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ABSTRACT
It is shown that the first biharmonic boundary value problem on a topo-
logically trivial domain in 3D is equivalent to three (consecutively to solve)
second-order problems. This decomposition result is basedon aHelmholtz-
like decomposition of an involved non-standard Sobolev space of tensor
fields and a proper characterization of the operator divDiv acting on this
space. Similar results for biharmonic problems in 2D and their impact on
the construction and analysis of finite elementmethods have been recently
published in Krendl et al. [A decomposition result for biharmonic problems
and the Hellan–Herrmann–Johnson method. Electron Trans Numer Anal.
2016;45:257–282]. The discussion of the kernel of divDiv leads to (de Rham-
like) closed and exact Hilbert complexes, the divDiv-complex and its adjoint
theGradgrad-complex, involving spaces of trace-free and symmetric tensor
fields. For these tensor fields,we showHelmholtz typedecompositions and,
most importantly, new compact embedding results. Almost all our results
hold and are formulated for general bounded strong Lipschitz domains of
arbitrary topology. There is no reasonable doubt that our results extend to
strong Lipschitz domains in RN.
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1. Introduction

In [1] it was shown that the fourth-order biharmonic boundary value problem

!2u = f in", u = ∂n u = 0 on $, (1)

where " is a bounded and simply connected domain in R2 with a (strong) Lipschitz boundary1 $, f
is a given right-hand side,! and ∂n denote the Laplace operator and the derivative in direction of the
outward normal vector n, respectively, can be decomposed into three second-order problems. The
first problem is a Dirichlet–Poisson problem for an auxiliary scalar field p

!p = f in", p = 0 on $,

the second problem is a linear elasticity Neumann problem for an auxiliary vector field v

Div(symGrad v) = − grad p in", (symGrad v)n = −pn = 0 on $,

and, finally, the third problem is again a Dirichlet–Poisson problem for the original scalar field u

!u = 2p + div v in", u = 0 on $.
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Here the differential operators grad, Grad, div, andDiv denote the gradient of a scalar field, the gradi-
ent of a vector field, the divergence of a vector field, and the divergence of a tensor field, respectively.
The prefix sym is used for the symmetric part of a matrix.

This decomposition is of triangular structure, i.e. the first problem is a well-posed second-order
problem in p, the second problem is a well-posed second-order problem in v for given p, and the
third problem is a well-posed second-order problem in u for given p and v. This allows to solve them
consecutively analytically or numerically by means of techniques for second-order problems.

This is – in the first place – a new analytic result for fourth-order problems. But it also has interest-
ing implications for discretization methods applied to (1). It allows to re-interpret known finite ele-
ment methods as well as to construct new discretizationmethods for (1) by exploiting the decompos-
able structure of the problem. In particular, it was shown in [1] that the Hellan–Herrmann–Johnson
mixed method (see [2–4]) for (1) allows a similar decomposition as the continuous problem, which
leads to a new and simpler assembling procedure for the discretization matrix and to more effi-
cient solution techniques for the discretized problem. Moreover, a novel conforming variant of the
Hellan–Herrmann–Johnson mixed method was found based on the decomposition.

We will see that the situation in R3 is much more complicated. The main application of this paper
is to derive a similar decomposition result for biharmonic problems (1) on bounded and topologically
trivial three-dimensional domains" ⊂ R3 with a (strong) Lipschitz boundary$. For this we proceed
as in [1] and reformulate (1) using

!2 = divDiv Gradgrad

as a mixed problem by introducing the (negative) Hessian of the original scalar field u as an auxiliary
tensor field

M = −Gradgrad u. (2)

Then the biharmonic differential equation reads

− divDivM = f in". (3)

For an appropriate non-standard Sobolev space for M it can be shown that the mixed problem in
M and u is well-posed, see (31)–(32). Then the decomposition of the biharmonic problem follows
from a regular decomposition of this non-standard Sobolev space, see Lemma 3.21. This part of the
analysis carries over completely from the two-dimensional case to the three-dimensional case and is
recalled in Section 4. To efficiently utilize this regular decomposition for the decomposition of the
biharmonic problem an appropriate characterization of the kernel of the operator divDiv is required,
which is well understood for the two-dimensional case, see, e.g. [1, 5, 6]. Its extension to the three-
dimensional case is one of the central topics of this paper. We expect – as in the two-dimensional
case – similar interesting implications for the study of appropriate discretization methods for fourth-
order problems in the three-dimensional case.

Another application comes from the theory for general relativity and gravitational waves. There,
the so-called linearized Einstein–Bianchi system reads as the Maxwell’s equations

∂ t E + CurlB = F, Div E = f in",

∂ t B− CurlE = G, DivB = g in",

but with symmetric and deviatoric (trace-free) tensor fields E and B, where Curl denotes the rotation
of a tensor field, see [7] for more details, especially on the modeling.

The paper is organized as follows: in Section 1.1 we summarize some basic notations from linear
algebra and introduce several differential operators, which enable us to present in Section 1.2 some
of the main analytical results in a non-rigorous way and the application of these results to the three-
dimensional biharmonic equation, i.e. to (1) for " ⊂ R3. The mathematically rigorous part, where
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also all precise definitions can be found, begins with preliminaries in Section 2 and introduces our
general functional analytical setting. Then we will discuss the relevant unbounded linear operators,
show closed and exact Hilbert complex properties, and present a suitable representation of the kernel
of divDiv for the three-dimensional case in Section 3.1 for topologically trivial domains. In Section 3.2
we extend our results to (strong) Lipschitz domains with arbitrary topology based on two new and
crucial compact embeddings. In the final Section 4 we give a detailed study of the application of our
results to the three-dimensional biharmonic equation from Section 1.2. The proofs of some useful
identities are presented in an Appendix.

1.1. Notations

Throughout the paper lower-case standard letters are used for denoting scalars and scalar func-
tions, lower-case boldface letters for vectors and vector fields, and upper-case boldface letters for
matrices/tensors and tensor fields.

We will use the following standard notations from linear algebra. For vectors a, b ∈ R3 and
matrices A,B ∈ R3×3 the expressions

a · b and A : B

denote the Euclidean inner product of vectors and the Frobenius inner product of matrices, respec-
tively. The exterior product of two vectors a and b is denoted by a× b. The exterior product a× B
of a vector a ∈ R3 and a matrix B ∈ R3×3 is defined as the matrix which is obtained by applying the
exterior product row-wise. With the help of the Levi-Civita symbol εijk the exterior products can be
expressed in the following way:

a× b =

⎛

⎝
3∑

j,k=1
εijk aj bk

⎞

⎠

i=1,2,3

and a× B =

⎛

⎝
3∑

k,ℓ=1
εjkℓ ak Biℓ

⎞

⎠

i,j=1,2,3

.

For a vector a ∈ R3 the matrix spn a ∈ R3×3 is defined by

spn a =

⎡

⎣
0 −a3 a2
a3 0 −a1
−a2 a1 0

⎤

⎦ .

Note that spn is a bijective mapping from R3 to the set of skew-symmetric matrices in R3×3 with the
inverse mapping spn−1. Observe that a× b = (spn a) b and a× B = B spn a⊤ = −B spn a.

We use

symA = 1
2
(A + A⊤), skwA = 1

2
(A− A⊤), trA =

3∑

i=1
Aii, and devA = A− 1

3
(trA) I

for denoting the symmetric part, the skew-symmetric part, the trace, and the deviatoric part of a
matrix A, respectively, where I is the identity matrix. Finally we introduce the sets

S = {A ∈ R3×3 : A⊤ = A} and T = {A ∈ R3×3 : trA = 0}

of symmetric matrices and deviatoric (trace-free) matrices in R3×3.
For the convenience of the reader we summarize the definitions for differential operators used

in this paper: Let ϕ be a scalar field, φ be a vector field, and " be a tensor field. In strong form the
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gradient of ϕ and the gradient of φ are given by

gradϕ = (∂iϕ)i=1,2,3, Gradφ = (∂jφi)i,j=1,2,3,

the divergence of φ and divergence of " are given by

div φ =
3∑

i=1
∂iφi, Div" =

⎛

⎝
3∑

j=1
∂j"ij

⎞

⎠

i=1,2,3

,

and the rotation of φ and rotation of " are given by

curlφ =

⎛

⎝
3∑

j,k=1
εijk∂jφk

⎞

⎠

i=1,2,3

, Curl" =

⎛

⎝
3∑

k,ℓ=1
εjkℓ∂k"iℓ

⎞

⎠

i,j=1,2,3

.

Note that the capitalized differential operators Grad, Div, and Curl result from the row-wise applica-
tion of grad to a vector field, div and curl to a tensor field. We will also use the differential operators
of the form of algebraic modifications of the respective differential operators, like symGrad and
devGrad, which are given in strong form component-wise by

[symGradφ]i,j = 1
2 (∂jφi + ∂iφj), [devGradφ]i,j = ∂jφi − 1

3 (div φ)δij,

where δij denotes the Kronecker symbol. Second-order operators used in this papers are

Gradgrad u = (∂j∂iu)i,j=1,2,3, divDiv" =
3∑

i,j=1
∂i∂j"ij.

Additionally we need the differential operators symCurl and, on one occasion only, CurlCurl⊤,
given by

symCurl" = 1
2 (Curl" + (Curl")⊤), CurlCurl⊤" = Curl

(
(Curl")⊤

)
,

for which we omit the rather lengthy expressions for the components, since they do not provide
any additional insight for the results in this paper. Depending on the context, all these differential
operators are understood in the distributional or in the weak sense.

Remark 1.1: For simplicity we will discuss here only scalar/vector/tensor fields with components in
R. The extension of the results to scalar/vector/tensor fields with components inC is straightforward.

1.2. Somemain results

Let " ⊂ R3 be a bounded and topologically trivial strong Lipschitz domain. Based on a decompo-
sition result of the non-standard Hilbert space for the auxiliary variable M a decomposition of the
three-dimensional biharmonic problem (1) into three (consecutively to solve) second-order prob-
lems will be rigorously derived in Section 4. Written in strong form, the three resulting second-order
equations are a Dirichlet–Poisson problem for the auxiliary scalar function p

!p = f in", p = 0 on $,

a second-order Neumann type Curl symCurl –Div-system for the auxiliary tensor field E

trE = 0, Curl symCurlE = spn grad p, Div E = 0 in",
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n× symCurlE = p spnn = 0, En = 0 on $,

and, finally, a Dirichlet–Poisson problem for the original scalar function u

!u = 3p + tr symCurlE = tr(p I + symCurlE) in", u = 0 on $.

Our results rely on the study of the Hilbert complexes

H 2(")
Gradgrad
−−−−−→ HS(Curl,")

Curl−−−−→ HT(Div,")
Div−−−−→ L2(")

and

L2(")
divDiv←−−−− HS(divDiv,")

symCurl
←−−−− HT(symCurl,")

− devGrad←−−−−−− H1(").

The involved Hilbert spaces are standard Lebesgue and Sobolev spaces L2("), H 2(") of real-valued
functions, L2("), H1(") of vector fields, Sobolev spaces HS(Curl,") and HS(divDiv,") of sym-
metric tensor fields " with Curl" ∈ L2(") (the space of square integrable tensor fields) and
divDiv" ∈ L2("), respectively, as well as Sobolev spacesHT(Div,") andHT(symCurl,") of devi-
atoric (trace-free) tensor fields"with Div" ∈ L2(") and symCurl" ∈ L2("), respectively.We call
these complexes the Gradgrad-complex and the divDiv-complex, respectively. Up to standard mod-
ifications concerning boundary conditions these complexes are dual or adjoint to each other. In this
contribution we will study all important tools and properties for these complexes, such as Helmholtz
type decompositions, potentials, regular decompositions, regular potentials, Poincaré type estimates,
closed ranges, exactness, and, most importantly, the key property that certain canonical embeddings
are compact.

In principle, such results are known in simpler situations, e.g. in electro-magnetic theory
(Maxwell’s equations), where one has to deal with the de Rham complex (grad-curl-div-complex)

H 1(")
grad
−−−−→ H(curl,")

curl−−−−→ H(div,")
div−−−−→ L2(").

In linear elasticity the elasticity complex (CurlCurl⊤-complex)

H1(")
symGrad
−−−−−→ HS(CurlCurl⊤,")

CurlCurl⊤−−−−−→ HS(Div,")
Div−−−−→ L2(")

plays an important role. Note that the de Rham and the elasticity complex admit certain symmetries,
which is not the case for the Gradgrad-complex and the divDiv-complex. Furthermore, note that the
elasticity complex as well as the Gradgrad-complex and the divDiv-complex involve first-order and
also second-order differential operators.

2. Preliminaries

We start by recalling some basic concepts and abstract results from functional analysis concerning
Helmholtz decompositions, closed ranges, Friedrichs/Poincaré type estimates, and bounded or even
compact inverse operators. Since we will need both the Banach space setting for bounded linear oper-
ators as well as the Hilbert space setting for (possibly unbounded) closed and densely defined linear
operators, we will shortly recall these two variants.

2.1. Functional analysis toolbox

LetX andY be real Banach spaces.With BL(X,Y)we introduce the space of bounded linear operators
mapping X to Y. The dual spaces of X and Y are denoted by X′ := BL(X,R) and Y′ := BL(Y,R). For
a given A ∈ BL(X,Y) we write A′ ∈ BL(Y′,X′) for its Banach space dual or adjoint operator defined
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by A′ y′(x) := y′(A x) for all y′ ∈ Y′ and all x ∈ X. Norms and duality in X resp. X′ are denoted by
| · |X, | · |X′ , and ⟨ · , · ⟩X′ .

Suppose H 1 and H 2 are Hilbert spaces. For a (possibly unbounded) densely defined linear operator
A:D(A) ⊂ H 1→ H 2 we recall that its Hilbert space dual or adjoint A∗ :D(A∗) ⊂ H 2→ H 1 can be
defined via its Banach space adjointA′ and theRiesz isomorphisms ofH 1 andH 2 or directly as follows:
y ∈ D(A∗) if and only if y ∈ H 2 and

∃f ∈ H 1 ∀ x ∈ D(A) ⟨A x, y⟩H 2
= ⟨x, f ⟩H 1

.

In this case, we define A∗ y := f . We note that A∗ has maximal domain of definition and that A∗ is
characterized by

∀ x ∈ D(A) ∀ y ∈ D(A∗) ⟨A x, y⟩H 2
= ⟨x, A∗y⟩H 1

.

Here ⟨ · , · ⟩H denotes the scalar product in aHilbert spaceH andD is used for the domain of definition
of a linear operator. Additionally, we introduce the notation N for the kernel or null space and R for
the range of a linear operator.

Let A:D(A) ⊂ H 1→ H 2 be a (possibly unbounded) closed and densely defined linear operator on
twoHilbert spaces H 1 and H 2 with adjoint A∗ :D(A∗) ⊂ H 2→ H 1. Note (A∗)∗ = A = A, i.e. (A,A∗)
is a dual pair. By the projection theorem the Helmholtz type decompositions

H 1 = N(A)⊕H 1 R(A∗), H 2 = N(A∗)⊕H 2 R(A) (4)

hold and we can define the reduced operators

A := A |R(A∗) : D(A) ⊂ R(A∗)→ R(A), D(A) := D(A) ∩ N(A)⊥H 1 = D(A) ∩ R(A∗),

A∗ := A∗|R(A) : D(A∗) ⊂ R(A)→ R(A∗), D(A∗) := D(A∗) ∩ N(A∗)⊥H 2 = D(A∗) ∩ R(A),

which are also closed and densely defined linear operators. We note thatA andA∗ are indeed adjoint
to each other, i.e. (A,A∗) is a dual pair as well. Now the inverse operators

A−1 : R(A)→ D(A), (A∗)−1 : R(A∗)→ D(A∗)

exist and they are bijective, since A and A∗ are injective by definition. Furthermore, by (4) we have
the refined Helmholtz type decompositions

D(A) = N(A)⊕H 1 D(A), D(A∗) = N(A∗)⊕H 2 D(A∗) (5)

and thus we obtain for the ranges

R(A) = R(A), R(A∗) = R(A∗). (6)

By the closed range theorem and the closed graph theorem we get immediately the following.

Lemma 2.1: The following assertions are equivalent:

(i) ∃cA ∈ (0,∞) ∀ x ∈ D(A) |x|H 1 ≤ cA|A x|H 2 ,
(i∗) ∃ cA∗ ∈ (0,∞) ∀ y ∈ D(A∗) |y|H 2

≤ cA∗ |A∗y|H 1
,

(ii) R(A) = R(A) is closed in H 2,
(ii∗) R(A∗) = R(A∗) is closed in H 1,
(iii) A−1 : R(A)→ D(A) is continuous and bijective with norm bounded by (1 + c2A)1/2,

(iii∗) (A∗)−1 : R(A∗)→ D(A∗) is continuous and bijective with norm bounded by (1 + c2A∗)
1/2.
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In case that one of the assertions of Lemma 2.1 is true, e.g. R(A) is closed, we have

H 1 = N(A)⊕H 1 R(A∗), H 2 = N(A∗)⊕H 2 R(A),

D(A) = N(A)⊕H 1 D(A), D(A∗) = N(A∗)⊕H 2 D(A∗),
D(A) = D(A) ∩ R(A∗), D(A∗) = D(A∗) ∩ R(A).

For the ‘best’ constants cA, cA∗ we have the following lemma.

Lemma 2.2: The Rayleigh quotients

1
cA

:= inf
0 ̸=x∈D(A)

|A x|H 2

|x|H 1

= inf
0 ̸=y∈D(A∗)

|A∗y|H 1

|y|H 2

=:
1
cA∗

coincide, i.e. cA = cA∗ , if either cA or cA∗ exists in (0,∞). Otherwise they also coincide, i.e. it holds
cA = cA∗ =∞.

From now on and throughout this paper, we always pick the best possible constants in the various
Friedrichs/Poincaré type estimates.

A standard indirect argument shows the following.

Lemma 2.3: Let D(A) = D(A) ∩ R(A∗) ↪→ H 1 be compact. Then the assertions of Lemma 2.1 hold.
Moreover, the inverse operators

A−1 : R(A)→ R(A∗), (A∗)−1 : R(A∗)→ R(A)

are compact with norms
∣∣A−1

∣∣
R(A),R(A∗) =

∣∣(A∗)−1
∣∣
R(A∗),R(A)

= cA.

Moreover, we have:

Lemma 2.4: D(A) ↪→ H 1 is compact, if and only if D(A∗) ↪→ H 2 is compact.

Now, let A0 :D(A0) ⊂ H 0→ H 1 and A1 :D(A1) ⊂ H 1→ H 2 be (possibly unbounded) closed and
densely defined linear operators on three Hilbert spaces H 0, H 1 and H 2 with adjoints A∗0 :D(A∗0) ⊂
H 1→ H 0 andA∗1 :D(A∗1) ⊂ H 2→ H 1 aswell as reduced operatorsA0,A∗0, andA1,A∗1. Furthermore,
we assume the sequence or complex property of A0 and A1, that is, A1 A0 = 0, i.e.

