoint operators.

Remark 2 Let S, T ∈ S .

1. S is a set of commuting operators.
2. It holds T S = 0 on dom (S) for S �= T .
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3. The observation that S = fS (Q) for some suitable complex valued functions
fS : R → C in the sense of a function calculus associated with a single selfadjoint
operator Q provides for other examples, which are not necessarily tridiagonal, cf
Section 2.2.

As a consequence we have a straight-forward application of the projection theorem
the following generalized (orthogonal) Helmholtz decomposition.

Theorem 3 H =K ⊕H

⊕
S∈S

ran (S) with (generalised cohomology group)

K :=
⋂
S∈S

ker (S).

2.2 A special case: tridiagonal operator matrices

We consider operator matrices of the form

A :=
N∑

k=1

Ak =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · 0
a1 0

. . .
...

0
. . .

. . .
. . .

...
...

. . .
. . . 0 0

0 · · · 0 aN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Ak :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · · · · · · · · · · 0
0

. . .
. . .

...
...

. . .
. . . 0

...
... 0 0 0

...
... ak 0 0

...
... 0

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · · · · · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

closed and densely defined on a Cartesian product H = H1 × · · · × HN+1 of Hilbert
spaces Hk . Then

A∗ =
N∑

k=1

A∗
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 a∗
1 0 · · · 0

0 0
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . . 0 a∗

N
0 · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, A∗
k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · · · · · · · · · · 0
0

. . .
. . .

...
...

. . .
. . . 0

...
... 0 0 a∗

k

...
... 0 0 0

...
... 0

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · · · · · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Now let

S := 2 skw A = A − A∗ =
N∑

k=1

Sk, Sk := 2 skw Ak = Ak − A∗
k .

Then

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 −a∗
1 0 · · · 0

a1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0 −a∗
N

0 · · · 0 aN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Sk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · · · · · · · · · · 0
0

. . .
. . .

...
...

. . .
. . . 0

...
... 0 0 −a∗

k

...
... ak 0 0

...
... 0

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · · · · · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

are skew-selfadjoint and we have the following main result.

Theorem 4 S := {S1, . . . , SN } is an annihilating set of skew-selfadjoint operators if
and only if (a1, . . . , aN ) is a Hilbert complex, i.e., for all k = 1, . . . , N

ak : dom (ak) ⊆ Hk → Hk+1

are closed and densely defined linear operators satisfying ran (ak) ⊆ ker (ak+1),
k = 1, . . . , N − 1.

Proof The result follows by a straightforward calculation. See Appendix A for more
details.

Remark 5 As (Sk S�)
∗ ⊃ S∗

� S
∗
k = S�Sk we see that S = {S1, . . . , SN } is an annihi-

lating set of skew-selfadjoint operators if and only if Sk S� = 0 for all 1 ≤ k < � ≤ N
(if and only if S�Sk = 0 for all 1 ≤ k < � ≤ N ).

Remark 6 Often a Hilbert complex (a) := (a1, . . . , aN ) is written as

H1
a1−→ · · · ak−1−−→ Hk

ak−→ Hk+1
ak+1−−→ · · · aN−→ HN+1.

It is noteworthy that the Hilbert complex (a) is equivalently turned into the property

ran (Ak) ⊆ ker
(
A j

)
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or

ran (Sk) ⊆ ker
(
S j

)
, j �= k,

for all j, k = 1, . . . , N where the sequential character of Hilbert complexes seems to
have disappeared. Theorem4 suggests to consider annihilating sets of skew-selfadjoint
operators as an appropriate generalization of Hilbert complexes.

Remark 7 Note that, if preferred, the setS may be considered as

1. a set of homomorphisms by restriction of the elements to their respective domains,
i.e.,

Shom := {
S̃1, . . . , S̃N

}
,

where S̃k := Sk ιdom(Sk ) : dom(Sk) → H are now bounded linear operators,
2. a set of bounded isomorphisms by restriction of the elements to their respective

domains and orthogonal complements of their kernels (and projections onto the
ranges), i.e.,

Siso := {
Ŝ1, . . . , ŜN

}
,

where Ŝk := ι∗ran(Sk )Sk ιdom(Sk )∩ker(Sk )⊥H : dom (Sk) ∩ ker (Sk)⊥H → ran(Sk) are
now bounded and bijective,

3. a set of topological isomorphisms Siso if all ranges ran(Sk) are closed. Note that
in this case we have ran(Sk) = ker (Sk)⊥H and that ran(Sk) is closed if and only
if ran(ak) is closed.

