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Introduction:

Problem:

Here we are concerned with the generation of Cp-semigroups on
LP(RY;C™), 1 < p < oo, associated with

Lu:=Aqu+ Vu,
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Introduction:

Problem:

Here we are concerned with the generation of Cp-semigroups on
LP(RY;C™), 1 < p < oo, associated with

Lu:=Aqu+ Vu,

where Aqu = [div(QV ux)] k—1 mand V: RY — R™X™ be a
matrix-valued function with entries in Lﬁfc(Rd).
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Introduction:

Motivations:

e Time-dependent Born—Openheimer theory: See for example
Betz-Goddard-Teufel, Proc. R. Soc. A. 2009.
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Introduction:

Motivations:

e Time-dependent Born—Openheimer theory: See for example
Betz-Goddard-Teufel, Proc. R. Soc. A. 2009.

e Analysis of the weighted O-problem in C?, Bergman operators,
Kohn Laplacians: See B. Helffer et al., the Ph.D. thesis of
Gian Maria Dall'Ara "Matrix Schrodinger operators and
weighted Bergman kernels”, Scuola Normale Sup. Pisa 2015.
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Introduction:

Motivations:

e Time-dependent Born—Openheimer theory: See for example
Betz-Goddard-Teufel, Proc. R. Soc. A. 2009.

e Analysis of the weighted O-problem in C?, Bergman operators,
Kohn Laplacians: See B. Helffer et al., the Ph.D. thesis of
Gian Maria Dall'Ara "Matrix Schrodinger operators and
weighted Bergman kernels”, Scuola Normale Sup. Pisa 2015.

e Study of Nash equilibria to stochastic differential games: Cf.

Addona, Angiuli, Lorenzi, Tessitore, ESAIM Control. Optim.
Calc. Var. 2017.
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Introduction:

Schrodinger operators with complex potentials:
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Introduction:

Schrodinger operators with complex potentials:

Given scalar-valued functions v, w : R — R, and consider the
matrix potential

= (2 ) =wrs e 3 3)
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Introduction:

Schrodinger operators with complex potentials:

Given scalar-valued functions v, w : R — R, and consider the
matrix potential

= (2 ) =wrs e 3 3)

. .. o : 1 1
Diagonalizing the latter matrix via the matrix P = <—i i>' we
see that Ag + V is similar, via P, to the diagonal operator

(AOQ AOQ) * (W(X) o (o) ,-V(X)> |
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Introduction:

Problems:
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Introduction:

Problems:

e The generation of a Co-semigroup of the LP-realization L, of
£ on LP(RY,C™);
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Introduction:

Problems:

e The generation of a Co-semigroup of the LP-realization L, of
£ on LP(RY,C™);
e Characterization of D(Lp).
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Introduction:

Problems:

e The generation of a Co-semigroup of the LP-realization L, of
£ on LP(RY,C™);

e Characterization of D(Lp).

e Positivity, ultracontractivity and Gaussian estimates;
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Introduction:

Problems:

The generation of a Cg-semigroup of the LP-realization L, of
£ on LP(RY,C™);
Characterization of D(Lp).

Positivity, ultracontractivity and Gaussian estimates;

Compactness of the resolvent.
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Generation of Cy-semigroups with maximal domain:

Assumptions:

Throughout this part we assume
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Generation of Cy-semigroups with maximal domain:

Assumptions:

Throughout this part we assume
(a) Q:R? — RI¥ be Lipschitz cont. s.t.
qij = qji, Vi,j € {1,...,d},
ml¢l < R(Q(x)E, &) < mafé/?
(b) V:RY — R™™M st v; € L2 (RY),

loc

R(V(x)¢,6) <0, VxeR £eC™
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Generation of Cy-semigroups with maximal domain:

Examples:

If the above dissipativity condition for V is not satisfied, then it
can happen that no generation of Cp-semigroup is obtained
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Generation of Cy-semigroups with maximal domain:

Examples:

If the above dissipativity condition for V is not satisfied, then it
can happen that no generation of Cp-semigroup is obtained
Example:

Abdelaziz Rhandi (University of Salerno) Schrédinger systems



Generation of Cy-semigroups with maximal domain:

Examples:

If the above dissipativity condition for V is not satisfied, then it
can happen that no generation of Cp-semigroup is obtained

Example:
Taked =1, m=2, Lo =¢" + Vo,

V(x):<8 ’8) xER.
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Generation of Cy-semigroups with maximal domain:

Examples:

If the above dissipativity condition for V is not satisfied, then it
can happen that no generation of Cp-semigroup is obtained
Example:

Taked =1, m=2, Lo =¢" + Vo,

V(x):<8 ’8) xER.