R(A0) ⊂ N(A1). (7)

Then also A∗0 A∗1 = 0, i.e. R(A∗1) ⊂ N(A∗0). The Helmholtz type decompositions of (4) for A = A1
and A = A0 read

H 1 = N(A1)⊕H 1 R(A∗1), H 1 = N(A∗0)⊕H 1 R(A0) (8)

and by (7) we see

N(A∗0) = N0,1 ⊕H 1 R(A∗1), N(A1) = N0,1 ⊕H 1 R(A0), N0,1 := N(A1) ∩ N(A∗0) (9)

yielding the refined Helmholtz type decomposition

H 1 = R(A0)⊕H 1 N0,1 ⊕H 1 R(A∗1), R(A0) = R(A0), R(A∗1) = R(A∗1). (10)

The previous results of this section imply immediately the following.
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Lemma 2.5: Let A0, A1 be as introduced before with A1 A0 = 0, i.e. (7). Moreover, let R(A0) and
R(A1) be closed. Then, the assertions of Lemmas 2.1 and 2.2 hold for A0 and A1. Moreover, the refined
Helmholtz type decompositions

H 1 = R(A0)⊕H 1 N0,1 ⊕H 1 R(A∗1), N0,1 = N(A1) ∩ N(A∗0),

N(A1) = R(A0)⊕H 1 N0,1, N(A∗0) = N0,1 ⊕H 1 R(A∗1),

D(A1) = R(A0)⊕H 1 N0,1 ⊕H 1 D(A1), D(A∗0) = D(A∗0)⊕H 1 N0,1 ⊕H 1 R(A∗1),

D(A1) ∩ D(A∗0) = D(A∗0)⊕H 1 N0,1 ⊕H 1 D(A1)

hold. Especially, R(A0), R(A∗0), R(A1), and R(A∗1) are closed, the respective inverse operators, i.e.

A0
−1 : R(A0)→ D(A0), A1

−1 : R(A1)→ D(A1),

(A∗0)−1 : R(A∗0)→ D(A∗0), (A∗1)−1 : R(A∗1)→ D(A∗1),

are continuous, and there exist positive constants cA0 , cA1 , such that the Friedrichs/Poincaré type
estimates

∀ x ∈ D(A0) |x|H 0 ≤ cA0 |A0 x|H 1 , ∀ y ∈ D(A1) |y|H 1
≤ cA1 |A1 y|H 2

,

∀ y ∈ D(A∗0) |y|H 1
≤ cA0 |A∗0 y|H 0

, ∀ z ∈ D(A∗1) |z|H 2 ≤ cA1 |A∗1 z|H 1

hold.

Remark 2.6: Note that R(A0) resp. R(A1) is closed, if, e.g. D(A0) ↪→ H 0 resp. D(A1) ↪→ H 1 is
compact. In this case, the respective inverse operators, i.e.

A0
−1 : R(A0)→ R(A∗0), A1

−1 : R(A1)→ R(A∗1),

(A∗0)−1 : R(A∗0)→ R(A0), (A∗1)−1 : R(A∗1)→ R(A1),

are compact.

ObserveD(A1) = D(A1) ∩ R(A∗1) ⊂ D(A1) ∩ N(A∗0) ⊂ D(A1) ∩ D(A∗0). Utilizing theHelmholtz
type decompositions of Lemma 2.5 we immediately have:

Lemma 2.7: The embeddings D(A0) ↪→ H 0,D(A1) ↪→ H 1, and N0,1 ↪→ H 1 are compact, if and only
if the embedding D(A1) ∩ D(A∗0) ↪→ H 1 is compact. In this case, N0,1 has finite dimension.

Remark 2.8: The assumptions in Lemma 2.5 on A0 and A1 are equivalent to the assumption that

D(A0) ⊂ H 0
A0−−−−→ D(A1) ⊂ H 1

A1−−−−→ H 2

is a closed Hilbert complex, meaning that the ranges are closed. As a result of the previous lemmas,
the adjoint complex

H 0
A∗0←−−−− D(A∗0) ⊂ H 1

A∗1←−−−− D(A∗1) ⊂ H 2

is a closed Hilbert complex as well.

We can summarize.

Theorem 2.9: Let A0, A1 be as introduced before, i.e. having the complex property A1 A0 = 0, i.e.
R(A0) ⊂ N(A1). Moreover, let D(A1) ∩ D(A∗0) ↪→ H 1 be compact. Then the assertions of Lemma 2.5
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hold, N0,1 is finite dimensional and the corresponding inverse operators are continuous resp. compact.
Especially, all ranges are closed and the corresponding Friedrichs/Poincaré type estimates hold.

A special situation is the following.

Lemma 2.10: Let A0, A1 be as introduced before with R(A0) = N(A1) and R(A1) closed in H 2. Then
R(A∗0) and R(A∗1) are closed as well, and the simplified Helmholtz type decompositions

H 1 = R(A0)⊕H 1 R(A∗1), N0,1 = {0},
N(A1) = R(A0) = R(A0), N(A∗0) = R(A∗1) = R(A∗1),
D(A1) = R(A0)⊕H 1 D(A1), D(A∗0) = D(A∗0)⊕H 1 R(A∗1),

D(A1) ∩ D(A∗0) = D(A∗0)⊕H 1 D(A1)

are valid. Moreover, the respective inverse operators are continuous and the corresponding Friedrichs/
Poincaré type estimates hold.

Remark 2.11: Note that R(A∗1) = N(A∗0) and R(A∗0) closed are equivalent assumptions for
Lemma 2.10 to hold.

Lemma 2.12: LetA0, A1 be as introduced before with the sequence property (7), i.e. R(A0) ⊂ N(A1). If
the embedding D(A1) ∩ D(A∗0) ↪→ H 1 is compact and N0,1 = {0}, then the assumptions of Lemma 2.10
are satisfied.

Remark 2.13: The assumptions in Lemma 2.10 on A0 and A1 are equivalent to the assumption that

D(A0) ⊂ H 0
A0−−−−→ D(A1) ⊂ H 1

A1−−−−→ H 2

is a closed and exact Hilbert complex. By Lemma 2.10 the adjoint complex

H 0
A∗0←−−−− D(A∗0) ⊂ H 1

A∗1←−−−− D(A∗1) ⊂ H 2

is a closed and exact Hilbert complex as well.

Parts of Lemma 2.10 hold also in the Banach space setting. As a direct consequence of the closed
range theorem and the closed graph theorem the following abstract result holds.

Lemma 2.14: Let X0, X1, X2 be Banach spaces and suppose A0 ∈ BL(X0,X1), A1 ∈ BL(X1,X2) with
R(A0) = N(A1) and that R(A1) is closed in X2. Then R(A′0) is closed in X′0 and R(A′1) = N(A′0).
Moreover, (A′1)−1 ∈ BL(R(A′1),R(A1)

′).

Note that in the latter context we consider the operators

A1 : X1 −→ R(A1), A′1 : R(A1)
′ −→ R(A′1) (A′1)

−1 : R(A′1) −→ R(A1)
′,

with N(A′1) = R(A1)
◦ = {0}.

Remark 2.15: The conditions on A0 and A1 in Lemma 2.14 are identical to the assumption that

X0
A0−−−−→ X1

A1−−−−→ X2

is a closed and exact complex of Banach spaces. The consequences of Lemma 2.14 can be rephrased
as follows. The adjoint complex of Banach spaces

X′0
A′0←−−−− X′1

A′1←−−−− X′2
is closed and exact as well.
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Lemma 2.16: (A′1)−1 ∈ BL(R(A′1),R(A1)
′) is equivalent to

∃ cA′1 > 0 ∀ y′ ∈ R(A1)
′ |y′|R(A1)′ ≤ cA′1 |A

′
1 y
′|X′1 . (11)

For the best constant cA′1 , (11) is equivalent to the general inf–sup-condition

0 <
1
cA′1

= inf
0 ̸=y′∈R(A1)′

sup
0 ̸=x∈X1

⟨y′, A1 x⟩R(A1)′

|y′|R(A1)′ |x|X1

. (12)

In the special case that X2 = H 2 is a Hilbert space the closed subspace R(A1) is isometrically isomorphic
to R(A1)

′ and we obtain the following form of the inf–sup-condition:

0 <
1
cA′1

= inf
0 ̸=y∈R(A1)

sup
0 ̸=x∈X1

⟨y, A1 x⟩H 2

|y|H 2
|x|X1

. (13)

The results collected in this section are well known in functional analysis. We refer to [8] for a
presentation of some results of this section from a numerical analysis perspective.

2.2. Sobolev spaces

Nextwe introduce our notations for several classes of Sobolev spaces of real-valued functions and vec-
tor fields on a bounded domain" ⊂ R3. Letm ∈ N0. We denote by L2(") and H m(") the standard
Lebesgue and Sobolev spaces of real-valued functions and write H 0(") = L2("). For the Lebesgue
and Sobolev spaces of vector fields we use the corresponding notations in boldface letters L2(") and
Hm("). For the rotation and divergence we define the Sobolev spaces

H(curl,") :=
{
v ∈ L2(") : curl v ∈ L2(")

}
, H(div,") :=

{
v ∈ L2(") : div v ∈ L2(")

}

with the respective graph norms, where curl and div have to be understood in the distributional or
weak sense.We introduce spaces with homogeneous boundary conditions in the weak sense naturally
by

◦
H
m
(") :=

◦
C
∞

(")
Hm(")

and

◦
H
m
(") :=

◦
C
∞

(")
Hm(")

,
◦
H(curl,") :=

◦
C
∞

(")
H(curl,")

,
◦
H(div,") :=

◦
C
∞

(")
H(div,")

,

i.e. as closures of test functions or test vector fields under the respective standard and graph norms,
which generalizes homogeneous scalar and vectorial, tangential and normal boundary conditions,
respectively. We also introduce the well-known dual spaces

H−m(") :=
( ◦
H
m
(")

)′

with the standard dual or operator norm defined by

|u|H−m(")
:= sup

0 ̸=ϕ∈
◦
H
m

(")

⟨u,ϕ⟩H−m(")

|ϕ| ◦
H
m

(")

for u ∈ H−m("),
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where we recall the duality pairing ⟨ · , · ⟩H−m(")
in (H−m("),

◦
H
m
(")). Analogous notations for

norms and duality products are used for the dual spaces

H−m(") :=
( ◦
H
m
(")

)′
.

Moreover, we define with respective graph norms

H−m(curl,") :=
{
v ∈ H−m(") : curl v ∈ H−m(")

}
,

H−m(div,") :=
{
v ∈ H−m(") : div v ∈ H−m(")

}
.

A vanishing differential operator will be indicated by a zero after the operator in notations for spaces,
e.g.

H(curl 0,") = {v ∈ H(curl,") : curl v = 0},
◦
H(div 0,") =

{
v ∈

◦
H(div,") : div v = 0

}
,

H−m(curl 0,") =
{
v ∈ H−m(curl,") : curl v = 0

}
,

H−1(div 0,") =
{
v ∈ H−1(div,") : div v = 0

}
.

Let us also introduce

L2
0(") :=

{
u ∈ L2(") : u⊥L2(")

R
}

=
{
u ∈ L2(") :

∫

"
u = 0

}
,

where ⊥L2(")
denotes orthogonality in L2("). Finally, the restrictions of the differential operators

grad, curl, and div,

originally defined on H 1("), H(curl,"), and H(div,"), to the subspaces
◦
H
1
("),

◦
H(curl,"),

◦
H(div,") are denoted by

◦
grad,

◦
curl, and

◦
div.

2.3. General assumptions

We will impose the following regularity and topology assumptions on our domain".

Definition 2.17: Let" be an open subset of R3 with boundary $ := ∂ ". We will call"

(i) strong Lipschitz, if $ is locally a graph of a Lipschitz function ψ : U ⊂ R2→ R,
(ii) topologically trivial, if" is simply connected with connected boundary $.

General Assumption 2.18:
From now on and throughout this paper it is assumed that " ⊂ R3 is a bounded strong Lipschitz

domain.
If the domain" has to be topologically trivial, we will always indicate this in the respective result.

Note that several results will hold for arbitrary open subsets" ofR3. All results are valid for bounded
and topologically trivial strong Lipschitz domains " ⊂ R3. Nevertheless, most of the results will
remain true for bounded strong Lipschitz domains" ⊂ R3.
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2.4. Vector analysis

In this last part of the preliminary section, we summarize and prove several results related to scalar
and vector potentials of various smoothness, corresponding Friedrichs/Poincaré type estimates, and
relatedHelmholtz decompositions ofL2(") and otherHilbert and Sobolev spaces. This is a first appli-
cation of the functional analysis toolbox Section 2.1 for the operators

◦
grad,

◦
curl,

◦
div, and their adjoints

− div, curl, − grad. Although these are well-known facts, we recall and collect them here, as we will
use later similar techniques to obtain related results for the more complicated operators

◦
Gradgrad,

◦
CurlS,

◦
DivT, and their adjoints divDivS, symCurlT,− devGrad, introduced in Section 3. Let

A0 :=
◦

grad :
◦
H
1
(") ⊂ L2(") −→ L2("),

A1 :=
◦

curl :
◦
H(curl,") ⊂ L2(") −→ L2("),

A2 :=
◦
div :

◦
H(div,") ⊂ L2(") −→ L2(").

Then A0, A1, and A2 are unbounded, densely defined, and closed linear operators with adjoints

A∗0 =
◦

grad∗ = − div : H(div,") ⊂ L2(") −→ L2("),

A∗1 =
◦

curl∗ = curl : H(curl,") ⊂ L2(") −→ L2("),

A∗2 =
◦
div∗ = − grad : H 1(") ⊂ L2(") −→ L2(")

and the sequence or complex properties

R(A0) =
◦

grad
◦
H
1
(") ⊂

◦
H(curl 0,") = N(A1),

R(A∗1) = curlH(curl,") ⊂ H(div 0,") = N(A∗0),

R(A1) =
◦

curl
◦
H(curl,") ⊂

◦
H(div 0,") = N(A2),

R(A∗2) = gradH 1(") ⊂ H(curl 0,") = N(A∗1)

hold. Note N(A0) = {0} and N(A∗2) = R. Moreover, the embeddings

D(A1) ∩ D(A∗0) =
◦
H(curl,") ∩ H(div,") ↪→ L2("),

D(A2) ∩ D(A∗1) =
◦
H(div,") ∩ H(curl,") ↪→ L2(")

are compact. The latter compact embeddings are called Maxwell compactness properties or Weck’s
selection theorems. The first proof for strong Lipschitz domains (uniform cone like domains) avoid-
ing smoothness of $ was given by Weck in [9]. Generally, Weck’s selection theorems hold, e.g. for
weak Lipschitz domains, see [10], or even for more general domains with p-cusps or antennas, see
[11, 12]. See also [13] for a different proof in the case of a strong Lipschitz domain. Weck’s selection
theorem for mixed boundary conditions has been proved in [14] for strong Lipschitz domains and
recently in [15] for weak Lipschitz domains. Similar to Rellich’s selection theorem, i.e. the compact
embedding of

◦
H
1
(") resp. H 1(") into L2("), it is crucial that the domain" is bounded. Finally, the

kernels

N(A1) ∩ N(A∗0) =
◦
H(curl 0,") ∩ H(div 0,") =: H D ,

N(A2) ∩ N(A∗1) =
◦
H(div 0,") ∩ H(curl 0,") =: H N,
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are finite dimensional, as the unit balls are compact, i.e. the spaces of Dirichlet resp. Neumann fields
are finite dimensional. More precisely, the dimension of the Dirichlet resp. Neumann fields depends
on the topology or cohomology of", i.e. equals the second resp. first Betti number, see, e.g. [16, 17].
Especially we have

H D = {0}, if $ is connected, H N = {0}, if " is simply connected.

Remark 2.19: Our general assumption on" to be bounded and strong Lipschitz ensures thatWeck’s
selection theorems (and thus also Rellich’s) hold. The additional assumption that" is also topologi-
cally trivial excludes the existence of non-trivialDirichlet orNeumannfields, as" is simply connected
with a connected boundary $.

By the results of the functional analysis toolbox Section 2.1 we see that all ranges are closed with

R(A0) = R(A0), R(A1) = R(A1), R(A2) = R(A2),

R(A∗0) = R(A∗0), R(A∗1) = R(A∗1), R(A∗2) = R(A∗2),

i.e. the ranges

◦
grad

◦
H
1
("), gradH 1(") = grad

(
H 1(") ∩ L2

0(")
)
,

◦
curl

◦
H(curl,") =

◦
curl

( ◦
H(curl,") ∩ curlH(curl,")

)
,

curlH(curl,") = curl
(
H(curl,") ∩

◦
curl

◦
H(curl,")

)
,

◦
div

◦
H(div,") =

◦
div

( ◦
H(div,") ∩ gradH 1(")

)
, divH(div,") = div

(
H(div,") ∩

◦
grad

◦
H
1
(")

)

(14)

are closed, and the reduced operators are

A0 =
◦

grad :
◦
H
1
(") ⊂ L2(") −→

◦
grad

◦
H
1
("),

A1 =
◦

curl :
◦
H(curl,") ∩ curlH(curl,") ⊂ curlH(curl,") −→ curl

◦
H(curl,"),

A2 =
◦
div :

◦
H(div,") ∩ gradH 1(") ⊂ gradH 1(") −→ L2

0("),

A∗0 = − div : H(div,") ∩ grad
◦
H
1
(") ⊂ grad

◦
H
1
(") −→ L2("),

A∗1 = curl : H(curl,") ∩
◦

curl
◦
H(curl,") ⊂

◦
curl

◦
H(curl,") −→ curlH(curl,"),

A∗2 = − grad : H 1(") ∩ L2
0(") ⊂ L2

0(") −→ gradH 1(").

Moreover, we have the following well-known Helmholtz decompositions of L2-vector fields into
irrotational and solenoidal vector fields, corresponding Friedrichs/Poincaré type estimates and
continuous or compact inverse operators.

Lemma 2.20: The Helmholtz decompositions

L2(") =
◦
div

◦
H(div,")⊕L2(")

R,
◦
div

◦
H(div,") = L2

0("),

L2(") = divH(div,"),
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L2(") =
◦

grad
◦
H
1
(")⊕L2(") H(div 0,")

=
◦
H(curl 0,")⊕L2(") curlH(curl,")

=
◦

grad
◦
H
1
(")⊕L2(") H D ⊕L2(") curlH(curl,"),

L2(") = gradH 1(")⊕L2(")

◦
H(div 0,")

= H(curl 0,")⊕L2(")

◦
curl

◦
H(curl,")

= gradH 1(")⊕L2(") H N⊕L2(")

◦
curl

◦
H(curl,")

hold. Moreover, (14) is true for the respective ranges and the ‘better’ potentials in (14) are uniquely
determined and depend continuously in the right-hand sides. If $ is connected, it holdsH D = {0} and,
e.g.

L2(") =
◦
H(curl 0,")⊕ H(div 0,"),

◦
H(curl 0,") =

◦
grad

◦
H
1
("), H(div 0,") = curlH(curl,") = curl

(
H(curl,") ∩

◦
H(div 0,")

)
.

If" is simply connected, it holds H N = {0} and, e.g.

L2(") = H(curl 0,")⊕
◦
H(div 0,"),

H(curl 0,") = gradH 1("),
◦
H(div 0,") =

◦
curl

◦
H(curl,") =

◦
curl

( ◦
H(curl,") ∩ H(div 0,")

)
.

Lemma 2.21: The following Friedrichs/Poincaré type estimates hold. There exist positive constants cg,
cr, cd, such that

∀ u ∈
◦
H
1
(") |u|L2(")

≤ cg |grad u|L2("),

∀ v ∈ H(div,") ∩
◦

grad
◦
H
1
(") |v|L2(") ≤ cg |div v|L2(")

,

∀ v ∈
◦
H(curl,") ∩ curlH(curl,") |v|L2(") ≤ cr |curl v|L2("),

∀ v ∈ H(curl,") ∩
◦

curl
◦
H(curl,") |v|L2(") ≤ cr |curl v|L2("),

∀ v ∈
◦
H(div,") ∩ gradH 1(") |v|L2(") ≤ cd |div v|L2(")

,

∀ u ∈ H 1(") ∩ L2
0(") |u|L2(")

≤ cd |grad u|L2(").