In the latter remark ιX denotes the embedding of the subspace X into H . If X is
closed in H the orthonormal projector onto X is given by πX := ιX ι∗X : H → H .

Remark 8 For consistency we set a0 := 0 and aN+1 := 0. Note that

dom(S) =
N+1ą

k=1

(
dom(ak) ∩ dom(a∗

k−1)
)

= dom(a1) × (
dom(a2) ∩ dom(a∗

1 )
) × · · · × (

dom(aN ) ∩ dom(a∗
N−1)

) × dom(a∗
N )

and that by the complex property

ker(S) =
N+1ą

k=1

(
ker(ak) ∩ ker(a∗

k−1)
)

= ker(a1) × (
ker(a2) ∩ ker(a∗

1 )
) × · · · × (

ker(aN ) ∩ ker(a∗
N−1)

) × ker(a∗
N ),

ran(S) =
N+1ą

k=1

(
ran(ak−1) ⊕Hk ran(a

∗
k )

)

= ran(a∗
1 ) × (

ran(a1) ⊕H2 ran(a
∗
2 )

) × · · · × (
ran(aN−1) ⊕HN ran(a∗

N )
) × ran(aN ).
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In particular, the product of the cohomology groups Kk := ker(ak)∩ker(a∗
k−1) equals

the kernel of S.

Definition 9 Recall Remark 6. A Hilbert complex (a) is called

1. closed if all ranges ran(ak) are closed.
2. compact if all embeddings dom(ak) ∩ dom(a∗

k−1) ↪→ Hk are compact.

Theorem 10 Recall Theorem 4. Let (a) be a Hilbert complex with associated annihi-
lating set of skew-selfadjoint operators S . Then (a) is

1. closed if and only if ran(S) is closed.
2. compact if and only if the embedding dom(S) ↪→ H is compact.

Proof Use Remark 8 and orthogonality.

Remark 11 S2 = ∑N
k=1 S

2
k is diagonal and may be considered as generalised Lapla-

cian acting on H . More precisely,

−S2=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a∗
1a1 0 · · · · · · · · · · · · 0

0 a1a∗
1 + a∗

2a2 0
...

... 0
. . .

. . .
...

...
. . . ak−1a∗

k−1 + a∗
k ak

. . .
...

...
. . .

. . . 0
...

... 0 aN−1a∗
N−1 + a∗

NaN 0
0 · · · · · · · · · · · · 0 aNa∗

N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

−S2k =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · · · · · · · · · · 0
0

. . .
. . .

...
...

. . . 0 0
...

... 0 a∗
k ak 0

...
... 0 aka∗

k 0
...

... 0 0
. . .

...
...

. . .
. . . 0

0 · · · · · · · · · · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Remark 12 By replacing the skew-selfadjoint operators with selfadjoint operators the
presented theory works literally as well. The only modifications are

S := 2 sym A = A + A∗ =
N∑

k=1

Sk, Sk := q2 sym Ak = Ak + A∗
k
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resulting in

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 a∗
1 0 · · · 0

a1 0
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . . 0 a∗
N

0 · · · 0 aN 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, Sk =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · · · · · · · · · · · · · 0
0

. . .
. . .

...
...

. . .
. . . 0

...
... 0 0 a∗

k

...
... ak 0 0

...
... 0

. . .
. . .

...
...

. . .
. . . 0

0 · · · · · · · · · · · · · · · 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This is in a sense a matter of taste. We prefer, however, the skew-selfadjoint setting,
since it has the advantage of being closer to various applications, such asMaxwell’s and
Dirac’s equation (written in real form).Wenote, in particular, that skew-selfadjointness
is at the heart of energy conservation.

Remark 13 By standard arguments of linear functional analysis we note the following
results: Let S : dom(S) ⊂ H → H be skew-selfadjoint such that dom(S) ↪→ H is
compact. Then

1. the range ran(S) = ran(Ŝ) is closed, where Ŝ = ι∗ran(S)Sιran(S) .