A direct computation shows that A\¢ — L¢ = f does not admit
solutions in the maximal domain

Dpmax(£) = {¢ € LP(R;R?) : Lo € LP(R;R?)} for any A > 0 and
f € LP(R; R?).
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Generation of Cy-semigroups with maximal domain:

Vector-valued Kato's inequality:
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Generation of Cy-semigroups with maximal domain:

Vector-valued Kato's inequality:

Proposition 1:
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Generation of Cy-semigroups with maximal domain:

Vector-valued Kato's inequality:

Proposition 1:
For u= (u1,...,um) € HY (RY R™) s.t.
Aquj € LL (RY),j=1,...,d, the following hold:

loc
1 m
Aglul = Luzoy 10 > uibou;
j=1

in the sense of distributions.
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Generation of Cy-semigroups with maximal domain:

Generation of a semigroup in L2(R9; C™):

Kato's inequality implies:
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Generation of Cy-semigroups with maximal domain:

Generation of a semigroup in L2(R9; C™):

Kato's inequality implies:
» Lyu=Lu, u€ D(Ly) :={ue H(RY,C™): Luc
L?(R9,C™)} generates a Cy-semigroup on L2(R9, C™).
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Generation of Cy-semigroups with maximal domain:

Generation of a semigroup in L2(R9; C™):

Kato's inequality implies:
» Lyu=Lu, u€ D(Ly) :={ue H(RY,C™): Luc
L?(R9,C™)} generates a Cy-semigroup on L2(R9, C™).

> CX(RY,R™) is a core for L.
» Trotter-Kato product formula:

T(t)f = lim [e%AQe%V}n f, t>0,fel2R%CM).

n—o0
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Generation of Cy-semigroups with maximal domain:

Generation of a semigroup in L2(R9; C™):

Kato's inequality implies:
» Lyu=Lu, u€ D(Ly) :={ue H(RY,C™): Luc
L?(R9,C™)} generates a Cy-semigroup on L2(R9, C™).
> CX(RY,R™) is a core for L.
» Trotter-Kato product formula:
T(t)f = lim [e%AQe%V}n f, t>0,fe 2(R%CM).

n—o0

» T(-) can be extrapolated to a Co-semigroup Tp(:) on
LP(RY;C™), 1< p < 0.
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Generation of Cy-semigroups with maximal domain:

Further properties:

(1) T(-) can be extended to a Cp-semigroup on L1(R9; C™).
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Generation of Cy-semigroups with maximal domain:

Further properties:

(1) T(-) can be extended to a Cp-semigroup on L1(R9; C™).
(2) C=(R9;C™) is a core for L.
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Generation of Cy-semigroups with maximal domain:

Further properties:

(1) T(-) can be extended to a Cp-semigroup on L1(R9; C™).
(2) C=(R9;C™) is a core for L.
(3) Trotter—Kato product formula:

To(t)f = lim [e%AOe%V}"f, t>0, f € LP(RY;C™).

n—o0

(4) D(Lp) = {u € LP(RY;C™) N WZP(RY,C™) : Lu €
LP(R"C’")} - Dpm ()1<p<oo
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Generation of Cy-semigroups with maximal domain:

Analyticity and positivity of T(-):
Example:
Consider

V(x) = (_OX g) : x €R.
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Generation of Cy-semigroups with maximal domain:

Analyticity and positivity of T(-):
Example:
Consider
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Generation of Cy-semigroups with maximal domain:

Analyticity and positivity of T(-):
Example:
Consider

va:($ a, x €R.

4, . (A0 i 0
P gp_<0 INESITENE

{Tp(t) : t > 0} is analytic if and only if both the two semigroups
generated by By := A + ix are analytic on LP(R).
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Generation of Cy-semigroups with maximal domain:

Analyticity and positivity of T(-):
Example:
Consider

va:($ a, x €R.