Moreover, the reduced versions of the operators
◦

grad,
◦

curl,
◦
div, grad, curl, div

have continuous resp. compact inverse operators

◦
grad−1 :

◦
grad

◦
H
1
(") −→

◦
H
1
("),

◦
grad−1 :

◦
grad

◦
H
1
(") −→ L2("),

div−1 : L2(") −→ H(div,") ∩
◦

grad
◦
H
1
("), div−1 : L2(") −→

◦
grad

◦
H
1
(") ⊂ L2("),

◦
curl−1 :

◦
curl

◦
H(curl,") −→

◦
H(curl,") ∩ curlH(curl,"),

◦
curl−1 :

◦
curl

◦
H(curl,") −→ curlH(curl,") ⊂ L2("),
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curl−1 : curlH(curl,") −→ H(curl,") ∩
◦

curl
◦
H(curl,"), curl−1 : curlH(curl,") −→

◦
curl

◦
H(curl,") ⊂ L2("),

◦
div−1 : L2

0(") −→
◦
H(div,") ∩ grad H 1("),

◦
div−1 : L2

0(") −→ grad H 1(") ⊂ L2("),

grad−1 : gradH 1(") −→ H 1(") ∩ L2
0("), grad−1 : grad H 1(") −→ L2

0("),

with norms (1 + c2g)1/2, (1 + c2r )1/2, (1 + c2d)1/2 resp. cg, cr, cd. In other words, the operators

◦
grad :

◦
H
1
(") −→

◦
grad

◦
H
1
("), div : H(div,") ∩

◦
grad

◦
H
1
(") −→ L2("),

u 5−→ grad u v 5−→ div v
◦

curl :
◦
H(curl,") ∩ curlH(curl,") −→

◦
curl

◦
H(curl,"), curl : H(curl,") ∩

◦
curl

◦
H(curl,") −→ curlH(curl,"),

v 5−→ curl v v 5−→ curl v
◦
div :

◦
H(div,") ∩ grad H 1(") −→ L2

0("), grad : H 1(") ∩ L2
0(") −→ grad H 1("),

v 5−→ div v u 5−→ grad u

are topological isomorphisms. If" is topologically trivial, then

◦
grad :

◦
H
1
(") −→

◦
H(curl 0,"), div : H(div,") ∩

◦
H(curl 0,") −→ L2("),

u 5−→ grad u v 5−→ div v
◦

curl :
◦
H(curl,") ∩ H(div 0,") −→

◦
H(div 0,"), curl : H(curl,") ∩

◦
H(div 0,") −→ H(div 0,"),

v 5−→ curl v v 5−→ curl v
◦
div :

◦
H(div,") ∩ H(curl 0,") −→ L2

0("), grad : H 1(") ∩ L2
0(") −→ H(curl 0,"),

v 5−→ div v u 5−→ grad u (15)

are topological isomorphisms.

Remark 2.22: Recently it has been shown in [18–20] that for bounded and convex" ⊂ R3 it holds

cr ≤ cd ≤
diam"
π

,

i.e. the Maxwell constant cr can be estimated from above by the Poincaré constant cd.

Remark 2.23: Some of the previous results can be formulated equivalently in terms of complexes:
The sequence

{0} 0−−−−→
◦
H
1
(")

◦
grad
−−−−→

◦
H(curl,")

◦
curl−−−−→

◦
H(div,")

◦
div−−−−→ L2(")

πR−−−−→ R

and thus also its dual or adjoint sequence

{0} 0←−−−− L2(")
− div←−−−− H(div,")

curl←−−−− H(curl,")
− grad
←−−−− H 1(")

ιR←−−−− R

are closed Hilbert complexes. Here πR : L2(")→ R denotes the orthogonal projector onto R with
adjoint π∗R = ιR : R→ L2("), the canonical embedding. If " is additionally topologically trivial,
then the complexes are also exact. These complexes are widely known as de Rham complexes.

Let " be additionally topologically trivial. For irrotational vector fields in
◦
H
m
(") resp.

Hm(") we have smooth potentials, which follows immediately by
◦
H(curl 0,") =

◦
grad

◦
H
1
(") resp.

H(curl 0,") = gradH 1(") from the previous lemma.
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Lemma 2.24: Let" be additionally topologically trivial and m ∈ N0. Then

◦
H
m
(") ∩

◦
H(curl 0,") =

◦
grad

◦
H
m+1

("), Hm(") ∩ H(curl 0,") = gradH m+1(")

hold with linear and continuous potential operators P ◦
grad

, Pgrad.

So, for each v ∈
◦
H
m
(") ∩

◦
H(curl 0,"), we have v =

◦
grad u for the potential u = P ◦

grad
v ∈

◦
H
m+1

(") and, analogously, for each v ∈ Hm(") ∩ H(curl,"), it holds v = grad u for the potential
u = Pgrad v ∈ H m+1("). Note that the potential in H m+1(") is uniquely determined only up to a
constant.

For solenoidal vector fields in
◦
H
m
(") resp. Hm(") we have smooth potentials, too.

Lemma 2.25: Let" be additionally topologically trivial and m ∈ N0. Then

◦
H
m
(") ∩

◦
H(div 0,") =

◦
curl

◦
H
m+1

("), Hm(") ∩ H(div 0,") = curlHm+1(")

hold with linear and continuous potential operators P ◦
curl

, Pcurl.

For a proof see, e.g. [21, Corollary 4.7] or with slight modifications the generalized lifting lemma
[22, Corollary 5.4] for the case d= 3, k=m, l= 2.Moreover, the potential in

◦
H
m+1

(") resp. H m+1(")

is no longer uniquely determined.
For the divergence operator we have the following result.

Lemma 2.26: Let m ∈ N0. Then
◦
H
m
(") ∩ L2

0(") =
◦
div

◦
H
m+1

("), H m(") = divHm+1(")

hold with linear and continuous potential operators P ◦
div

, Pdiv.

Again, the potential in
◦
H
m+1

(") resp. Hm+1(") is no longer uniquely determined. Also
Lemma 2.24 resp. Lemma 2.26 has been proved in [21, Corollary 4.7(b)] and in [22, Corollary 5.4]
for the case d= 3, k=m, l= 1 resp. d= 3, k=m, l= 3.

Remark 2.27: Lemma 2.26, which shows a classical result on the solvability and on the properties
of the solution operator of the divergence equation, is an important tool in fluid dynamics, i.e. in
the theory of Stokes or Navier–Stokes equations. The potential operator is often called Bogovskii
operator, see [23, 24] for the original works and also [[25, p.179, Theorem III.3.3], [26, Lemma 2.1.1]].
Moreover, there are also versions of Lemmas 2.24 and 2.25, if" is not topologically trivial, which we
will not need in the paper at hand.

Remark 2.28: A closer inspection of Lemmas 2.24 and 2.25 and their proofs shows that these results
extend to general topologies as well. More precisely we have:

(i) It holds

◦
H
m
(") ∩

◦
grad

◦
H
1
(") =

◦
H
m
(") ∩

◦
H(curl 0,") ∩H ⊥

D =
◦

grad
◦
H
m+1

("),

Hm(") ∩ gradH 1(") = Hm(") ∩ H(curl 0,") ∩H ⊥
N = gradH m+1(")

with linear and continuous potential operators P ◦
grad

, Pgrad.
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(ii) It holds
◦
H
m
(") ∩

◦
curl

◦
H(curl,") =

◦
H
m
(") ∩

◦
H(div 0,") ∩H ⊥

N =
◦

curl
◦
H
m+1

("),

Hm(") ∩ curlH(curl,") = Hm(") ∩ H(div 0,") ∩H ⊥
D = curlHm+1(")

with linear and continuous potential operators P ◦
curl

, Pcurl.

Using the latter three results and Lemma 2.14, irrotational and solenoidal vector fields in H−m(")

can be characterized.

Corollary 2.29: Let" be additionally topologically trivial and m ∈ N. Then

H−m(curl 0,") = gradH−m+1(") = grad
( ◦

H m−1(") ∩ L2
0(")

)′

is closed in H−m(") with continuous inverse, i.e. grad−1 ∈ BL(H−m(curl 0,"), (
◦
H m−1(") ∩

L2
0("))′). Especially for m = 1,

H−1(curl 0,") = gradL2(") = gradL2
0(")

is closed in H−1(") with continuous inverse grad−1 ∈ BL(H−1(curl 0,"),L2
0(")) and uniquely deter-

mined potential in L2
0("). Moreover,

∃ cg,−1 > 0 ∀ u ∈ L2
0(") |u|L2(")

≤ cg,−1|grad u|H−1(") ≤
√
3 cg,−1|u|L2(")

and the inf–sup-condition

0 <
1

cg,−1
= inf

0 ̸=u∈L20(")

|grad u|H−1(")

|u|L2(")

= inf
0 ̸=u∈L20(")

sup
0 ̸=v∈

◦
H
1
(")

⟨u, div v⟩L2(")

|u|L2(")
|Grad v|L2(")

holds.

Proof: Let X0 :=
◦
H
m+1

("), X1 :=
◦
H
m
("), X2 :=

◦
H m−1(") and

A0 :=
◦

curl :
◦
H
m+1

(")→
◦
H
m
("), A1 := −

◦
div :

◦
H
m
(")→

◦
H m−1(").

These linear operators are bounded, R(A0) =
◦

curl
◦
H
m+1

(") =
◦
H
m
(") ∩

◦
H(div 0,") = N(A1) by

Lemma 2.25, and R(A1) =
◦
div

◦
H
m
(") =

◦
H m−1(") ∩ L2

0(") by Lemma 2.26. Therefore, R(A1) is
closed. For the adjoint operators we get

A′0 = curl =
◦

curl′ : H−m(")→ H−m−1("), A′1 = grad = −
◦
div′ : H−m+1(")→ H−m(")

and obtain from Lemma 2.14 that

H−m(curl 0,") = N(A′0) = R(A′1) = gradH−m+1(")

is closed and

grad−1 = (A′1)
−1 ∈ BL

(
R(A′1),R(A1)

′) = BL
(

H−m(curl 0,"), (
◦
H m−1(") ∩ L2

0("))′
)
,

which completes the proof for generalm. Ifm= 1,we get the assertions about the Friedrichs/Poincaré/
Nec̆as inequality and inf–sup-condition by Lemma 2.16, i.e. (11) and (13). !
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Corollary 2.30: Let" be additionally topologically trivial and m ∈ N. Then

H−m(div 0,") = curlH−m+1(") = curl
(
◦
H
m−1

(") ∩
◦
H(div 0,")

)′

is closed in H−m(") with continuous inverse, i.e. curl−1 ∈ BL(H−m(div 0,"), (
◦
H
m−1

(") ∩
◦
H(div 0,

"))′). Especially for m = 1,

H−1(div 0,") = curlL2(") = curl
◦
H(div 0,")

is closed in H−1(") with continuous inverse curl−1 ∈ BL(H−1(div 0,"),
◦
H(div 0,")) and uniquely

determined potential in
◦
H(div 0,"). Moreover,

∃ cr,−1 > 0 ∀ v ∈
◦
H(div 0,") |v|L2(") ≤ cr,−1|curl v|H−1(") ≤

√
2 cr,−1|v|L2(")

and the inf–sup-condition

0 <
1

cr,−1
= inf

0 ̸=v∈
◦
H(div 0,")

|curl v|H−1(")

|v|L2(")

= inf
0 ̸=v∈

◦
H(div 0,")

sup
0 ̸=w∈

◦
H
1
(")

⟨v, curlw⟩L2(")

|v|L2(")|Gradw|L2(")

holds.

Proof: Let X0 :=
◦
H
m+1

("), X1 :=
◦
H
m
("), X2 :=

◦
H
m−1

(") and

A0 :=
◦

grad :
◦
H
m+1

(")→
◦
H
m
("), A1 :=

◦
curl :

◦
H
m
(")→

◦
H
m−1

(").

These linear operators are bounded, R(A0) =
◦

grad
◦
H
m+1

(") =
◦
H
m
(") ∩

◦
H(curl 0,") = N(A1) by

Lemma 2.24, and R(A1) = curl
◦
H
m
(") =

◦
H
m−1

(") ∩
◦
H(div 0,") by Lemma 2.25. Therefore, R(A1)

is closed. For the adjoint operators we get

A′0 = − div =
◦

grad′ : H−m(")→ H−m−1("), A′1 = curl =
◦

curl′ : H−m+1(")→ H−m(")

and obtain from Lemma 2.14 that

H−m(div 0,") = N(A′0) = R(A′1) = curlH−m+1(")

is closed and

curl−1 = (A′1)
−1 ∈ BL

(
R(A′1),R(A1)

′) = BL
(

H−m(div 0,"), (
◦
H
m−1

(") ∩
◦
H(div 0,"))′

)
,

which completes the proof for generalm. Ifm= 1,we get the assertions about the Friedrichs/Poincaré/
Nec̆as inequality and inf–sup-condition by Lemma 2.16, i.e. (11) and (13). !

Let us present the corresponding result for the divergence as well.
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Corollary 2.31: Let" be additionally topologically trivial and m ∈ N. Then

H−m(") = divH−m+1(") = div
(
◦
H
m−1

(") ∩
◦
H(curl 0,")

)′

(is closed in H−m("))with continuous inverse, i.e. div−1 ∈ BL(H−m("), (
◦
H
m−1

(") ∩
◦
H(curl 0,"))′).

Especially for m = 1,

H−1(") = div L2(") = div
◦
H(curl 0,")

(is closed in H−1(")) with continuous inverse div−1 ∈ BL(H−1("),
◦
H(curl 0,")) and uniquely deter-

mined potential in
◦
H(curl 0,"). Moreover,

∃ cd,−1 > 0 ∀ v ∈
◦
H(curl 0,") |v|L2(") ≤ cd,−1|div v|H−1(")

≤ cd,−1 |v|L2(")

and the inf–sup-condition

0 <
1

cd,−1
= inf

0 ̸=v∈
◦
H(curl 0,")

|div v|H−1(")

|v|L2(")

= inf
0 ̸=v∈

◦
H(div 0,")

sup
0 ̸=u∈

◦
H
1
(")

⟨v, grad u⟩L2(")

|v|L2(")|grad u|L2(")

holds.

Proof: LetX1 :=
◦
H
m
("),X2 :=

◦
H
m−1

(") and A1 := −
◦

grad :
◦
H
m
(")→

◦
H
m−1

("). A1 is linear and
bounded with R(A1) = grad

◦
H
m
(") =

◦
H
m−1

(") ∩
◦
H(curl 0,") by Lemma 2.24. Therefore, R(A1)

is closed. The adjoint is A′1 = div = −
◦

grad′ : H−m+1(")→ H−m(") with closed range R(A′1) =
divH−m+1(") by the closed range theorem. Moreover, N(A1) = {0}. Hence A′1 is surjective as A1
is injective, i.e.

H−m(") = N(A1)
◦ = R(A′1) = divH−m+1(").

As A1 is also surjective onto its range, A′1 = div : H−m+1(")→ R(A′1) is bijective. By the bounded
inverse theorem we get

div−1 = (A′1)
−1 ∈ BL

(
R(A′1),R(A1)

′) = BL
(

H−m("), (
◦
H
m−1

(") ∩
◦
H(curl 0,"))′

)
,

which completes the proof for generalm. Ifm= 1,we get the assertions about the Friedrichs/Poincaré/
Nec̆as inequality and inf–sup-condition by Lemma 2.16, i.e. (11) and (13). !

Remark 2.32: The results of the latter three lemmas and corollaries can be formulated equivalently
in terms of complexes: Let" be additionally topologically trivial. Then the sequence

◦
H
m+1

(")

◦
grad
−−−−→

◦
H
m
(")

◦
curl−−−−→

◦
H
m−1

(")

◦
div−−−−→

◦
H
m−2

(")

and thus also its dual or adjoint sequence

H−m−1(")
− div←−−−− H−m(")

curl←−−−− H−m+1(")
− grad
←−−−− H−m+2(")

are closed and exact Banach complexes.
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3. The Gradgrad- and divDiv-complexes

So far we have used notations of the form

Xord(") and Y(L,") (16)

for function spaces, where X is one of the letters C , L, H for spaces of real-valued functions, and one
of the corresponding boldface letters C, L, H for spaces of vector fields, ord describes the order of
differentiability, Y stands for the symbol H and L is one of the differential operators div and curl.
The modifier ◦ on top of X and Y were used for denoting the corresponding spaces of functions with
vanishing boundary trace leading to

◦
X
ord

(") and
◦
Y(L,").

Another modifier 0 after L in Y(L,") was used to denote the subspace of functions from Y(L,") in
the kernel of L leading to

Y(L0,").

We extend now this notational system by enlarging the possible symbols for X by the calligraphic
letters C, L, H for denoting the corresponding spaces of tensor fields and the possible symbols for
Y by H and H for denoting the corresponding spaces of scalar and tensor fields, and enlarging the
possible differential operators L by Gradgrad for scalar fields, Grad, symGrad, devGrad for vector
fields, and Curl, symCurl, Div, and divDiv for tensor fields. In addition to the two modifiers ◦ and
0 described above, which also make sense for this extended notation system in an obvious way, we
introduce twomoremodifiers S and T as subscripts ofX andY for denoting the corresponding spaces
of symmetric tensor fields and tensor fields with vanishing matrix trace leading to

Xord
S ("), YS(") and Xord

T ("), YT(L,"),

respectively. The meaning of the use of any combination of these modifiers ◦, S, T for X and Y and 0
after L for denoting function spaces is meant in a cumulative sense. Finally, the symbol L modified
by any combination of ◦, S, T denotes the restriction of a differential operator L to the correspond-
ing subspace of Y(L,") described by the same combination of these modifiers. In other words, the
restricted differential operator inherits the modifiers from the function space.

To make this notational system for function spaces and operators more transparent, we present
some examples: the following spaces of tensor fields:

◦
C
∞

("), L2("), Hm("),
◦

H
m
("), H−m("), H(Curl,"), H(Curl 0,"),

◦
H(Curl,"),

◦
H(Div,")

are counterparts of the corresponding spaces of vector fields
◦
C
∞

("), L2("), Hm("),
◦
H
m
("),

H−m("), H(curl,"), H(curl 0,"),
◦
H(curl,"),

◦
H(div,"). Additionally, we will need spaces allowing

for a deviatoric gradient, a symmetric rotation, and a double divergence, i.e.

H(devGrad,") :=
{
v ∈ L2(") : devGrad v ∈ L2(")

}
, H(devGrad 0,") :=

{
v ∈ L2(") : devGrad v = 0

}
,

H(symCurl,") :=
{
E ∈ L2(") : symCurlE ∈ L2(")

}
, H(symCurl 0,") :=

{
E ∈ L2(") : symCurlE = 0

}
,

H(divDiv,") :=
{
M ∈ L2(") : divDivM ∈ L2(")

}
, H(divDiv 0,") :=

{
M ∈ L2(") : divDivM = 0

}
.

We will use the following spaces of symmetric tensor fields:

L2
S(") := {M ∈ L2(") : M⊤ = M}, HS(divDiv,") = H(divDiv,") ∩L2

S(")
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and
◦

H
1
S(") :=

◦
C
∞

(") ∩L2
S(")

H1(")

,
◦

HS(Curl,") :=
◦
C
∞

(") ∩L2
S(")

H(Curl,")

,

as well as spaces of tensor fields with vanishing matrix trace

L2
T(") := {E ∈ L2(") : trE = 0}, H1

T(") = H1(") ∩L2
T(")

and
◦

H
1
T(") :=

◦
C
∞

(") ∩L2
T(")

H1(")

,
◦

HT(Div,") :=
◦
C
∞

(") ∩L2
T(")

H(Div,")

.