2. the inverse operator Ŝ−1 is compact.
3. the cohomology group ker(S) has finite dimension.
4. the orthogonal Helmholtz-type decomposition H = ran(S) ⊕H ker(S) holds.
5. there exists c > 0 such that for all x ∈ dom

(
Ŝ
) = dom(S) ∩ ran(S) = dom(S) ∩

ker(S)⊥H the Friedrichs/Poincaré type inequality ‖x‖H ≤ c ‖Sx‖H holds.
6. S and Ŝ are Fredholm operators with index zero.

3 Applications

In this final section we give several examples of annihilating sets of skew-selfadjoint
operators, i.e., of Hilbert complexes, cf. Theorem 4. All operators will be considered
as closures of unbounded linear operators densely defined on smooth and compactly
supported test fields. For example, ˚grad, ˚sym CurlT, and ˚div DivS – where the tiny
circle on top of an operator indicates the full Dirichlet boundary condition associated
to the respective differential operator – are the closures of

˚grad
∞ : C̊∞(Ω) ⊂ L2(Ω) → L2(Ω); u �→ grad u,

˚sym Curl
∞
T

: C̊∞
T

(Ω) ⊂ L2
T
(Ω) → L2

S
(Ω); M �→ sym CurlM,

˚div Div
∞
S

: C̊∞
S

(Ω) ⊂ L2
S
(Ω) → L2(Ω); M �→ divDivM,

123
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where Ω ⊂ R
3 is an open set, C̊∞(Ω) denotes the space of smooth and compactly

supported fields in Ω , and S and T indicate symmetric and deviatoric tensor fields,
respectively. The corresponding adjoints − div, CurlS, and Grad grad are then given by

− div : H(div,Ω) ⊂ L2(Ω) → L2(Ω); E �→ − div E,

CurlS : HS(Curl,Ω) ⊂ L2
S
(Ω) → L2

T
(Ω); M �→ CurlM,

Grad grad : H2(Ω) ⊂ L2(Ω) → L2
S
(Ω); u �→ Grad grad u.

3.1 The classical De Rham complexes

3.1.1 De Rham complex of vector fields

Let Ω be an open set in R
3 with boundary Γ := ∂Ω . The most prominent example

is the classical de Rham complex of vector fields involving the classical operators of
vector calculus grad, curl, and divwith fullDirichlet orNeumann boundary conditions:

SDir =

⎛
⎜⎜⎝

0 div 0 0
˚grad 0 − curl 0
0 ˚curl 0 grad
0 0 ˚div 0

⎞
⎟⎟⎠ , SNeu =

⎛
⎜⎜⎝

0 ˚div 0 0
grad 0 − ˚curl 0
0 curl 0 ˚grad
0 0 div 0

⎞
⎟⎟⎠

Inhomogeneous and anisotropic coefficients and mixed boundary conditions can also
be considered:

Smix =

⎛
⎜⎜⎝

0 ν−1 ˚divΓ1ε 0 0
˚gradΓ0

0 −ε−1 ˚curlΓ1 0
0 μ−1 ˚curlΓ0 0 ˚gradΓ1

0 0 κ−1 ˚divΓ0μ 0

⎞
⎟⎟⎠ (3.1)

Here the boundary Γ is decomposed into two parts Γ0 and Γ1 where the Dirichlet
and Neumann boundary condition is imposed, respectively. Note that the de Rham
off-diagonals are skew-adjoint to each other.

3.1.2 De Rham complex of differential forms

Let Ω be an N -dimensional Riemannian manifold, e.g., an open set in R
N . Another

prominent example is the classical deRhamcomplex of differential forms involving the
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exterior derivative d and its formal skew-adjoint the co-derivative δ = −d̊
∗
, d = −δ̊

∗

with full Dirichlet or Neumann boundary conditions:

SDir =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 δ 0 · · · 0
d̊

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . δ

0 · · · 0 d̊ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, SNeu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 δ̊ 0 · · · 0
d

. . .
. . .

. . .
...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . δ̊

0 · · · 0 d 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Again, the de Rham off-diagonals are skew-adjoint to each other. Note that SDir and
SNeu are unitarily congruent via transposition, permutation, sign change and Hodge-
∗-isomorphism.

3.2 Other complexes in three dimensions

There are plenty of extensions and restrictions of the de Rham complex. A nice
overview and list of complexes is given in [1], from which we extract the follow-
ing discussion. Their construction is based on the BGG-resolution using copies of the
de Rham complex. For this section let Ω be an open set in R3.