Of particular interest are the differential operators
◦

Gradgrad,
◦

CurlS,
◦

DivT, divDivS, symCurlT

which are the restrictions of the differential operators Gradgrad, Curl, Div, divDiv, symCurl to the
spaces

◦
H (Gradgrad,"),

◦
HS(Curl,"),

◦
HT(Div,"), HS(divDiv,"), HT(symCurl,"), respectively.

We note that
◦

H
1
S(") = sym

◦
H

1
(") =

◦
H

1
(") ∩L2

S("),
◦

H
1
T(") = dev

◦
H

1
(") =

◦
H

1
(") ∩L2

T("),

but generally only
◦

HS(Curl,") ⊂
◦

H(Curl,") ∩L2
S("),

◦
HT(Div,") ⊂

◦
H(Div,") ∩L2

T("), . . . .

Let us also mention that trivially

devGradH(devGrad,") ⊂ L2
T("), symCurlH(symCurl,") ⊂ L2

S(")

hold. This can be seen as follows. Pick v ∈ H(devGrad,") with E := devGrad v and N ∈
H(symCurl,") withM := symCurlN. Then for all ϕ ∈

◦
C
∞

(") and " ∈
◦
C
∞

(")

⟨trE,ϕ⟩L2(")
= ⟨E,ϕ I⟩L2(") = −⟨v, Div dev ϕ I⟩L2(") = 0,

⟨skwM,"⟩L2(") = ⟨M, skw"⟩L2(") = ⟨N, Curl sym skw"⟩L2(") = 0.

Before we proceed we need a few technical lemmas.

Lemma 3.1: For any distributional vector field v it holds for i, j, k = 1, . . . , 3

∂k(Grad v)ij =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂k(devGrad v)ij if i ̸= j,
∂ j(devGrad v)ik if i ̸= k,
3
2
∂ i(devGrad v)ii +

1
2
∑

l ̸=i
∂ l(devGrad v)li if i = j = k.

Proof: Let φ ∈
◦
C
∞

(R3) be a vector field. We want to express the second derivatives of φ by the
derivatives of the deviatoric part of the Jacobian, i.e. of devGradφ. Recall that we have dev E =
E− 1

3 (trE) I for a tensor E. Hence devGradφ coincides with Gradφ outside the diagonal entries,
i.e. we observe (Gradφ)ij = (devGradφ)ij for i ̸= j. Hence, looking at second derivatives, we see
immediately

∂k ∂ j φi = ∂k(Gradφ)ij = ∂k(devGradφ)ij for i ̸= j,
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∂k ∂ j φi = ∂ j ∂k φi = ∂ j(Gradφ)ik = ∂ j(devGradφ)ik for i ̸= k.

Thus it remains to represent ∂2i φi by the derivatives of devGradφ. By

∂2i φi = ∂ i(Gradφ)ii = ∂ i(devGradφ)ii + 1
3 ∂ i div φ

we get

2
3
∂2i φi = ∂ i(devGradφ)ii +

1
3
∑

l ̸=i
∂ i ∂ l φl = ∂ i(devGradφ)ii +

1
3
∑

l ̸=i
∂ l(devGradφ)li,

yielding the stated result for test vector fields. Testing extends the formulas to distributions, which
finishes the proof. !

Wenote that the latter trick is similar to thewell-known fact that second derivatives of a vector field
can always be written as derivatives of the symmetric gradient of the vector field, leading by Nec̆as
estimate to Korn’s second and first inequalities. We will now do the same for the operator devGrad.

Lemma 3.2: It holds:

(i) There exists c > 0, such that for all vector fields v ∈ H1(")

|Grad v|L2(") ≤ c
(
|v|L2(") + |devGrad v|L2(")

)
.

(ii) H(devGrad,") = H1(").
(iii) For devGrad : H(devGrad,") ⊂ L2(") −→ L2

T(") it holds

D(devGrad) = H(devGrad,") = H1("),

and the kernel of devGrad equals the space of (global) shape functions of the lowest order
Raviart–Thomas elements, i.e.

N(devGrad) = H(devGrad 0,") = RT0 := {p : p(x) = a x + b, a ∈ R, b ∈ R3},

which dimension is dimRT0 = 4.
(iv) There exists c > 0, such that for all vector fields v ∈ H1(") ∩ RT

⊥L2(")

0

|v|H1(") ≤ c |devGrad v|L2(").

Proof: Let v ∈ H1("). By the latter lemma and Nec̆as estimate, i.e.

∃ c > 0 ∀ u ∈ L2(") c |u|L2(")
≤ |grad u|H−1(") + |u|H−1(")

≤ (
√
3 + 1)|u|L2(")

,

we get

|Grad v|L2(") ≤ c

( 3∑

k=1
|∂k Grad v|H−1(") + |Grad v|H−1(")

)

≤ c

( 3∑

k=1
|∂k devGrad v|H−1(") + |Grad v|H−1(")

)
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≤ c
(
|devGrad v|L2(") + |v|L2(")

)
,

which shows (i). As " has the segment property and by standard mollification we obtain that
restrictions of

◦
C
∞

(R3)-vector fields are dense in H(devGrad,"). Especially H1(") is dense in
H(devGrad,"). Let v ∈ H(devGrad,") and (vn) ⊂ H1(") with vn→ v in H(devGrad,"). By (i)
(vn) is a Cauchy sequence in H1(") converging to v in H1("), which proves v ∈ H1(") and
hence (ii). For p ∈ RT0 it holds devGrad p = a dev I = 0. Let devGrad v = 0 for some vector field
v ∈ H(devGrad,") = H1("). By Lemma 3.1 we get ∂k Grad v = 0 for all k = 1, . . . , 3, and there-
fore v(x) = Ax + b for some matrix A ∈ R3×3 and vector b ∈ R3. Then 0 = devGrad v = devA,
if and only if A = 1

3 (trA) I, which shows (iii). If (iv) was wrong, there exists a sequence (vn) ⊂
H1(") ∩ RT

⊥L2(")

0 with |vn|H1(") = 1 and devGrad vn→ 0. As (vn) is bounded in H1("), by Rel-
lich’s selection theorem there exists a subsequence, again denoted by (vn), and some v ∈ L2(") with
vn→ v in L2("). By (i), (vn) is a Cauchy sequence in H1("). Hence vn→ v in H1(") and v ∈
H1(") ∩ RT

⊥L2(")

0 . As 0← devGrad vn→ devGrad v, we have by (iii) v ∈ RT0 ∩ RT
⊥L2(")

0 = {0},
a contradiction to 1 = |vn|H1(")→ 0. The proof is complete. !

We recall the following well-known result for the spaces

H (Gradgrad,") :={u ∈ L2(") : Gradgrad u ∈ L2(")},
◦
H (Gradgrad,") :=

◦
C
∞

(")
H (Gradgrad,")

.

Lemma 3.3: It holds
◦
H (Gradgrad,") =

◦
H
2
(") and

◦
H (Gradgrad 0,") = {0}, and there exists c > 0

such that for all u ∈
◦
H
2
(")

|u|H 2(")
≤ c |Gradgrad u|L2(") = c |!u|L2(")

, c ≤
√
1 + c2g(1 + c2g) ≤ 1 + c2g.

By straightforward calculations and standard arguments for distributions, see the Appendix, we
get the following.

Lemma 3.4: It holds:

(i) skwGradgrad H 2(") = 0, i.e. Hessians are symmetric.
(ii) tr CurlHS(Curl,") = 0, i.e. rotations of symmetric tensors are trace free.

These formulas extend to distributions as well.

With Lemmas 3.3 and 3.4 let us now consider the linear operators

A0 :=
◦

Gradgrad :
◦
H (Gradgrad,") =

◦
H
2
(") ⊂ L2(") −→ L2

S("), u 5→ Gradgrad u, (17)

A1 :=
◦

CurlS :
◦

HS(Curl,") ⊂ L2
S(") −→ L2

T("), M 5→ CurlM, (18)

A2 :=
◦

DivT :
◦

HT(Div,") ⊂ L2
T(") −→ L2("), E 5→ Div E. (19)

These are well and densely defined and closed. Closedness is clear. For densely definedness we look,
e.g. at

◦
CurlS. ForM ∈ L2

S(") pick ("n) ⊂
◦
C
∞

(") with "n→ M in L2("). Then

|M− sym"n|2L2(")
+ |skw"n|2L2(")

= |M−"n|2L2(")
→ 0,
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showing (sym"n) ⊂
◦
C
∞

(") ∩L2
S(") ⊂

◦
HS(Curl,") and sym"n→ M in L2

S("). By Lemma 3.3
the kernels are

N(
◦

Gradgrad) =
◦
H (Gradgrad 0,") = {0}, N(

◦
CurlS) =

◦
HS(Curl 0,"),

N(
◦

DivT) =
◦

HT(Div 0,").

Lemma 3.5: The adjoints of (17), (18), (19) are

A∗0 = (
◦

Gradgrad)∗ = divDivS : HS(divDiv,") ⊂ L2
S(") −→ L2("), M 5→ divDivM,

A∗1 = (
◦

CurlS)∗ = symCurlT : HT(symCurl,") ⊂ L2
T(") −→ L2

S("), E 5→ symCurlE,

A∗2 = (
◦

DivT)∗ = − devGrad : H(devGrad,") = H1(") ⊂ L2(") −→ L2
T("), v 5→ − devGrad v

with kernels

N(divDivS) = HS(divDiv 0,"), N(symCurlT) = HT(symCurl 0,"), N(devGrad) = RT0.

Proof: WehaveM ∈ D((
◦

Gradgrad)∗) ⊂ L2
S(") and (

◦
Gradgrad)∗M = u ∈ L2("), if and only ifM ∈

L2
S(") and there exists u ∈ L2("), such that

∀ ϕ ∈ D(
◦

Gradgrad) =
◦
H
2
(")⟨Gradgradϕ,M⟩L2

S(") = ⟨ϕ, u⟩L2(")

⇔∀ ϕ ∈
◦
C
∞

(")⟨Gradgradϕ,M⟩L2(") = ⟨ϕ, u⟩L2(")
,

if and only if M ∈H(divDiv,") ∩L2
S(") = HS(divDiv,") and divDivM = u. Moreover, we

observe thatE ∈ D((
◦

CurlS)∗) ⊂ L2
T(") and (

◦
CurlS)∗E = M ∈ L2

S("), if and only ifE ∈ L2
T(") and

there existsM ∈ L2
S("), such that (note sym2 = sym)

∀" ∈ D(
◦

CurlS) =
◦

HS(Curl,") ⟨Curl",E⟩L2
T(") = ⟨",M⟩L2

S(")

⇔ ∀" ∈
◦
C
∞

(") ∩L2
S(") ⟨Curl sym",E⟩L2(") = ⟨sym",M⟩L2(")

⇔ ∀" ∈
◦
C
∞

(") ⟨Curl sym",E⟩L2(") = ⟨sym",M⟩L2(")

⇔ ∀" ∈
◦
C
∞

(") ⟨Curl sym",E⟩L2(") = ⟨",M⟩L2("),

if and only if E ∈H(symCurl,") ∩L2
T(") = HT(symCurl,") and symCurlE = M. Similarly, we

see that v ∈ D((
◦

DivT)∗) ⊂ L2(") and (
◦

DivT)∗v = E ∈ L2
T("), if and only if v ∈ L2(") and there

exists E ∈ L2
T("), such that (note dev2 = dev)

∀" ∈ D(
◦

DivS) =
◦

HT(Div,") ⟨Div", v⟩L2(") = ⟨",E⟩L2
T(")

⇔ ∀" ∈
◦
C
∞

(") ∩L2
T(") ⟨Div dev", v⟩L2(") = ⟨dev",E⟩L2(")

⇔ ∀" ∈
◦
C
∞

(") ⟨Div dev", v⟩L2(") = ⟨dev",E⟩L2(")

⇔ ∀" ∈
◦
C
∞

(") ⟨Div dev", v⟩L2(") = ⟨",E⟩L2("),

if and only if v ∈ H(devGrad,") = H1(") and− devGrad v = E using Lemma 3.2. Lemma 3.2 also
shows N(devGrad) = H(devGrad 0,") = RT0, completing the proof. !
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Remark 3.6: Note that, e.g. the second-order operator
◦

Gradgrad is ‘one’ operator and not a compo-
sition of the two first order operators

◦
Grad and

◦
grad. Similarly the operator divDivS, symCurlT, resp.

devGrad has to be understood as ‘one’ operator.

We observe the following complex properties for A0, A1, A2, and A∗0, A∗1, A∗2.

Lemma 3.7: It holds
◦

CurlS
◦

Gradgrad = 0,
◦

DivT
◦

CurlS = 0, divDivSsymCurlT = 0, symCurlT devGrad = 0,

i.e.

R(
◦

Gradgrad) ⊂ N(
◦

CurlS), R(symCurlT) ⊂ N(divDivS),

R(
◦

CurlS) ⊂ N(
◦

DivT), R(devGrad) ⊂ N(symCurlT).

Proof: For E = CurlM ∈ R(
◦

CurlS) with M ∈ D(
◦

CurlS) there exists a sequence (Mn) ⊂
◦
C
∞

(") ∩
L2

S(") such thatMn→ M in the graph norm of D(
◦

CurlS). As

Curl
( ◦
C
∞

(") ∩L2
S(")

)
⊂
◦
C
∞

(") ∩L2
T(") ∩H(Div 0,") ⊂ N(

◦
DivT)

we have E ∈ N(
◦

DivT) since E← CurlMn ∈ N(
◦

DivT). Hence R(
◦

CurlS) ⊂ N(
◦

DivT), i.e.
◦

DivT
◦

CurlS
= 0 and for the adjoints we have symCurlT devGrad = 0. Analogously, we see the other two
inclusions. !

Remark 3.8: The latter considerations show that the sequence

{0} 0−−−−→
◦
H
2
(")

◦
Gradgrad
−−−−−→

◦
HS(Curl,")

◦
CurlS−−−−→

◦
HT(Div,")

◦
DivT−−−−→ L2(")

πRT0−−−−→ RT0

and thus also its dual or adjoint sequence

{0} 0←−−−−− L2(")
divDivS←−−−−− HS(divDiv,")

symCurlT←−−−−− HT(symCurl,")
− devGrad←−−−−−− H1(")

ιRT0←−−−−− RT0

are Hilbert complexes. Here πRT0 : L2(")→ RT0 denotes the orthogonal projector onto RT0 with
adjoint π∗RT0

= ιRT0 : RT0→ L2("), the canonical embedding. The first complex might be called
◦

Gradgrad-complex and the second one divDiv-complex.

3.1. Topologically trivial domains

We start with a useful lemma, which will be shown in the Appendix, collecting a few differential
identities, which will be utilized in the proof of the subsequent main theorem.

Lemma 3.9: Let u, v, and E be distributional scalar, vector, and tensor fields. Then

(i) 2 skwGrad v = spn curl v,
(ii) Curl spn v = (div v) I− (Grad v)⊤ and, as a consequence, tr Curl spn v = 2 div v,
(iii) Div(u I) = grad u and Curl(u I) = − spn grad u,
(iv) 2 grad div v = 3Div(dev (Grad v)⊤),
(v) skwCurlE = spnw and Div(symCurlE) = curlw with 2w = Div E⊤ − grad(trE),
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(vi) Div(spn v) = − curl v.

Observe that we already know that N(
◦

Gradgrad) = {0} and N(devGrad) = RT0. If the topology
of the underlying domain is trivial, we will now characterize the remaining kernels and the ranges of
the linear operators

◦
Gradgrad,

◦
CurlS,

◦
DivT, and devGrad, symCurlT, divDivS.

Theorem 3.10: Let" be additionally topologically trivial. Then

(i)
◦

HS(Curl 0,") = N(
◦

CurlS) = R(
◦

Gradgrad) = Gradgrad
◦
H
2
("),

(ii)
◦

HT(Div 0,") = N(
◦

DivT) = R(
◦

CurlS) = Curl
◦

H
1
S("),

(iii) RT
⊥L2(")

0 = N(πRT0) = R(
◦

DivT) = Div
◦

H
1
T("),

(iv) HT(symCurl 0,") = N(symCurlT) = R(devGrad) = devGradH1("),

(v) HS(divDiv 0,") = N(divDivS) = R(symCurlT) = symCurlH1
T("),

(vi) L2(") = N(0) = R(divDivS) = divDivH2
S(").

Especially, all latter ranges are closed and admit regular H 1-potentials. The corresponding linear and
continuous (regular) potential operators are given by

P ◦
Gradgrad

= P ◦
grad

P ◦
Grad

:
◦

HS(Curl 0,") −→
◦
H
2
("),

P ◦
CurlS

= sym
(
1− 2Grad P ◦

curl
spn−1 skw

)
P ◦
Curl

:
◦

HT(Div 0,") −→
◦

H
1
S("),

P ◦
DivT

= dev
(
1 + 1

2 Grad
⊤ P ◦

div
tr
)
P ◦
Div : RT

⊥L2(")

0 −→
◦

H
1
T("),

PdevGrad = Grad−1
(
1 + 1

2 (grad
−1 Div( · )⊤) I

)
: HT(symCurl 0,") −→ H1("),

PsymCurlT = dev PCurl
(
1 + spn curl−1 Div

)
: HS(divDiv 0,") −→H1

T("),

PdivDivS = symPDiv Pdiv : L2(") −→H2
S(").

Remark 3.11: It holds

H1
S(") = symH1("), H1

T(") = devH1("),
◦

H
1
S(") = sym

◦
H

1
("),

◦
H

1
T(") = dev

◦
H

1
(")

as, e.g. devH1(") ⊂H1
T(") = devH1

T(") ⊂ devH1("). The same holds for the corresponding
spaces of skew-symmetric tensor fields as well. Moreover:

(i) Theorem 3.10 holds also for the other set of canonical boundary conditions, which follows
directly from the proof.

(ii) A closer inspection shows that for (iii) and (vi), i.e. P ◦
DivT

and PdivDivS , only the potential oper-
ators corresponding to the divergence, i.e. P ◦

div
, P ◦

Div, PDiv, Pdiv, are involved. As Lemma 2.26
does not need any topological assumptions, (iii) and (vi), together with the representations of
the potential operators, hold for general topologies as well.

Proof of Theorem 3.10: Note that by Lemmas 3.2 (iii), 3.3, and 3.7 all inclusions of the typeR(. . .) ⊂
N(. . .) easily follow. Therefore it suffices to show that N(. . .) is included in the corresponding space
appearing at the end of each line in (i)–(vi), which itself is obviously included in R(. . .). Throughout
the proof, we will frequently use the formulas of Lemma 3.9.
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ad (i): Let M ∈
◦

HS(Curl 0,") = N(
◦

CurlS). Applying Lemma 2.24 for m= 0 row-wise, there
is a vector field v := P ◦

Grad
M ∈

◦
H
1
(") with M = Grad v. Since skwM = 0 and 2 skwGrad v =

spn curl v, it follows that curl v = 0. By Lemma 2.24 for m= 1 there is a function u := P ◦
grad

v ∈
◦
H
2
(") with v = grad u. HenceM = Grad v = Gradgrad u ∈ Grad grad

◦
H
2
("). So

◦
HS(Curl 0,") ⊂

Gradgrad
◦
H
2
("), which completes the proof of (i). Note that

P ◦
Gradgrad

M := u = P ◦
grad

P ◦
Grad

M ∈
◦
H
2
("),

from which it directly follows that P ◦
Gradgrad

is linear and bounded.

ad (ii): Let E ∈
◦

HT(Div 0,") = N(
◦

DivT). Then there is a tensor field N := P ◦
Curl

E ∈
◦

H
1
(")

with E = CurlN, see Lemma 2.25 for m= 0 applied row-wise. Since trE = 0 and tr Curl symN =
0, it follows that tr Curl skwN = 0. Now let v := spn−1 skwN ∈

◦
H
1
("), i.e. skwN = spn v. Since

tr Curl spn v = 2 div v, it follows that div v = 0. Therefore, there is a vector field w := P ◦
curl

v ∈
◦
H
2
(") such that v = curlw, see Lemma 2.25 form= 1. So we have

Curl skwN = Curl spn curlw = 2Curl skwGradw = −2Curl symGradw.

Hence

E = CurlN = Curl symN + Curl skwN = CurlM, M := symN− 2 symGradw ∈
◦

H
1
S(").

So
◦

HT(Div 0,") ⊂ Curl
◦

H
1
S("), which completes the proof of (ii). Note that

P ◦
CurlS

E := M = symP ◦
Curl

E− 2 symGrad
(
P ◦
curl

spn−1 skw P ◦
Curl

E
)

= sym
(
1− 2Grad P ◦

curl
spn−1 skw

)
P ◦
Curl

E ∈
◦

H
1
S("),

from which it directly follows that P ◦
CurlS

is linear and bounded.

ad (iii): Let v ∈ RT
⊥L2(")

0 = N(πRT0). As v ∈ (R3)
⊥L2(") , there is a tensor field F = P ◦

Div v ∈
◦

H
1
(") with v = Div F, see Lemma 2.26 for m= 0 applied row-wise. We have Div F ∈ RT

⊥L2(")

0

as well as Div dev F ∈ RT
⊥L2(")

0 . Hence grad(trF) = Div((tr F) I) ∈ RT
⊥L2(")

0 , which implies tr F ∈
◦
H
1
(") ∩ L2

0("). Therefore, there is a vector field w := P ◦
div

tr F ∈
◦
H
2
(") with trF = divw, see

Lemma 2.26 form= 1. Thus

Div((tr F) I) = grad divw = 3
2 Div

(
dev (Gradw)⊤

)
.

Hence

v = Div F = Div dev F + 1
3 Div((tr F)I) = Div E, E := dev

(
F + 1

2 (Gradw)⊤
)
∈
◦

H
1
T(").

So RT
⊥L2(")

0 ⊂ Div
◦

H
1
T("), which completes the proof of (iii). Note that

P ◦
DivT

v := E = dev
(
P ◦
Div v + 1

2 (Grad P ◦div tr P ◦
Div v)

⊤
)

= dev
(
1 + 1

2 Grad
⊤ P ◦

div
tr
)
P ◦
Div v ∈

◦
H

1
T("),

from which it directly follows that P ◦
DivT

is linear and bounded.
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ad (iv): Let E ∈HT(symCurl 0,") = N(symCurlT). Then (trivially) Div symCurlE = 0 and it
follows

curlw = 0 with w := 1
2

(
Div E⊤ − grad(trE)

)
= 1

2 Div E
⊤

and

skwCurlE = spnw. (20)

So w ∈ H−1(curl 0,"). Therefore, there is a unique scalar field u := grad−1 w ∈ L2
0("), such that

w = grad u,

see Corollary 2.29 form= 1. As Curl(u I) = − spn grad u implies symCurl(u I) = 0, we see

F := E + u I ∈H(symCurl 0,").

Moreover, by (20)

skwCurl F = skwCurlE + skwCurl(u I) = spnw − spn grad u = 0.

Hence F ∈H(Curl 0,"). Therefore, there is a unique vector field v := Grad−1 F ∈ H1(") ∩ L2
0("),

such that F = Grad v, see Lemma 2.24 form= 0. So we have

E = Grad v − u I.

From the additional condition trE = 0 it follows that 3 u = tr Grad v = div v leading to

E = devGrad v, v ∈ H1(").

So HT(symCurl 0,") ⊂ devGradH1("), which completes the proof of (iv). Note that

PdevGrad E := v = Grad−1
(
E + 1

2 (grad
−1 Div E⊤) I

)

= Grad−1
(
1 + 1

2 (grad
−1 Div( · )⊤) I

)
E ∈ H1("),

from which it directly follows that PdevGrad is linear and bounded.
ad (v): LetM ∈HS(divDiv 0,") = N(divDivS). So DivM ∈ H−1(div 0,") and there is a unique

vector field v := curl−1 DivM ∈
◦
H(div 0,"), such that

DivM = curl v = −Div(spn v),

see Corollary 2.30 for m= 1. Hence Div(M + spn v) = 0, i.e. M + spn v ∈H(Div 0,"), and by
Lemma 2.25 there is a tensor field F := PCurl(M + spn v) ∈H1("), such that

M + spn v = Curl F.

Observe thatM is symmetric and spn v is skew-symmetric. Thus

M = symCurl F and spn v = skwCurl F, F ∈H1("),

and hence

M = symCurl F = symCurlE with E := dev F ∈H1
T("),

as dev F = F− 1
3 (tr F) I and symCurl((tr F) I) = 0. So HS(divDiv 0,") ⊂ symCurlH1

T("), which
completes the proof of (v). Note that

PsymCurlT M := E = dev PCurl
(
M + spn curl−1 DivM

)
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= dev PCurl
(
1 + spn curl−1 Div

)
M ∈H1

T("),

from which it directly follows that PsymCurlT is linear and bounded.
ad (vi): Let u ∈ L2(") = N(0). Then there is a vector field v = Pdiv u ∈ H1(")with u = div v, see

Lemma 2.26 form= 0, and a tensor fieldN = PDiv v ∈H2(") such that v = DivN, see Lemma 2.26
form= 1 applied row-wise. Since divDiv skwN = 0, it follows that

u = divDivN = div DivM with M =: symN ∈H2
S(").

So L2(") ⊂ divDivH2
S("), which completes the proof of (vi). Note that

PdivDivS u := M = symPDiv Pdiv u ∈H2
S("),

from which it directly follows that PdivDivS is linear and bounded. !

Provided that the domain " has trivial topology, Theorem 3.10 implies that the densely defined,
closed andunbounded linear operators

◦
Gradgrad,

◦
CurlS,

◦
DivT, and their adjoints divDivS, symCurlT,

devGrad have closed ranges and that all relevant cohomology groups are trivial, as

N(
◦

Gradgrad) ∩ N(0) = {0} ∩ L2(") = {0},

N(
◦

CurlS) ∩ N(divDivS) =
◦

HS(Curl 0,") ∩HS(divDiv 0,") =
◦

HS(Curl 0,") ∩ symCurlH1
T(")

= N(
◦

CurlS) ∩ R(symCurlT) = {0},

N(
◦

DivT) ∩ N(symCurlT) =
◦

HT(Div 0,") ∩HT(symCurl 0,") =
◦

HT(Div 0,") ∩ devGradH1(")

= N(
◦

DivT) ∩ R(devGrad) = {0},

N(πRT0) ∩ N(devGrad) = RT
⊥L2(")

0 ∩ RT0 = {0}.

In this case, the reduced operators are

A0 =
◦

Gradgrad :
◦
H
2
(") ⊂ L2(") −→

◦
HS(Curl 0,"),

A1 =
◦

CurlS :
◦

HS(Curl,") ∩HS(divDiv 0,") ⊂HS(divDiv 0,") −→
◦

HT(Div 0,"),

A2 =
◦

DivT :
◦

HT(Div,") ∩HT(symCurl 0,") ⊂HT(symCurl 0,") −→ RT
⊥L2(")

0 ,

A∗0 = divDivS : HS(divDiv,") ∩
◦

HS(Curl 0,") ⊂
◦

HS(Curl 0,") −→ L2("),

A∗1 = symCurlT : HT(symCurl,") ∩
◦

HT(Div 0,") ⊂
◦

HT(Div 0,") −→HS(divDiv 0,"),

A∗2 = − devGrad : H1(") ∩ RT
⊥L2(")

0 ⊂ RT
⊥L2(")

0 −→HT(symCurl 0,")

as

R(divDivS) = L2("), R(
◦

DivT) = RT
⊥L2(")

0 .

The functional analysis toolbox Section 2.1, e.g. Lemma 2.10, immediately lead to the following impli-
cations about Helmholtz type decompositions, Friedrichs/Poincaré type estimates and continuous
inverse operators.
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Theorem 3.12: Let" be additionally topologically trivial. Then all occurring ranges are closed and all
related cohomology groups are trivial. Moreover, the Helmholtz type decompositions

L2
S(") =

◦
HS(Curl 0,")⊕L2

S(") HS(divDiv 0,"), L2
T(") =

◦
HT(Div 0,")⊕L2

T(")

HT(symCurl 0,")

hold. The kernels can be represented by the following closed ranges:

◦
HS(Curl 0,") = Gradgrad

◦
H
2
("),

symCurlH1
T(") = HS(divDiv 0,") = symCurlHT(symCurl,") = symCurl

(
HT(symCurl,") ∩

◦
HT(Div 0,")

)
,

Curl
◦

H
1
S(") =

◦
HT(Div 0,") = Curl

◦
HS(Curl,") = Curl

( ◦
HS(Curl,") ∩HS(divDiv 0,")

)
,

HT(symCurl 0,") = devGradH1(") = devGrad
(

H1(") ∩ RT
⊥L2(")

0

)
,

and it holds

divDivH2
S(") = L2(") = divDivHS(divDiv,") = divDiv

(
HS(divDiv,") ∩

◦
HS(Curl 0,")

)
,

Div
◦

H
1
T(") = RT

⊥L2(")

0 = N(πRT0 ) = Div
◦

HT(Div,") = Div
( ◦
HT(Div,") ∩HT(symCurl 0,")

)
.

All potentials depend continuously on the data. The potentials on the very right-hand sides are uniquely
determined. There exist positive constants cGg, cD , cR such that the Friedrichs/Poincaré type estimates

∀ u ∈
◦
H
2
(") |u|L2(")

≤ cGg |Gradgrad u|L2("),

∀M ∈HS(divDiv,") ∩
◦

HS(Curl 0,") |M|L2(") ≤ cGg |divDivM|L2(")
,

∀E ∈
◦

HT(Div,") ∩HT(symCurl 0,") |E|L2(") ≤ cD |Div E|L2("),

∀ v ∈ H1(") ∩ RT
⊥L2(")

0 |v|L2(") ≤ cD |devGrad v|L2("),

∀M ∈
◦

HS(Curl,") ∩HS(divDiv 0,") |M|L2(") ≤ cR |CurlM|L2("),

∀E ∈HT(symCurl,") ∩
◦

HT(Div 0,") |E|L2(") ≤ cR |symCurlE|L2(")

hold. Moreover, the reduced versions of the operators

◦
Gradgrad, divDivS,

◦
DivT, devGrad,

◦
CurlS, symCurlT

have continuous inverse operators

(
◦

Gradgrad)−1 :
◦

HS(Curl 0,") −→
◦
H
2
("),

(divDivS)−1 : L2(") −→HS(divDiv,") ∩
◦

HS(Curl 0,"),

(
◦

DivT)−1 : RT
⊥L2(")

0 −→
◦

HT(Div,") ∩HT(symCurl 0,"),

(devGrad)−1 : HT(symCurl 0,") −→ H1(") ∩ RT
⊥L2(")

0 ,

(
◦

CurlS)−1 :
◦

HT(Div 0,") −→
◦

HS(Curl,") ∩HS(divDiv 0,"),
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(symCurlT)−1 : HS(divDiv 0,") −→HT(symCurl,") ∩
◦

HT(Div 0,")

with norms (1 + c2Gg)1/2, (1 + c2D )1/2, resp. (1 + c2R)1/2.

Remark 3.13: Let " be additionally topologically trivial. The Friedrichs/Poincaré type estimate for
CurlM in the latter theorem can be slightly sharpened. Utilizing Lemma 3.4we observe tr CurlM = 0
and thus dev CurlM = CurlM forM ∈HS(Curl,"). Hence

∀M ∈
◦

HS(Curl,") ∩HS(divDiv 0,") |M|L2(") ≤ cR |dev CurlM|L2(").

Similarly and trivially we see

∀ u ∈
◦
H
2
(") |u|L2(")

≤ cGg |symGradgrad u|L2(").

Recalling Remark 3.8 we have the following result.

Remark 3.14: Let " be additionally topologically trivial. Theorems 3.10 and 3.12 easily lead to the
following result in terms of complexes: The sequence

{0} 0−−−−→
◦
H
2
(")

◦
Gradgrad
−−−−−→

◦
HS(Curl,")

◦
CurlS−−−−→

◦
HT(Div,")

◦
DivT−−−−→ L2(")

πRT0−−−−→ RT0

and thus also its dual or adjoint sequence

{0} 0←−−−−− L2(")
divDivS←−−−−− HS(divDiv,")

symCurlT←−−−−− HT(symCurl,")
− devGrad←−−−−−− H1(")

ιRT0←−−−−− RT0

are closed and exact Hilbert complexes.

Remark 3.15: The part

{0} 0−−−−→
◦
H
2
(")

◦
Gradgrad
−−−−−→

◦
HS(Curl,")

◦
CurlS−−−−→ L2(")

of the Hilbert complex from above and the related adjoint complex

{0} 0←−−−− L2(")
divDivS←−−−− HS(divDiv,")

symCurlT←−−−−− HT(symCurl,")

have been discussed in [7] for problems in general relativity.

Remark 3.16: In 2D and under similar assumptions we obtain by completely analogous but much
simpler arguments that the Hilbert complexes

{0} 0−−−−→
◦
H
2
(")

◦
Gradgrad
−−−−−→

◦
HS(Curl,")

◦
CurlS−−−−→ L2(")

πRT0−−−−→ RT0
,

{0} 0←−−−− L2(")
divDivS←−−−− HS(divDiv,")

symCurl
←−−−− H1(")

ιRT0←−−−− RT0

are dual to each other, closed and exact. Contrary to the 3D case, the operator
◦

CurlS maps a tensor
field to a vector field and the operator symCurl ∼= symGrad is applied row-wise to a vector field and
maps this vector field to a tensor field. The associated Helmholtz decomposition is

L2
S(") =

◦
HS(Curl 0,")⊕L2

S(") HS(divDiv 0,")

with
◦

HS(Curl 0,") = Gradgrad
◦
H
2
("), HS(divDiv 0,") = symCurlH1(").



1610 D. PAULY ANDW. ZULEHNER

Theorem 3.10 leads to the following so-called regular decompositions.

Theorem 3.17: Let" be additionally topologically trivial. Then the regular decompositions
◦

HS(Curl,") =
◦

H
1
S(") +

◦
HS(Curl 0,"),

◦
HS(Curl 0,") = Gradgrad

◦
H
2
("),

◦
HT(Div,") =

◦
H

1
T(") +

◦
HT(Div 0,"),

◦
HT(Div 0,") = Curl

◦
H

1
S("),

HT(symCurl,") = H1
T(") + HT(symCurl 0,"), HT(symCurl 0,") = devGradH1("),

HS(divDiv,") = H2
S(") + HS(divDiv 0,"), HS(divDiv 0,") = symCurlH1

T(")

hold with linear and continuous (regular) decomposition resp. potential operators

P ◦
HS(Curl,"),

◦
H

1
S(")

:
◦

HS(Curl,") −→
◦

H
1
S("), P ◦

HS(Curl,"),
◦
H
2
(")

:
◦

HS(Curl,") −→
◦
H
2
("),

P ◦
HT(Div,"),

◦
H

1
T(")

:
◦

HT(Div,") −→
◦

H
1
T("), P ◦

HT(Div,"),
◦

H
1
S(")

:
◦

HT(Div,") −→
◦

H
1
S("),

PHT(symCurl,"),H1
T(") : HT(symCurl,") −→H1

T("), PHT(symCurl,"),H1(") : HT(symCurl,") −→ H1("),

PHS(divDiv,"),H2
S(") : HS(divDiv,") −→H2

S("), PHS(divDiv,"),H1
T(") : HS(divDiv,") −→H1

T(").

Proof: Let, e.g. E ∈HT(symCurl,"). Then

symCurlE ∈HS(divDiv 0,") = symCurlH1
T(")

with linear and continuous potential operator PsymCurlT : HS(divDiv 0,") −→H1
T(") byTheorem

3.10. Thus, there is Ẽ := PsymCurlT symCurlE ∈H1
T(") depending linearly and continuously on E

with symCurl Ẽ = symCurlE. Hence,

E− Ẽ ∈HT(symCurl 0,") = devGradH1(")

with linear and continuous potential operator PdevGrad : HT(symCurl 0,") −→ H1(") by Theorem
3.10. Hence, there exists v := PdevGrad(E− Ẽ) ∈ H1(") with devGrad v = E− Ẽ and v depends
linearly and continuously on E. The other assertions are proved analogously. !

Looking at the latter proof we see that the regular potential operators are given by

P ◦
HS(Curl,"),

◦
H

1
S(")

= P ◦
CurlS

Curl :
◦

HS(Curl,") −→
◦

H
1
S("),

P ◦
HS(Curl,"),

◦
H
2
(")

= P ◦
Gradgrad

(1− P ◦
CurlS

Curl) :
◦

HS(Curl,") −→
◦
H
2
("),

P ◦
HT(Div,"),

◦
H

1
T(")

= P ◦
DivT

Div :
◦

HT(Div,") −→
◦

H
1
T("),

P ◦
HT(Div,"),

◦
H

1
S(")

= P ◦
CurlS

(1− P ◦
DivT

Div) :
◦

HT(Div,") −→
◦

H
1
S("),

PHT(symCurl,"),H1
T(") = PsymCurlT symCurl : HT(symCurl,") −→H1

T("),

PHT(symCurl,"),H1(") = PdevGrad(1− PsymCurlT symCurl) : HT(symCurl,") −→ H1("),

PHS(divDiv,"),H2
S(") = PdivDivS divDiv : HS(divDiv,") −→H2

S("),

PHS(divDiv,"),H1
T(") = PsymCurlT(1− PdivDivS divDiv) : HS(divDiv,") −→H1

T(").

(21)

Hence the regular decompositions of Theorem 3.17 can be slightly refined to even direct regular
decompositions.
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Corollary 3.18: Let" be additionally topologically trivial. Then the direct regular decompositions

◦
HS(Curl,") = P ◦

CurlS

◦
HT(Div 0,") "

◦
HS(Curl 0,"), P ◦

CurlS

◦
HT(Div 0,") ⊂

◦
H

1
S("),

◦
HT(Div,") = P ◦

DivT
RT
⊥L2(")

0 "
◦

HT(Div 0,"), P ◦
DivT

RT
⊥L2(")

0 ⊂
◦

H
1
T("),

HT(symCurl,") = PsymCurlT HS(divDiv 0,") " HT(symCurl 0,"),

PsymCurlT HS(divDiv 0,") ⊂H1
T("),

HS(divDiv,") = PdivDivS L2(") " HS(divDiv 0,"), PdivDivS L2(") ⊂H2
S(")

hold. More precisely
◦

HS(Curl,") = P ◦
CurlS

◦
HT(Div 0,") " Gradgrad P ◦

Gradgrad

◦
HS(Curl 0,"),

◦
HT(Div,") = P ◦

DivT
RT
⊥L2(")

0 " Curl P ◦
CurlS

◦
HT(Div 0,"),

HT(symCurl,") = PsymCurlT HS(divDiv 0,") " devGrad PdevGrad HT(symCurl 0,"),

HS(divDiv,") = PdivDivS L2(") " symCurl PsymCurlT HS(divDiv 0,")

with

P ◦
Gradgrad

◦
HS(Curl 0,") ⊂

◦
H
2
("), PdevGrad HT(symCurl 0,") ⊂ H1("),

P ◦
CurlS

◦
HT(Div 0,") ⊂

◦
H

1
S("), PsymCurlT HS(divDiv 0,") ⊂H1

T(").