3.2.1 More De Rham complexes

– Grad curl complex:

SDir =

⎛
⎜⎜⎜⎜⎝

0 div 0 0 0
˚grad 0 curl DivT 0 0
0 ˚Grad curl 0 − dev Curl 0
0 0 ˚CurlT 0 Grad
0 0 0 D̊iv 0

⎞
⎟⎟⎟⎟⎠

– curl Div complex (formal dual of the Grad curl complex):

SDir =

⎛
⎜⎜⎜⎜⎝

0 Div 0 0 0
˚Grad 0 −CurlT 0 0
0 ˚dev Curl 0 Grad curl 0
0 0 ˚curl DivT 0 grad
0 0 0 ˚div 0

⎞
⎟⎟⎟⎟⎠
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– grad div complex (formally self-dual):

SDir =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 div 0 0 0 0
˚grad 0 − curl 0 0 0
0 ˚curl 0 − grad div 0 0
0 0 ˚grad div 0 − curl 0
0 0 0 ˚curl 0 grad
0 0 0 0 ˚div 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

3.2.2 Elasticity complexes

– Kröner complex (formally self-dual):

SDir =

⎛
⎜⎜⎝

0 DivS 0 0
˚symGrad 0 −Curl�CurlS 0
0 ˚Curl�CurlS 0 symGrad
0 0 D̊ivS 0

⎞
⎟⎟⎠

Here � denotes the formal transpose.
– deviatoric Kröner complex (formally self-dual):

SDir =

⎛
⎜⎜⎜⎝

0 DivST 0 0
˚dev symGrad 0 −Curl �̃Curl �̃CurlST 0

0 ˚Curl �̃Curl �̃CurlST 0 dev symGrad
0 0 D̊ivST 0

⎞
⎟⎟⎟⎠

Here1 �̃M := M� − 1
2 (tr M) id. Note that �̃CurlS = �CurlS as tr CurlS = 0.

3.2.3 Biharmonic complexes

– first Hessian complex:

SDir =

⎛
⎜⎜⎝

0 − divDivS 0 0
˚Grad grad 0 − sym CurlT 0
0 ˚CurlS 0 devGrad
0 0 D̊ivT 0

⎞
⎟⎟⎠

– second Hessian complex (formal dual of the first Hessian complex):

SDir =

⎛
⎜⎜⎝

0 DivT 0 0
˚devGrad 0 −CurlS 0
0 ˚sym CurlT 0 −Grad grad
0 0 ˚div DivS 0

⎞
⎟⎟⎠

1 In RN we have �̃M := M� − 1
N−1 (tr M) id.
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– conformal Hessian complex (formally self-dual):

SDir =

⎛
⎜⎜⎝

0 − divDivST 0 0
˚devGrad grad 0 − sym CurlST 0
0 ˚sym CurlST 0 − devGrad grad
0 0 ˚div DivST 0

⎞
⎟⎟⎠

3.3 Some remarks

Remark 14 Theorem 4 shows that all operators S··· = SDir/Neu/mix are sums of anni-
hilating skew-selfadjoint operators S1, . . . , SN , i.e.,

S··· =
N∑

k=1

Sk .

In particular, we have for the Dirichlet de Rham complex

SDir =

⎛
⎜⎜⎝

0 div 0 0
˚grad 0 − curl 0
0 ˚curl 0 grad
0 0 ˚div 0

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0 div 0 0
˚grad 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0 0 0 0
0 0 − curl 0
0 ˚curl 0 0
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 grad
0 0 ˚div 0

⎞
⎟⎟⎠ ,

−S2Dir =

⎛
⎜⎜⎝

− div ˚grad 0 0 0
0 − ˚grad div+ curl ˚curl 0 0
0 0 ˚curl curl− grad ˚div 0
0 0 0 − ˚div grad

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

− div ˚grad 0 0 0
0 − ˚grad div 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

0 0 0 0
0 curl ˚curl 0 0
0 0 ˚curl curl 0
0 0 0 0

⎞
⎟⎟⎠

+

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 − grad ˚div 0
0 0 0 − ˚div grad

⎞
⎟⎟⎠ .