Here, " denotes the direct sum.

Proof: For M ∈
◦

HS(Curl 0,") ∩ P ◦
CurlS

◦
HT(Div 0,") we have M = P ◦

CurlS
E with some E ∈

◦
HT(Div 0,"). Thus 0 = CurlM = E showing M = 0 and hence the directness of the first regular
decomposition. The directness of the others follows similarly. !

3.2. General bounded strong Lipschitz domains

In this section, we consider bounded strong Lipschitz domains " of general topology and we will
extend the results of the previous section as follows. The

◦
Gradgrad- and the divDiv-complexes remain

closed and all associated cohomology groups are finite-dimensional. Moreover, the respective inverse
operators are continuous and even compact, and corresponding Friedrichs/Poincaré type estimates
hold. We will show this by verifying the compactness properties of Lemma 2.7 for the various linear
operators of the complexes. Then Lemma 2.5, Remark 2.6, and Theorem 2.9 immediately lead to the
desired results. Using Rellich’s selection theorem, we have the following compact embeddings:

D(
◦

Gradgrad) ∩ D(0) =
◦
H
2
(")

cpt
↪→ L2("),

D(πRT0) ∩ D(devGrad) = H1(")
cpt
↪→ L2(").

The two missing compactness results that would immediately lead to the desired results are

D(
◦

CurlS) ∩ D(divDivS) =
◦

HS(Curl,") ∩HS(divDiv,")
cpt
↪→ L2

S("), (22)
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D(
◦

DivT) ∩ D(symCurlT) =
◦

HT(Div,") ∩HT(symCurl,")
cpt
↪→ L2

T("). (23)

Themain aim of this section is to show the compactness of the two crucial embeddings (22) and (23).
As a first step we consider a trivial topology.

Lemma 3.19: Let" be additionally topologically trivial. Then the embeddings (22), (23) are compact.

Proof: Let (Mn) be a bounded sequence in
◦

HS(Curl,") ∩HS(divDiv,"). By Theorems 3.12 and
3.10 we have

◦
HS(Curl,") ∩HS(divDiv,") =

( ◦
HS(Curl 0,") ∩HS(divDiv,")

)
⊕L2

S(")

( ◦
HS(Curl,") ∩HS(divDiv 0,")

)
,

◦
HS(Curl 0,") = Gradgrad

◦
H
2
("),

HS(divDiv 0,") = symCurlH1
T(")

with linear and continuous potential operators. Therefore, we can decompose

Mn = Mn,r + Mn,d ∈
( ◦
HS(Curl 0,") ∩HS(divDiv,")

)
⊕L2

S(")

( ◦
HS(Curl,") ∩HS(divDiv 0,")

)

with Mn,r ∈ Gradgrad
◦
H
2
(") ∩HS(divDiv,"), CurlMn,d = CurlMn, and Mn,r = Gradgrad un,

un ∈
◦
H
2
("), as well as Mn,d ∈

◦
HS(Curl,") ∩ symCurlH1

T("), divDivMn,r = divDivMn, and
Mn,d = symCurlEn, En ∈H1

T("), and both un and En depend continuously onMn, i.e.

|un|H 2(")
≤ c |Mn,r|L2(") ≤ c |Mn|L2("), |En|H1(") ≤ c |Mn,d|L2(") ≤ c |Mn|L2(").

By Rellich’s selection theorem, there exist subsequences, again denoted by (un) and (En), such that
(un) converges in H 1(") and (En) converges in L2("). Thus withMn,m := Mn −Mm, and similarly
forMn,m,r,Mn,m,d, un,m, En,m, we see

|Mn,m,r|2L2(")
= ⟨Mn,m,r, Gradgrad un,m⟩L2(") = ⟨divDivMn,m,r, un,m⟩L2(")

= ⟨divDivMn,m, un,m⟩L2(")
≤ c |un,m|L2(")

,

|Mn,m,d|2L2(")
= ⟨Mn,m,d, symCurlEn,m⟩L2(") = ⟨CurlMn,m,d,En,m⟩L2(")

= ⟨CurlMn,m,En,m⟩L2(") ≤ c |En,m|L2(").

Hence, (Mn) is a Cauchy sequence in L2
S("). So

◦
HS(Curl,") ∩HS(divDiv,") ↪→ L2

S(")

is compact. To show the second compact embedding, let (En) ⊂HT(symCurl,") ∩
◦

HT(Div,") be
a bounded sequence. By Theorems 3.12 and 3.10 we have

HT(symCurl,") ∩
◦

HT(Div,") =
(
HT(symCurl 0,") ∩

◦
HT(Div,")

)
⊕L2

T(")
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(
HT(symCurl,") ∩

◦
HT(Div 0,")

)
,

HT(symCurl 0,") = devGradH1("),
◦

HT(Div 0,") = Curl
◦

H
1
S(")

with linear and continuous potential operators. Therefore, we can decompose

En = En,r + En,d ∈
(
HT(symCurl 0,") ∩

◦
HT(Div,")

)
⊕L2

T(")

(
HT(symCurl,") ∩

◦
HT(Div 0,")

)

with En,r ∈ devGradH1(") ∩
◦

HT(Div,"), symCurlEn,d = symCurlEn, En,r = devGrad vn, vn ∈
H1("), as well as En,d ∈HT(symCurl,") ∩ Curl

◦
H

1
S("), Div En,r = Div En, and En,d = CurlMn,

Mn ∈
◦

H
1
S("), and both vn andMn depend continuously on En, i.e.

|vn|H1(") ≤ c |En,r|L2(") ≤ c |En|L2("), |Mn|H1(") ≤ c |En,d|L2(") ≤ c |En|L2(").

By Rellich’s selection theorem, there exist subsequences, again denoted by (vn) and (Mn), such that
(vn) converges in L2(") and (Mn) converges in L2("). Thus with En,m := En − Em, and similarly
for En,m,r, En,m,d, vn,m,Mn,m, we see

|En,m,r|2L2(")
= ⟨En,m,r, devGrad vn,m⟩L2(") = −⟨Div En,m,r, vn,m⟩L2(")

= −⟨Div En,m, vn,m⟩L2(")
≤ c |vn,m|L2("),

|En,m,d|2L2(")
= ⟨En,m,d, CurlMn,m⟩L2(") = ⟨symCurlEn,m,d,Mn,m⟩L2(")

= ⟨symCurlEn,m,Mn,m⟩L2(") ≤ c |Mn,m|L2(").

Note that here the symmetry ofMn,m is crucial. Finally, (En) is a Cauchy sequence in L2
T("). So

HT(symCurl,") ∩
◦

HT(Div,") ↪→ L2
T(")

is compact. !

For general topologies, we will use a partition of unity argument. The next lemma, which we will
prove in the Appendix, provides the necessary tools for this.

Lemma 3.20: Let ϕ ∈
◦
C
∞

(R3).

(i) If M ∈
◦

H(Curl,") resp.
◦

HS(Curl,") resp.
◦

HT(Curl,"), then ϕM ∈
◦

H(Curl,") resp.
◦

HS(Curl,") resp.
◦

HT(Curl,") and

Curl(ϕM) = ϕ CurlM + gradϕ ×M. (24)

(ii) If M ∈H(Curl,") resp. HS(Curl,") resp. HT(Curl,"), then ϕM ∈H(Curl,") resp.
HS(Curl,") resp. HT(Curl,") and (24) holds.

(iii) If E ∈
◦

H(Div,") resp.
◦

HT(Div,") resp.
◦

HS(Div,"), then ϕE ∈
◦

H(Div,") resp.
◦

HT(Div,")

resp.
◦

HS(Div,") and

Div(ϕE) = ϕDiv E + gradϕ · E. (25)
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(iv) If E ∈H(Div,") resp. HT(Div,") resp. HS(Div,"), then ϕE ∈H(Div,") resp. HT(Div,")

resp. HS(Div,") and (25) holds.
(v) If E ∈HT(symCurl,"), then ϕE ∈HT(symCurl,") and

symCurl(ϕE) = ϕ symCurlE + sym(gradϕ × E).

(vi) IfM ∈HS(divDiv,"), then ϕM ∈H0,−1
S (divDiv,") and

divDiv(ϕM) = ϕ divDivM + 2 gradϕ · DivM + tr(MGradgradϕ).

By mollifying these formulas extend to ϕ ∈
◦
C
0,1

(R3) resp. ϕ ∈
◦
C
1,1

(R3).

Here gradϕ× resp. gradϕ · is applied row-wise to a tensorM and we see gradϕ · M = M gradϕ
as well as gradϕ ×M = −M spn(gradϕ). Moreover, we introduce the new space

H0,−1
S (divDiv,") := {M ∈ L2

S(") : divDivM ∈ H−1(")}.

Another auxiliary result required for the compactness proof is presented in the next lemma.

Lemma 3.21: The regular (type) decomposition

H0,−1
S (divDiv,") =

◦
H
1
(") · I " HS(divDiv 0,")

holds. More precisely, for M ∈H0,−1
S (divDiv,") there are unique u ∈

◦
H
1
(") and M0 ∈HS

(divDiv 0,") such thatM = u I + M0. The scalar function u ∈
◦
H
1
(") is given as the unique solution

of the Dirichlet–Poisson problem

⟨grad u, gradϕ⟩L2(")
= −⟨divDivM,ϕ⟩H−1(")

for all ϕ ∈
◦
H
1
("),

and the decomposition is continuous, more precisely there exists c > 0, such that

|u|H 1(")
≤ c |divDivM|H−1(")

, |M− u I|L2(")
≤ c |M|H0,−1

S (divDiv,").

Proof: The unique solution u ∈
◦
H
1
(") satisfies

H−1(") ∋ divDiv u I = div grad u = divDivM,

i.e.M0 := M− u I ∈HS(divDiv 0,"), which shows the decomposition. Moreover,

|u|H 1(")
≤ (1 + c2g)1/2 |divDivM|H−1(")

shows that u depends continuously onM and hence alsoM0 since

|M0|L2(")
≤ |M|L2(") + |u|L2(")

≤ (2 + c2g)1/2 |M|H0,−1
S (divDiv,").

Let u I ∈HS(divDiv 0,")with u ∈
◦
H
1
("). Then 0 = divDiv u I = div grad u = !u, yielding u= 0.

Hence, the decomposition is direct, completing the proof. !

Lemma 3.22: The embeddings (22) and (23) are compact, i.e.

◦
HS(Curl,") ∩HS(divDiv,")

cpt
↪→ L2

S("), HT(symCurl,") ∩
◦

HT(Div,")
cpt
↪→ L2

T(").
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Proof: Let (Ui) be an open covering of ", such that "i := " ∩ Ui is topologically trivial for all i.
As " is compact, there is a finite subcovering denoted by (Ui)i=1,...,I with I ∈ N. Let (ϕi) with ϕi ∈
◦
C
∞

(Ui) be a partition of unity subordinate to (Ui). Suppose (En) ⊂HT(symCurl,") ∩
◦

HT(Div,")

is a bounded sequence. Then En =
∑I

i=1 ϕiEn and (ϕiEn) ⊂HT(symCurl,"i) ∩
◦

HT(Div,"i) is a
bounded sequence for all i by Lemma 3.20. As "i is topologically trivial, there exists a subsequence,
again denoted by (ϕiEn), which is a Cauchy sequence inL2("i) by Lemma 3.19. Picking successively
subsequences yields that (ϕiEn) is a Cauchy sequence in L2("j) for all j. Hence (En) is a Cauchy
sequence in L2("). So the second embedding of the lemma is compact. Let (Mn) ⊂

◦
HS(Curl,") ∩

HS(divDiv,") be a bounded sequence. Then Mn =
∑I

i=1 ϕiMn and (ϕiMn) ⊂
◦

HS(Curl,"i) ∩
H0,−1

S (divDiv,"i) is a bounded sequence for all i by Lemma 3.20 as |DivMn|H−1(") ≤ |Mn|L2(").
Using Lemma 3.21 we decompose

ϕiMn = ui,n I + M0,i,n ∈
◦
H
1
("i) · I "

( ◦
HS(Curl,"i) ∩HS(divDiv 0,"i)

)
.

Moreover, (ui,n) is bounded in
◦
H
1
("i) and (M0,i,n) is bounded in

◦
HS(Curl,"i) ∩HS(divDiv 0,"i).

By Rellich’s selection theorem and Lemma 3.19 as well as picking successively subsequences we get
that (ϕiMn) is a Cauchy sequence in L2("j) for all j. Hence (Mn) is a Cauchy sequence in L2("),
showing that the first embedding of the lemma is also compact and finishing the proof. !

Utilizing the crucial compact embeddings of Lemma 3.22, we can apply the functional analysis
toolbox Section 2.1 to the (linear, densely defined, and closed ‘complex’) operators A0, A1, A2, A∗0,
A∗1, A∗2. In this general case the reduced operators are

A0 =
◦

Gradgrad :
◦
H
2
(") ⊂ L2(") −→ Gradgrad

◦
H
2
("),

A1 =
◦

CurlS :
◦

HS(Curl,") ∩ symCurlHT(symCurl,") ⊂ symCurlHT(symCurl,") −→ Curl
◦

HS(Curl,"),

A2 =
◦

DivT :
◦

HT(Div,") ∩ devGradH1(") ⊂ devGradH1(") −→ RT
⊥L2(")

0 ,

A∗0 = divDivS : HS(divDiv,") ∩ Gradgrad
◦
H
2
(") ⊂ Gradgrad

◦
H
2
(") −→ L2("),

A∗1 = symCurlT : HT(symCurl,") ∩ Curl
◦

HS(Curl,") ⊂ Curl
◦

HS(Curl,") −→ symCurlHT(symCurl,"),

A∗2 = − devGrad : H1(") ∩ RT
⊥L2(")

0 ⊂ RT
⊥L2(")

0 −→ devGradH1(")

as

divDivHS(divDiv,") = R(divDivS) = N(
◦

Gradgrad)⊥L2(") = {0}⊥L2(") = L2("),

Div
◦

HT(Div,") = R(
◦

DivT) = N(devGrad)⊥L2(") = RT
⊥L2(")

0 .

Note that by the compact embeddings of Lemma 3.22 all ranges are actually closed and we can skip
the closure bars. We obtain the following theorem.

Theorem 3.23: It holds:

(i) The ranges

R(
◦

Gradgrad) = Gradgrad
◦
H
2
("),

L2(") = R(divDivS) = divDivHS(divDiv,") = divDiv
(

HS(divDiv,") ∩ Gradgrad
◦
H
2
(")

)
,

R(
◦

CurlS) = Curl
◦

HS(Curl,") = Curl
( ◦
HS(Curl,") ∩ symCurlHT(symCurl,")

)
,
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R(symCurlT) = symCurlHT(symCurl,") = symCurl
(
HT(symCurl,") ∩ Curl

◦
HS(Curl,")

)
,

RT
⊥L2(")

0 = R(
◦

DivT) = Div
◦

HT(Div,") = Div
( ◦
HT(Div,") ∩ devGradH1(")

)
,

R(devGrad) = devGradH1(") = devGrad
(

H1(") ∩ RT
⊥L2(")

0

)

are closed. The more regular potentials on the right-hand sides are uniquely determined and
depend linearly and continuously on the data, see (v).

(ii) The cohomology groups

H D ,S(") :=
◦

HS(Curl 0,") ∩HS(divDiv 0,"), H N,T(") :=
◦

HT(Div 0,")

∩HT(symCurl 0,")

are finite dimensional and may be called symmetric Dirichlet resp. deviatoric Neumann tensor
fields.

(iii) The Hilbert complexes from Remark 3.8, i.e.

{0} 0−−−−−→
◦
H
2
(")

◦
Gradgrad
−−−−−→

◦
HS(Curl,")

◦
CurlS−−−−−→

◦
HT(Div,")

◦
DivT−−−−−→ L2(")

πRT0−−−−−→ RT0

and its adjoint

{0} 0←−−−−− L2(")
divDivS←−−−−− HS(divDiv,")

symCurlT←−−−−− HT(symCurl,")
− devGrad←−−−−−− H1(")

ιRT0←−−−−− RT0,

are closed. They are also exact, if and only ifH D ,S(") = {0},H N,T(") = {0}. The latter holds,
if" is topologically trivial.

(iv) The Helmholtz type decompositions

L2
S(") = Gradgrad

◦
H
2
(")⊕L2

S(") HS(divDiv 0,")

=
◦

HS(Curl 0,")⊕L2
S(") symCurlHT(symCurl,")

= Gradgrad
◦
H
2
(")⊕L2

S(") H D ,S(")⊕L2
S(") symCurlHT(symCurl,"),

L2
T(") = Curl

◦
HS(Curl,")⊕L2

T(") HT(symCurl 0,")

=
◦

HT(Div 0,")⊕L2
T(") devGradH1(")

= Curl
◦

HS(Curl,")⊕L2
T(") H N,T(")⊕L2

T(") devGradH1(")

are valid.
(v) There exist positive constants cGg, cD , cR, such that the Friedrichs/Poincaré type estimates

∀ u ∈
◦
H
2
(") |u|L2(")

≤ cGg |Gradgrad u|L2("),

∀M ∈HS(divDiv,") ∩ Gradgrad
◦
H
2
(") |M|L2(") ≤ cGg |divDivM|L2(")

,

∀E ∈
◦

HT(Div,") ∩ devGradH1(") |E|L2(") ≤ cD |Div E|L2("),

∀ v ∈ H1(") ∩ RT
⊥L2(")

0 |v|L2(") ≤ cD |devGrad v|L2("),
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∀M ∈
◦

HS(Curl,") ∩ symCurlHT(symCurl,") |M|L2(") ≤ cR |CurlM|L2("),

∀E ∈HT(symCurl,") ∩ Curl
◦

HS(Curl,") |E|L2(") ≤ cR |symCurlE|L2(")

hold2.
(vi) The inverse operators

(
◦

Gradgrad)−1 : Gradgrad
◦
H
2
(") −→

◦
H
2
("),

(divDivS)−1 : L2(") −→HS(divDiv,") ∩ Gradgrad
◦
H
2
("),

(
◦

DivT)−1 : RT
⊥L2(")

0 −→
◦

HT(Div,") ∩ devGradH1("),

(devGrad)−1 : devGradH1(") −→ H1(") ∩ RT
⊥L2(")

0 ,

(
◦

CurlS)−1 : Curl
◦

HS(Curl,") −→
◦

HS(Curl,") ∩ symCurlHT(symCurl,"),

(symCurlT)−1 : symCurlHT(symCurl,") −→HT(symCurl,") ∩ Curl
◦

HS(Curl,")

are continuous with norms (1 + c2Gg)1/2 resp. (1 + c2D )1/2, resp. (1 + c2R)1/2, and their
modifications

(
◦

Gradgrad)−1 : Gradgrad
◦
H
2
(") −→

◦
H
1
(") ⊂ L2("),

(divDivS)−1 : L2(") −→ Gradgrad
◦
H
2
(") ⊂ L2

S("),

(
◦

DivT)−1 : RT
⊥L2(")

0 −→ devGradH1(") ⊂ L2
T("),

(devGrad)−1 : devGradH1(") −→ RT
⊥L2(")

0 ⊂ L2("),

(
◦

CurlS)−1 : Curl
◦

HS(Curl,") −→ symCurlHT(symCurl,") ⊂ L2
S("),

(symCurlT)−1 : symCurlHT(symCurl,") −→ Curl
◦

HS(Curl,") ⊂ L2
T(")

are compact with norms cGg, cD , resp. cR.

We note
◦

HS(Curl 0,") = Gradgrad
◦
H
2
(")⊕L2

S(") H D ,S("),

HS(divDiv 0,") = symCurlHT(symCurl,")⊕L2
S(") H D ,S("),

◦
HT(Div 0,") = Curl

◦
HS(Curl,")⊕L2

T(") H N,T("),

HT(symCurl 0,") = devGradH1(")⊕L2
T(") H N,T(").

(26)

Finally, even parts of Theorems 3.10, 3.17, and Corollary 3.18, extend to the general case, i.e. we have
regular potentials and regular decompositions for bounded strong Lipschitz domains as well.

Theorem 3.24: The regular decompositions

(i)
◦

HS(Curl,") =
◦

H
1
S(") + Gradgrad

◦
H
2
("),

(ii)
◦

HT(Div,") =
◦

H
1
T(") + Curl

◦
H

1
S("),
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(iii) HT(symCurl,") = H1
T(") + devGradH1("),

(iv) HS(divDiv,") = H2
S(") + HS(divDiv 0,")

hold with linear and continuous (regular) decomposition resp. potential operators

P̃ ◦
HS(Curl,"),

◦
H

1
S(")

:
◦

HS(Curl,") −→
◦

H
1
S("),

P̃ ◦
HS(Curl,"),

◦
H
2
(")

:
◦

HS(Curl,") −→
◦
H
2
("),

P̃ ◦
HT(Div,"),

◦
H

1
T(")

:
◦

HT(Div,") −→
◦

H
1
T("),

P̃ ◦
HT(Div,"),

◦
H

1
S(")

:
◦

HT(Div,") −→
◦

H
1
S("),

P̃HT(symCurl,"),H1
T(") : HT(symCurl,") −→H1

T("),

P̃HT(symCurl,"),H1(") : HT(symCurl,") −→ H1("),

P̃HS(divDiv,"),H2
S(") : HS(divDiv,") −→H2

S("),

P̃HS(divDiv,"),HS(divDiv 0,") : HS(divDiv,") −→HS(divDiv 0,").

Proof: As in the proof of Lemma 3.22, let (Ui) be an open covering of ", such that "i := " ∩ Ui
is topologically trivial for all i. As " is compact, there is a finite subcovering denoted by (Ui)i=1,...,I

with I ∈ N. Let (ϕi) with ϕi ∈
◦
C
∞

(Ui) be a partition of unity subordinate to (Ui) and let addition-
ally φi ∈

◦
C
∞

(Ui) with φi|supp ϕi = 1. To prove (i), suppose M ∈
◦

HS(Curl,"). By Lemma 3.20 and
Theorem 3.17 we have

ϕiM ∈
◦

HS(Curl,"i) =
◦

H
1
S("i) +

◦
HS(Curl 0,"i) =

◦
H

1
S("i) + Gradgrad

◦
H
2
("i).

Hence, ϕiM = Mi + Gradgrad ui with Mi ∈
◦

H
1
S("i) and ui ∈

◦
H
2
("i). Let M̂i and ûi denote the

extensions by zero ofMi and ui. Then M̂i ∈
◦

H
1
S(") and ûi ∈

◦
H
2
("). Thus

M =
∑

i
ϕiM =

∑

i
M̂i + Gradgrad

∑

i
ûi ∈

◦
H

1
S(") + Gradgrad

◦
H
2
("),

and all applied operations are continuous. Similarly we prove (ii). To show (iii), let E ∈
HT(symCurl,"). By Lemma 3.20 and Theorem 3.17 we have

ϕiE ∈HT(symCurl,"i) = H1
T("i) + HT(symCurl 0,"i) = H1

T("i)

+ devGradH1("i).

Hence, ϕiE = Ei + devGrad vi with Ei ∈H1
T("i) and vi ∈ H1("i). In"i we observe

ϕiE = φiϕiE = φiEi + φi devGrad vi

= φiEi − dev(vi · grad⊤ φi) + devGrad(φivi) ∈H1
T("i) + devGradH1("i).
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Let Êi and v̂i denote the extensions by zero of φiEi − dev(vi · grad⊤ φi) and φivi. Then Êi ∈H1
T(")

and v̂i ∈ H1("). Thus

E =
∑

i
ϕiE =

∑

i
Êi + devGrad

∑

i
v̂i ∈H1

T(") + devGradH1("),

and all applied operations are continuous. To show (iv), let M ∈HS(divDiv,"). Then divDivM ∈
L2(") and by Theorem 3.10 and Remark 3.11 (ii) there is some M̃ ∈H2

S("), together with a lin-
ear and continuous potential operator, with divDiv M̃ = divDivM. Therefore, we have M− M̃ ∈
HS(divDiv 0,"), completing the proof. !

Applying
◦

CurlS,
◦

DivT, and symCurlT, divDivS to the regular decompositions in Theorem 3.24 we
get the following regular potentials.

Theorem 3.25: It holds

(i) R(
◦

CurlS) = Curl
◦

HS(Curl,") = Curl
◦

H
1
S("),

(ii) RT
⊥L2(")

0 = R(
◦

DivT) = Div
◦

HT(Div,") = Div
◦

H
1
T("),

(iii) R(symCurlT) = symCurlHT(symCurl,") = symCurlH1
T("),

(iv) L2(") = R(divDivS) = divDivHS(divDiv,") = divDivH2
S(")

with corresponding linear and continuous (regular) potential operators (on the right-hand sides).

Using Theorem 3.23, canonical linear and continuous regular potential operators in the latter
theorem are given by

P̃ ◦
CurlS

:= P̃ ◦
HS(Curl,"),

◦
H

1
S(")

(
◦

CurlS)−1 : Curl
◦

HS(Curl,") −→
◦

H
1
S("),

P̃ ◦
DivT

:= P̃ ◦
HT(Div,"),

◦
H

1
T(")

(
◦

DivT)−1 : RT
⊥L2(")

0 −→
◦

H
1
T("),

P̃symCurlT := P̃HT(symCurl,"),H1
T(")(symCurlT)−1 : symCurlHT(symCurl,") −→H1

T("),

P̃divDivS := P̃HS(divDiv,"),H2
S(")(divDivS)−1 : L2(") −→H2

S(").

(27)

We get the following direct regular decompositions.

Corollary 3.26: The direct regular decompositions

◦
HS(Curl,") = P̃ ◦

CurlS
Curl

◦
HS(Curl,") "

◦
HS(Curl 0,"),

◦
HT(Div,") = P̃ ◦

DivT
RT
⊥L2(")

0 "
◦

HT(Div 0,"),

HT(symCurl,") = P̃symCurlT symCurlHT(symCurl,") " HT(symCurl 0,"),

HS(divDiv,") = P̃divDivSL2(") " HS(divDiv 0,")
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hold. Moreover,

P̃ ◦
CurlS

Curl
◦

HS(Curl,") ⊂
◦

H
1
S("), P̃symCurlT symCurlHT(symCurl,") ⊂H1

T("),

P̃ ◦
DivT

RT
⊥L2(")

0 ⊂
◦

H
1
T("), P̃divDivSL2(") ⊂H2

S(").

Note that the second summands on the right-hand sides may be further decomposed by (26),
Theorem 3.25, and (27).

Proof: For M ∈
◦

HS(Curl 0,") ∩ P̃ ◦
CurlS

Curl
◦

HS(Curl,") we have M = P̃ ◦
CurlS

N with some N ∈

Curl
◦

HS(Curl,"). Thus 0 = CurlM = N showingM = 0 and hence the directness of the first regular
decomposition. The other assertions follow similarly. !

Remark 3.27: While the results about the regular potentials in Theorem 3.25 hold in full generality
for all operators, one may wonder that the regular decompositions from Theorem 3.24 hold in full
generality only for (i)–(iii), but not for (iv), i.e. we just have in (iv)

HS(divDiv,") = H2
S(") + HS(divDiv 0,") ⊃ H2

S(") + symCurlH1
T(").

The reason for the failure of the partition of unity argument from the proof of Theorem 3.24 is the
following: Let M ∈HS(divDiv,"). By Lemma 3.20 (vi) we just get ϕiM ∈H0,−1

S (divDiv,"i), see
also the proof of Lemma 3.22. Using Lemma 3.21 and Theorem 3.17 we can decompose

ϕiM = ui I + symCurlEi ∈
◦
H 1("i) · I " symCurlH1

T("i)

as HS(divDiv 0,"i) = symCurlH1
T("i). In"i we observe

ϕiM = φiϕiM = φiui I + φi symCurlEi

= φiui I− sym(gradφi × Ei) + symCurl(φiEi) ∈H1
S("i) + symCurlH1

T("i).

Let M̂i and Êi denote the extensions by zero of φiui I− sym(gradφi × Ei) and φiEi. Then M̂i ∈
H1

S(") and Êi ∈H1
T(") and thus

M =
∑

i
ϕiM =

∑

i
M̂i + symCurl

∑

i
Êi ∈H1

S(") + symCurlH1
T("),

and all applied operations are continuous. Therefore, we obtain

H2
S(") + symCurlH1

T(") ⊂H2
S(") + HS(divDiv 0,") = HS(divDiv,") ⊂H1

S(")

+ symCurlH1
T(").

So we have lost one Sobolev order in the summand H1
S(").
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4. Application to biharmonic problems

By!2 = divDiv Gradgrad, a standard (primal) variational formulation of (1) in R3 reads as follows:
For given f ∈ H−2("), find u ∈

◦
H
2
(") such that

⟨Gradgrad u, Gradgradφ⟩L2(") = ⟨f ,φ⟩H−2(")
for all φ ∈

◦
H
2
("). (28)

Existence, uniqueness, and continuous dependence on f of a solution to (28) is guaranteed by the
theorem of Lax–Milgram, see, e.g. [27, 28] or Lemma 3.3. Note that then

M := Gradgrad u ∈
◦

HS(Curl 0,")⊖L2
S(") H D ,S(") ⊂ L2

S(")

with divDivM = f ∈ H−2("). In other words the operator

divDiv : L2
S(")→ H−2(") (29)

is surjective and

divDiv :
◦

HS(Curl 0,")⊖L2
S(") H D ,S(")→ H−2(") (30)

is bijective and even a topological isomorphism by the bounded inverse theorem. For our decompo-
sition result we need the following variant of the Hilbert complex from Theorem 3.23:

RT0
ιRT0−−−−−→ H1(")

− devGrad−−−−−−→ HT(symCurl,")
symCurlT−−−−−→ H0,−1

S (divDiv,")
divDivS−−−−−→ H−1(")

0−−−−−→ {0},

where we recallH0,−1
S (divDiv,") from Lemma 3.21. This is obviously also a closed Hilbert complex

as divDiv : H0,−1
S (divDiv,")→ H−1(") is surjective as well by (29). Observe that

H1
S(") ⊂H0,−1

S (divDiv,") ⊂ L2
S(").

For right-hand sides f ∈ H−1(") we consider the following mixed variational problem for u and the
HessianM of u: FindM ∈H0,−1

S (divDiv,") and u ∈
◦
H
1
(") such that

⟨M,#⟩L2(") + ⟨u, divDiv#⟩H−1(")
= 0 for all # ∈H0,−1

S (divDiv,"), (31)

⟨divDivM,ψ⟩H−1(")
= −⟨f ,ψ⟩H−1(")

for all ψ ∈
◦
H
1
("). (32)

The first row and the second row of this mixed problem are variational formulations of (2) and (3),
respectively. We recall the following two results related to these mixed problems from [1].

Theorem 4.1: Let f ∈ H−1("). Then:

(i) Problem (31)–(32) is a well-posed saddle point problem.
(ii) The variational problems (28) and (31)–(32) are equivalent, i.e. if u ∈

◦
H
2
(") solves (28), then

M = −Gradgrad u lies in H0,−1
S (divDiv,") and (M, u) solves (31)–(32). And, vice versa, if

(M, u) ∈H0,−1
S (divDiv,")×

◦
H
1
(") solves (31)–(32), then u ∈

◦
H
2
(") with Gradgrad u = −M

and u solves (28).

Although only two-dimensional biharmonic problems were considered in [1], the proof of the
latter theorem is completely identical for the three-dimensional case. The same holds for Lemma 3.21.
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Proof: To show (i), we first note that (",#) 5→ ⟨",#⟩L2(") is coercive over the kernel of (32), i.e.
for " ∈HS(divDiv 0,") we have ⟨","⟩L2(") = |"|2L2(")

= |"|2HS(divDiv,") = |"|2
H0,−1

S (divDiv,")
.

Moreover, the inf–sup-condition holds, as

inf
0̸=ϕ∈

◦
H
1
(")

sup
0̸="∈H0,−1

S (divDiv,")

⟨ϕ, divDiv"⟩H−1(")

|gradϕ|L2(")|"|H0,−1
S (divDiv,")

≥ inf
0̸=ϕ∈

◦
H
1
(")

−⟨ϕ, divDiv(ϕ I)⟩H−1(")

|gradϕ|L2(")|ϕ I|H0,−1
S (divDiv,")

= inf
0 ̸=ϕ∈

◦
H
1
(")

|gradϕ|L2(")
(

|ϕ I|2L2(")
+ |divDiv(ϕ I)|2

H−1(")

)1/2

= inf
0̸=ϕ∈

◦
H
1
(")

|gradϕ|L2(")
(
3|ϕ|2

L2(")
+ |gradϕ|2L2(")

)1/2 ≥ (3 c2g + 1)−1/2

by choosing " := −ϕ I ∈
◦
H
1
(") · I ⊂H0,−1

S (divDiv,") and observing

−⟨ϕ, divDiv(ϕ I)⟩H−1(")
= −⟨ϕ, div gradϕ⟩H−1(")

= |gradϕ|2L2(")
,

|divDiv(ϕ I)|H−1(")
= sup

0 ̸=φ∈
◦
H
1
(")

⟨φ, div gradϕ⟩H−1(")

|gradφ|L2(")

= sup
0 ̸=φ∈

◦
H
1
(")

⟨gradφ, gradϕ⟩L2(")

|gradφ|L2(")

= |gradϕ|L2(").

Note that both the primal problem (28) and themixed problem (31)–(32) arewell-posed. So, it suffices
to show the first part of (ii) only. The reverse direction follows then automatically. Let u ∈

◦
H
2
(")

solve (28). ThenM := −Gradgrad u ∈H0,−1
S (divDiv,")with divDivM = −f inH−2(") andhence

in H−1("). Thus (32) holds. Moreover, for # ∈H0,−1
S (divDiv,") we see

⟨M,#⟩L2(") = −⟨Gradgrad u,#⟩L2(") = −⟨u, divDiv#⟩H−2(")
= −⟨u, divDiv#⟩H−1(")

and hence (31) is true. Therefore, (M, u) solves (31)–(32). !

Remark 4.2: For convenience of the reader, we give additionally a proof of the other direction as well:
if (M, u) in H0,−1

S (divDiv,")×
◦
H
1
(") solves (31)–(32), then divDivM = −f in H−1(") and (31)

holds. Especially, (31) holds for # ∈H2
S(") ⊂H1

S(") ⊂H0,−1
S (divDiv,"), i.e.

− ⟨M,#⟩L2(") = ⟨u, divDiv#⟩H−1(")
= ⟨u, divDiv#⟩L2(")

. (33)

But then (33) holds for all # ∈H2(") as sym# ∈H2
S(") and

− ⟨M,#⟩L2(") = −⟨M, sym#⟩L2(") = ⟨u, divDiv sym#⟩L2(")
= ⟨u, divDiv#⟩L2(")

, (34)

since divDiv skw# = 0 by

⟨divDiv skw# ,φ⟩L2(")
= ⟨skw# , Gradgradφ⟩L2(") = 0
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for all φ ∈
◦
C
∞

("). (34) yields that u ∈
◦
H
2
(") with Gradgrad u = −M. Finally, for all φ ∈

◦
H
2
(")

⟨Gradgrad u, Gradgradφ⟩L2(") = −⟨M, Gradgradφ⟩L2(") = −⟨divDivM,φ⟩H−2(")
= ⟨f ,φ⟩H−2(")

,

showing that u ∈
◦
H
2
(") solves (28).

We note that the decomposition ofH0,−1
S (divDiv,") in Lemma 3.21 is different to the Helmholtz

type decomposition of the larger space L2
S(") in Theorems 3.12 and 3.23 and does not involve

the Hessian of scalar functions in
◦
H
2
("). Using the decomposition of H0,−1

S (divDiv,") in
Lemma 3.21, we have the following decomposition result for the biharmonic problem. Let (M, u) ∈
H0,−1

S (divDiv,")×
◦
H
1
(") be the unique solution of (31)–(32). Using Lemma 3.21 we have the

following direct decompositions forM,# ∈H0,−1
S (divDiv,")

M = p I + M0, # = ϕ I + #0, p,ϕ ∈
◦
H
1
("), M0,#0 ∈HS(divDiv 0,").

This allows to rewrite (31)–(32) equivalently in terms of (p,M0, u) and for all (ϕ,#0,ψ), i.e.

⟨p I,ϕ I⟩L2(") + ⟨M0,#0⟩L2(") + ⟨p I,#0⟩L2(") + ⟨M0,ϕ I⟩L2(") + ⟨u, divDiv(ϕ I)⟩H−1(")
= 0,

⟨divDiv(p I),ψ⟩H−1(")
= −⟨f ,ψ⟩H−1(")

or equivalently

⟨grad u, gradϕ⟩L2(") + 3⟨p,ϕ⟩L2(")
+ ⟨M0,#0⟩L2(") + ⟨p, tr#0⟩L2(")

+ ⟨trM0,ϕ⟩L2(")
= 0,

⟨grad p, gradψ⟩L2(")
= −⟨f ,ψ⟩H−1(")

,

which leads to the equivalent system

⟨grad u, gradϕ⟩L2(") + 3⟨p,ϕ⟩L2(")
+ ⟨trM0,ϕ⟩L2(")

= 0,

⟨M0,#0⟩L2(") + ⟨p, tr#0⟩L2(")
= 0,

⟨grad p, gradψ⟩L2(") = −⟨f ,ψ⟩H−1(")
.

Theorem4.3: The variational problem (31)–(32) is equivalent to the following well-posed and uniquely
solvable variational problem. For f ∈ H−1(") find p ∈

◦
H
1
("), M0 ∈HS(divDiv 0,"), and u ∈

◦
H
1
(") such that

⟨grad u, gradϕ⟩L2(") + ⟨trM0,ϕ⟩L2(")
+ 3⟨p,ϕ⟩L2(")

= 0, (35)

⟨M0,#0⟩L2(") + ⟨p, tr#0⟩L2(")
= 0, (36)

⟨grad p, gradψ⟩L2(") = −⟨f ,ψ⟩H−1(")
(37)

for all ψ ∈
◦
H
1
("), #0 ∈HS(divDiv 0,"), and ϕ ∈

◦
H
1
("). Moreover, the unique solution (M, u) of

(31)–(32) is given byM := p I + M0 and u for the unique solution (p,M0, u) of (35)–(37).
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If" is additionally topologically trivial, then by Theorem 3.12 or Theorem 3.23

HS(divDiv 0,") = symCurlHT(symCurl,") = symCurl
(
HT(symCurl,") ∩

◦
HT(Div 0,")

)

and we obtain the following result.

Theorem 4.4: Let " be additionally topologically trivial. The variational problem (31)–(32) is equiv-
alent to the following well-posed and uniquely solvable variational problem. For f ∈ H−1(") find
p ∈

◦
H
1
("), E ∈HT(symCurl,") ∩

◦
HT(Div 0,"), and u ∈

◦
H
1
(") such that

⟨grad u, gradϕ⟩L2(") + ⟨tr symCurlE,ϕ⟩L2(")
+ 3⟨p,ϕ⟩L2(")

= 0, (38)

⟨symCurlE, symCurl"⟩L2(") + ⟨p, tr symCurl"⟩L2(")
= 0, (39)

⟨grad p, gradψ⟩L2(") = −⟨f ,ψ⟩H−1(")
(40)

for all ψ ∈
◦
H
1
("), " ∈HT(symCurl,") ∩

◦
HT(Div 0,"), and ϕ ∈

◦
H
1
("). Moreover, the unique

solution (M, u) of (31)–(32) is given byM := p I + symCurlE and u for the unique solution (p,E, u) of
(38)–(40).