Remark 15 Recalling Theorem 10 it has been shown in [2, 3, 15] that in case of the
de Rham complexes the embeddings

dom(S···) ↪→ H
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are compact, provided that (Ω, Γ0) is a bounded weak Lipschitz pair, see [20, 28–
30] and [12, 14] for the first results about the respective compact embeddings. For
corresponding results in case of elasticity and biharmonic complexes and bounded
strong Lipschitz pairs (Ω, Γ0) see [16, 17] and [18, 19].

Remark 16 There is no doubt that all the latter complexes may be generalised to
inhomogeneous and anisotropic coefficients and to mixed boundary conditions, cf.
(3.1). Moreover, the techniques of [15–17] (for the de Rham, Kröner, and Hessian
complexes) can be extended to show that all the embeddings dom(S···) ↪→ H are
compact for bounded strong Lipschitz pairs (Ω, Γ0).

3.4 A factorization result

An interesting consequence for annihilating sets of skew-selfadjoint operators (not
necessarily tridiagonal operator matrices as in the special case) is the following fac-
torization result: Let T be a strictly m-accretive operator commuting with S =
{S1, . . . , SN }. Then with S = ∑N

k=1 Sk we have

(T + S) = T 1−N T N−1
(
T +

N∑
k=1

Sk
)

= T 1−N
N∏

k=1

(T + Sk)

and conversely,

T + S� = T N−1
N∏

� �=k=1

(T + Sk)
−1 (T + S) =

N∏
� �=k=1

(
1 + T−1Sk

)−1
(T + S) .

This is, in terms of inverses (solution operators)

(T + S)−1 = T N−1
N∏

k=1

(T + Sk)
−1 , (T + S�)

−1 =
N∏

� �=k=1

(
1 + T−1Sk

)
(T + S)−1 .

An example of particular interest is given by T = ∂t , the case of evolutionary systems,
which in a suitable setting, see e.g. [23], leads to

(∂t + S) = ∂1−N
t

N∏
k=1

(∂t + Sk), ∂t + S� =
N∏

� �=k=1

(1 + ∂−1
t Sk)

−1(∂t + S),

(∂t + S)−1 = ∂N−1
t

N∏
k=1

(∂t + Sk)
−1, (∂t + S�)

−1 =
N∏

� �=k=1

(1 + ∂−1
t Sk)(∂t + S)−1.
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4 Sketch of a Proof of Theorem 4

For simplicity and readability we look at the special case N = 3 and consider
(a1, a2, a3). Then

S1S1 =

⎛
⎜⎜⎝

0 −a∗
1 0 0

a1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −a∗
1 0 0

a1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−a∗
1a1 0 0 0
0 −a1a∗

1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

S1S2 =

⎛
⎜⎜⎝

0 −a∗
1 0 0

a1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0 0 0 0
0 0 −a∗

2 0
0 a2 0 0
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 0 a∗

1a
∗
2 0

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

S1S3 =

⎛
⎜⎜⎝

0 −a∗
1 0 0

a1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −a∗

3
0 0 a3 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

S2S1 =

⎛
⎜⎜⎝
0 0 0 0
0 0 −a∗

2 0
0 a2 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −a∗
1 0 0

a1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0

a2a1 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

S2S2 =

⎛
⎜⎜⎝
0 0 0 0
0 0 −a∗

2 0
0 a2 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0 0 0 0
0 0 −a∗

2 0
0 a2 0 0
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 0 0 0
0 −a∗

2a2 0 0
0 0 −a2a∗

2 0
0 0 0 0

⎞
⎟⎟⎠ ,

S2S3 =

⎛
⎜⎜⎝
0 0 0 0
0 0 −a∗

2 0
0 a2 0 0
0 0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −a∗

3
0 0 a3 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 a∗

2a
∗
3

0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

S3S1 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −a∗

3
0 0 a3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 −a∗
1 0 0

a1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ ,

S3S2 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −a∗

3
0 0 a3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0 0 0 0
0 0 −a∗

2 0
0 a2 0 0
0 0 0 0

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0
0 a3a2 0 0

⎞
⎟⎟⎠ ,

S3S3 =

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −a∗

3
0 0 a3 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 −a∗

3
0 0 a3 0

⎞
⎟⎟⎠ =

⎛
⎝
0 0 0 0
0 0 −a∗

3a3 0
0 0 0 −a3a∗

3

⎞
⎠ .
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We read off that (a1, a2, a3) is a Hilbert complex if and only if Sk S� = 0 for all k �= �.
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