Note that, e.g. ⟨tr symCurlE,ϕ⟩L2(")
= ⟨symCurlE,ϕ I⟩L2(") and 3⟨p,ϕ⟩L2(")

= ⟨p I,ϕ I⟩L2(").

Proof: (31)–(32) is equivalent to (35)–(37) and hence also to (38)–(40), if the latter system is well-
posed. By Theorem 3.12 or Theorem 3.23 the bilinear form ⟨symCurl · , symCurl · ⟩L2(") is coercive
overHT(symCurl,") ∩

◦
HT(Div 0,"), which shows the consecutive unique solvability of (38)–(40).

!

The three problems in the previous theorem are weak formulations of the following three second-
order problems in strong form. A Dirichlet–Poisson problem for the auxiliary scalar function p

!p = f in", p = 0 on $,

a second-order Neumann type Curl symCurl –Div-system for the auxiliary tensor field E

trE = 0, Curl symCurlE = −Curl(p I) = spn grad p, Div E = 0 in",

n× symCurlE = −n× p I = p spnn = 0, En = 0 on $,
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and, finally, a Dirichlet–Poisson problem for the original scalar function u

!u = 3p + tr symCurlE = tr(p I + symCurlE) in", u = 0 on $.

In other words, the system (38)–(40) has triangular structure
⎡

⎢⎣
3 tr symCurlT −

◦
!

◦
CurlS( · I)

◦
CurlSsymCurlT 0

−
◦
! 0 0

⎤

⎥⎦

⎡

⎣
p
E
u

⎤

⎦ =

⎡

⎣
0
0
−f

⎤

⎦

with (tr symCurlT)∗ =
◦

CurlS( · I) and
◦
! = div

◦
grad. Indeed, E ∈HT(symCurl,") ∩

◦
HT(Div 0,")

with

⟨symCurlE, symCurl"⟩L2(") + ⟨p, tr symCurl"⟩L2(")
= 0

for all" ∈HT(symCurl,") ∩
◦

HT(Div 0,") is equivalent toE ∈HT(symCurl,") ∩
◦

HT(Div 0,")

and

⟨symCurlE + p I, symCurl"⟩L2(") = 0 (41)

for all " ∈HT(symCurl,") as by Theorem 3.12

symCurl
(
HT(symCurl,") ∩

◦
HT(Div 0,")

)
= symCurlHT(symCurl,"). (42)

Now (41) shows that

symCurlE + p I ∈ R(symCurlT)
⊥L2(") = N(symCurl∗T) = N(

◦
CurlS) =

◦
HS(Curl 0,"),

especially Curl(symCurlE + p I) = 0 in" and n× (symCurlE + p I) = 0 on $.
Finally, we want to get rid of the complicated spaceHT(symCurl,") ∩

◦
HT(Div 0,") in the varia-

tional formulation in Theorem 4.4. For a given p ∈
◦
H
1
(") the part (39) of (38)–(40), i.e. find a tensor

field E ∈HT(symCurl,") ∩
◦

HT(Div 0,") such that

⟨symCurlE, symCurl"⟩L2(") + ⟨p, tr symCurl"⟩L2(")
= 0 (43)

for all" ∈HT(symCurl,") ∩
◦

HT(Div 0,"), has also a saddle point structure. By Theorem 3.12 we
have (42) as well as

◦
HT(Div 0,") = N(

◦
DivT) = R(

◦
Div
∗
T)
⊥L2

T(") = R(devGrad)
⊥L2

T(")

=
(
devGrad

(
H1(") ∩ RT

⊥L2(")

0

))⊥L2
T(")

.

Hence (43) is equivalent to find E ∈HT(symCurl,") such that

⟨symCurlE, symCurl"⟩L2(") + ⟨p, tr symCurl"⟩L2(")
= 0, (44)

⟨E, devGrad θ⟩L2(") = 0 (45)
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for all " ∈HT(symCurl,") and θ ∈ H1(") ∩ RT
⊥L2(")

0 . Observe that

(E, v) := (E, 0) ∈HT(symCurl,")×
(

H1(") ∩ RT
⊥L2(")

0

)

solves the modified variational system

⟨symCurlE, symCurl"⟩L2(") + ⟨", devGrad v⟩L2(") = −⟨p, tr symCurl"⟩L2(")
, (46)

⟨E, devGrad θ⟩L2(") = 0 (47)

for all " ∈HT(symCurl,") and θ ∈ H1(") ∩ RT
⊥L2(")

0 . On the other hand, any solution

(E, v) ∈HT(symCurl,")×
(

H1(") ∩ RT
⊥L2(")

0

)

of (46)–(47) satisfies v = 0, as (46) tested with

" := devGrad v ∈ devGradH1(") = HT(symCurl 0,")

shows devGrad v = 0 and thus v ∈ RT0 by Lemma 3.2, yielding v = 0. Note that (46)–(47) has the
saddle point structure

[ ◦
CurlSsymCurlT devGrad
−

◦
DivT 0

][
E
v

]
=
[
−

◦
CurlS(v I)

0

]
, (devGrad)∗ = −

◦
DivT.

We obtain the following final result.

Theorem 4.5: Let " be additionally topologically trivial. The variational problem (38)–(40) is equiv-
alent to the following well-posed and uniquely solvable variational system. For f ∈ H−1(") find p ∈
◦
H
1
("), E ∈HT(symCurl,"), v ∈ H1(") ∩ RT

⊥L2(")

0 , and u ∈
◦
H
1
(") such that

⟨grad u, gradϕ⟩L2(") + ⟨tr symCurlE,ϕ⟩L2(")
+ 3⟨p,ϕ⟩L2(")

= 0, (48)

⟨symCurlE, symCurl"⟩L2(") + ⟨", devGrad v⟩L2(") + ⟨p, tr symCurl"⟩L2(")
= 0, (49)

⟨E, devGrad θ⟩L2(") = 0, (50)

⟨grad p, gradψ⟩L2(") = −⟨f ,ψ⟩H−1(")
(51)

for all ψ ∈
◦
H
1
("), " ∈HT(symCurl,"), θ ∈ H1(") ∩ RT

⊥L2(")

0 , and ϕ ∈
◦
H
1
("). Moreover, the

unique solution (p,E, v, u) of (48)–(51) satisfies v = 0 and (p,E, u) is the unique solution of (38)–(40).

Note that the system (48)–(51) has the block triangular saddle point structure
⎡

⎢⎢⎢⎣

3 tr symCurlT 0 −
◦
!

◦
CurlS( · I)

◦
CurlSsymCurlT devGrad 0

0 −
◦

DivT 0 0
−
◦
! 0 0 0

⎤

⎥⎥⎥⎦

⎡

⎢⎢⎣

p
E
v
u

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

0
0
0
−f

⎤

⎥⎥⎦ (52)

with (tr symCurlT)∗ =
◦

CurlS( · I) and (devGrad)∗ = −
◦

DivT.
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Proof: We only have to show well-posedness of the partial system (49)–(50). First note that by
Theorem 3.12 the bilinear form ⟨symCurl · , symCurl · ⟩L2(") is coercive over HT(symCurl,") ∩
◦

HT(Div 0,"), which equals the kernel of (50). Indeed it follows from (50) that

E ∈
(
devGrad

(
H1(") ∩ RT

⊥L2(")

0

))⊥L2
T(")

=
◦

HT(Div 0,").

Moreover, the inf–sup-condition is satisfied as by picking for fixed 0 ̸= θ ∈ H1(") ∩ RT
⊥L2(")

0 the
tensor " := devGrad θ ∈ devGradH1(") = HT(symCurl 0,") we have

inf
0̸=θ∈H1("),
θ⊥L2(")

RT0

sup
"∈HT(symCurl,")

⟨", devGrad θ⟩L2(")

|"|HT(symCurl,")|θ |H1(")

≥ inf
0 ̸=θ∈H1("),
θ⊥L2(")

RT0

|devGrad θ |L2(")

|θ |H1(")

≥ 1
c

by Lemma 3.2 (iv). !

Remark 4.6: The corresponding result for the two-dimensional case is completely analogous with
the exception that the tensor potential E ∈HT(symCurl,") ∩

◦
HT(Div 0,") is to be replaced by a

much simpler vector potential w ∈ H1("). Furthermore, observe that

⟨symCurlw, symCurl θ⟩L2(") = ⟨symGrad⊥ w, symGrad⊥ θ⟩L2(")

holds for vector fields w, θ ∈ H1("). Here the superscript ⊥ denotes the rotation of a vector field
by 90◦. Note that the complicated second-order Neumann type Curl symCurl –Div-system for the
auxiliary tensor field E is replaced in 2D by amuch simpler Neumann linear elasticity problem, where
the standard Sobolev space H1(") resp. H1(") ∩ RM

⊥L2(") can be used. Here RM denotes the space
of rigid motions. This yields the decomposition result in [1] for the two-dimensional case, which was
shortly mentioned in the introduction.

Notes

1. $ is locally a graph of a Lipschitz function.
2. Note CurlM = dev CurlM forM ∈HS(Curl,") and thus for allM ∈

◦
HS(Curl,") ∩ symCurlHT(symCurl,")

|M|L2(") ≤ cR |CurlM|L2(") = cR |dev CurlM|L2(").
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Appendix. Proofs of some useful identities
Note that for a, b ∈ R3 and A ∈ R3×3

spn a : spn b = 2 a · b, skwA = 1
2 spn

⎡

⎣
A32 − A23
A13 − A31
A21 − A12

⎤

⎦ (A1)

hold and hence for skew-symmetric A

spn a : A = spn a : spn spn−1 A = 2 a · spn−1 A, (A2)

i.e. spn∗ = 2 spn−1. Moreover, we have for two matrices A,B

A⊤ : B = tr(AB) = tr(BA) = B⊤ : A = A : B⊤.

The assertions of Lemma 3.4 and 3.9 are contained in the assertions of the following lemma.
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Lemma A.1: For smooth functions, vector fields and tensor fields we have

(i) skwGradgrad u = 0,
(ii) divDivM = 0, ifM is skew-symmetric,
(iii) Curl(u I) = − spn grad u,
(iv) tr CurlM = 2 div(spn−1 skwM), especially tr CurlM = 0, ifM is symmetric,
(v) Div(u I) = grad u,
(vi) tr Grad v = div v,
(vii) Div(spn v) = − curl v, especially Div(skwM) = − curl v for v = spn−1 skwM,
(viii) Curl(spn v) = (div v) I− (Grad v)⊤, especially Curl skwM = (div v) I− (Grad v)⊤ for v = spn−1 skwM,
(ix) skwGrad v = 1

2 spn curl v and Curl(symGrad v) = −Curl(skwGrad v) = − 1
2 Curl(spn curl v),

(x) skwCurlM = spn v and Div(symCurlM) = −Div(skwCurlM) = curl v with v = 1
2 (DivM

⊤ − grad(trM)),
especially Div(symCurlM) = −Div(skwCurlM) = 1

2 curl DivM
⊤, if trM = 0,

(xi) grad div v = 3
2 Div dev (Grad v)⊤.

These formulas hold for distributions as well.

Proof: (i)–(ix) and the first identity in (x) follow by elementary calculations. For the second identity in (x) observe that
0 = Div CurlM = Div(symCurlM) + Div(skwCurlM) forM ∈

◦
C
∞

(R3) and hence, using the first identity in (x) and
(vii), we obtain

Div(symCurlM) = −Div(skwCurlM) = −Div(spn v) = curl v.
To see (xi) we compute

0 = Div Curl spn v = Div ((div v) I)− Div(Grad v)⊤

= Div ((div v) I)− Div dev (Grad v)⊤ − 1
3 Div

(
(tr (Grad v)⊤) I

)

= 2
3 Div ((div v) I)− Div dev (Grad v)⊤ = 2

3 grad div v − Div dev (Grad v)⊤.

Therefore, the stated formulas hold in the smooth case. By density these formulas extend to u, v, andM in respective
Sobolev spaces. Let us give proofs for distributions as well. For this, let m ∈ N0 and u ∈ H−m("), v ∈ H−m("), M ∈
H−m(") and ϕ ∈

◦
C
∞

("), θ ∈
◦
C
∞

("), and " ∈
◦
C
∞

("). By

⟨u, ∂ i ∂ j ϕ⟩H−m(")
= ⟨u, ∂ j ∂ i ϕ⟩H−m(")

, or(with(ii)) ⟨u, divDiv skw"⟩H−m(")
= 0,

we see that Gradgrad u ∈ H−m−2(") is symmetric and hence (i). Note that we observe formally (skwGradgrad)∗ =
divDiv skw. IfM is skew-symmetric we have ⟨M, Gradgrad ϕ⟩H−m(") = 0, i.e. (ii). We compute with (iv)

⟨u I, Curl"⟩H−m(") = ⟨u, tr(Curl")⟩H−m(")
= 2⟨u, div(spn−1 skw")⟩H−m(")

= −⟨spn grad u, skw"⟩H−m−1(") = −⟨spn grad u,"⟩H−m−1("),

showing (iii). Formally, (tr Curl)∗ = Curl( · I). Hence by (iii)

⟨M, Curl(ϕ I)⟩H−m(") = −⟨M, spn gradϕ⟩H−m(") = −⟨skwM, spn gradϕ⟩H−m(")

= −2⟨spn−1 skwM, gradϕ⟩H−m(") = 2⟨div spn−1 skwM,ϕ⟩H−m−1(")
,

yielding (iv). (v) follows by

−⟨u I, Grad θ⟩H−m(") = −⟨u, tr(Grad θ)⟩H−m(")
= −⟨u, div θ⟩H−m(")

.

Formally, (tr Grad)∗ = −Div( · I). Thus by (v)

−⟨v, Div(ϕ I)⟩H−m(") = −⟨v, gradϕ⟩H−m(") = ⟨div v,ϕ⟩H−m−1(")
,

yielding (vi). We have the formal adjoint (Div spn)∗ = (Div skw spn)∗ = −2 spn−1 skwGrad, and by the formula
2 skwGrad θ = spn curl θ from (ix), we obtain (vii), i.e.

−2⟨v, spn−1 skwGrad θ⟩H−m(") = −⟨v, curl θ⟩H−m(").

Using the formal adjoint (Curl spn)∗ = 2 spn−1 skwCurl we calculate with (x)

2⟨v, spn−1 skwCurl"⟩H−m(") = ⟨v, Div"⊤ − grad(tr")⟩H−m(")
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= −⟨Grad v,"⊤⟩H−m−1(") + ⟨div v, tr"⟩H−m−1(")
,

i.e. (viii) holds. Formally (skwGrad)∗ = −Div skw. Using (vii) we see

−⟨v, Div skw"⟩H−m(") = ⟨v, curl spn−1 skw"⟩H−m(") = 1
2 ⟨spn curl v, skw"⟩H−m−1("),

which proves (ix). We compute by (viii)

⟨M, Curl skw"⟩H−m(") = ⟨trM, div(spn−1 skw")⟩H−m(")
− ⟨M⊤, Grad(spn−1 skw")⟩H−m(")

= −⟨grad(trM), spn−1 skw"⟩H−m−1(") + ⟨DivM⊤, spn−1 skw"⟩H−m−1(")

= − 1
2 ⟨spn(grad trM), skw"⟩H−m−1(") + 1

2 ⟨spnDivM
⊤, skw"⟩H−m−1("),

showing the first formula in (x) and the second one follows by Div Curl = 0 and (vii). To prove (xi) we observe

⟨v, Div(devGrad θ)⊤⟩H−m(") = ⟨v, Div dev(Grad θ)⊤⟩H−m(") = 2
3 ⟨v, grad div θ⟩H−m("),

completing the proof. !

Proof of Lemma 3.20: For M ∈
◦

HS(Curl,") there exists a sequence ("n) ⊂
◦
C
∞

(") ∩L2
S(") with "n → M in

H(Curl,"). But then (ϕ"n) ⊂
◦
C
∞

(") ∩L2
S(") with ϕ"n → ϕM in H(Curl,"), proving ϕM ∈

◦
HS(Curl,"), as

we have Curl(ϕ"n) = ϕ Curl"n + gradϕ ×"n. This formula also shows for # ∈
◦
C
∞

(") (note that ϕ# ∈
◦
C
∞

("))

⟨ϕM, Curl#⟩L2(") = ⟨M,ϕ Curl#⟩L2(") = ⟨M, Curl(ϕ#)⟩L2(") − ⟨M, gradϕ ×#⟩L2(")

= ⟨CurlM,ϕ#⟩L2(") + ⟨gradϕ ×M,#⟩L2("),
(A3)

and thus Curl(ϕM) = ϕ CurlM + gradϕ ×M. Analogously we prove the other cases of (i). Similarly we show (iii)
using the formula Div(ϕ"n) = ϕDiv"n + gradϕ · "n. To show (ii), let M ∈HS(Curl,"). Then ϕM ∈ L2

S(")
and (A.3) shows ϕM ∈HS(Curl,") with the desired formula. Analogously the other cases of (ii) follow. Similarly
we prove (iv). Let E ∈HT(symCurl,") and " ∈

◦
C
∞

("). Then ϕE ∈ L2
T(") and with ϕ" ∈

◦
C
∞

(") we get

⟨ϕE, Curl sym"⟩L2(") = ⟨E,ϕ Curl sym"⟩L2(") = ⟨E, Curl sym(ϕ")⟩L2(") − ⟨E, gradϕ × sym"⟩L2(")

= ⟨symCurlE,ϕ"⟩L2(") + ⟨gradϕ × E, sym"⟩L2("),

which shows ϕE ∈HT(symCurl,") and symCurl(ϕE) = ϕ symCurlE + sym(gradϕ × E) and hence (v). To prove
(vi), letM ∈HS(divDiv,") and φ ∈

◦
C
∞

("). Then ϕM ∈ L2
S(") and we compute by

Gradgrad(ϕ φ) = ϕ Gradgradφ + φ Gradgradϕ + 2 sym
(
(gradϕ)(gradφ)⊤

)
,

(gradϕ)(gradφ)⊤ = Grad(φ gradϕ)− φ Gradgradϕ

the identity

Gradgrad(ϕ φ) = ϕ Gradgradφ − φ Gradgradϕ + 2 symGrad(φ gradϕ).

Finally with ϕφ ∈
◦
C
∞

(") we get

⟨ϕM, Gradgradφ⟩L2(") = ⟨M,ϕ Gradgradφ⟩L2(")

=
〈
M, Gradgrad(ϕ φ)

〉
L2(")

+ ⟨M,φ Gradgradϕ⟩L2(") − 2
〈
M, symGrad(φ gradϕ)

〉
L2(")

= ⟨divDivM,ϕ φ⟩L2(")
+ ⟨M :Gradgradϕ,φ⟩L2(") − 2

〈
M, Grad(φ gradϕ)

〉
L2(")

= ⟨ϕ divDivM,φ⟩L2(")
+
〈
tr (MGradgradϕ),φ

〉
L2(")

+ 2 ⟨DivM,φ gradϕ⟩H−1(")︸ ︷︷ ︸
=⟨DivM·gradϕ,φ⟩H−1(")

,

which shows (vi), i.e. ϕM ∈H0,−1
S (divDiv,") and

divDiv(ϕM) = ϕ divDivM + 2 gradϕ · DivM + tr (MGradgradϕ) ∈ H−1(").

The proof is finished. !
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