4, . (A0 i 0
P gp_<0 INESITENE

{Tp(t) : t > 0} is analytic if and only if both the two semigroups
generated by By := A + ix are analytic on LP(R).

Consider U,f(x) = f(x — o), x € R, f € LP(R), for arbitrary fixed
o €R. So,

U_,B+Uy, = BFiol.
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Generation of Cy-semigroups with maximal domain:

Analyticity and positivity of T(-):
Example:
Consider

va:($ a, x €R.

4, . (A0 i 0
P gp_<0 INESITENE

{Tp(t) : t > 0} is analytic if and only if both the two semigroups
generated by By := A + ix are analytic on LP(R).

Consider U,f(x) = f(x — o), x € R, f € LP(R), for arbitrary fixed
o €R. So,

U_,B+Uy, = BFiol.

Thus, the semigroups generated by By are not analytic.

Abdelaziz Rhandi (University of Salerno) Schrédinger systems



Generation of Cy-semigroups with maximal domain:

Analyticity and positivity of T,(-):

> —R(V(x)¢, &) = CIS(V(x)8, )| = Tp() is analytic

Abdelaziz Rhandi (University of Salerno) Schrédinger systems



Generation of Cy-semigroups with maximal domain:

Analyticity and positivity of T,(-):

CQ

> —R(V(x)S,€) =

CI(V(x)E,6)| = Tp(:) is analytic
> Tp(-) 20 < vi(x)

0, k # [ for a.e. x € RY:

| \/
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Generation of Cy-semigroups with maximal domain:

Analyticity and positivity of T,(-):

> —R(V(x)§, &) = CIS(V(x)E, §) = Tp(+) is analytic
> To(-) >0 & vy(x) >0, k#[forae xe€ RY:
This follows from the positive minimum principle.
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Generation of Cy-semigroups with maximal domain:

Example: Analytic semigroups

consider
V(x): —(1—|—]x") —X _ 0 —x —(1+]X\r)/
x —(1+ x| x 0 >
where r > 1.
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Generation of Cy-semigroups with maximal domain:

Example: Analytic semigroups

consider
v = (TR ) = (2 ) - as e

where r > 1. For £ = <§1) € C2 one has
2

(V(x)E€) = —(1+ [x|]")(&] + &) + x(&&2 — &.&).
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Generation of Cy-semigroups with maximal domain:

Example: Analytic semigroups

So,
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Generation of Cy-semigroups with maximal domain:

Example: Analytic semigroups

So,
R(V(x)E,€) = —(1+ [x|")(E + €3)

and

iIS(V(x)E,€) = x(&162 — &1&).
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Generation of Cy-semigroups with maximal domain:

Example: Analytic semigroups

So,
R(V(x)E,6) = —(1+ [x")(&] + &)
and
iIS(V(x)E,€) = x(&162 — &1&).
Hence,

IS(V(x)€,6)] < 2xlleréa] < (1 + [x|)(€F + &) = R(=V(x)¢, ).
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Generation of Cy-semigroups with maximal domain:

Example: Analytic semigroups

So,
R(V(x)E,6) = —(1+ [x")(&] + &)
and
iIS(V(x)E,€) = x(&162 — &1&).
Hence,

(V)€ )] < 2Ix[l&1&a] < (1+ [xI")(EF + &) = R(=V(x)E,€).

Thus the semigroup is analytic.
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:

To(+) the semigroup on LP(RY) generated by the scalar operator
Ag = div(QV-), with domain W?2P(RY).
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:

To(+) the semigroup on LP(RY) generated by the scalar operator
Ag = div(QV-), with domain W?2P(RY).
Lemma 8:

| T(t)f]> < To(t)|f|?, t>0, f e C°(RY;R™).
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:
To(+) the semigroup on LP(RY) generated by the scalar operator
Ag = div(QV-), with domain W?2P(RY).
Lemma 8:
IT(t)f]? < To(t)|f]?, t>0, f € C°(R%R™).

Proof.
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:

To(+) the semigroup on LP(RY) generated by the scalar operator
Ag = div(QV-), with domain W?2P(RY).

Lemma 8:

| T(t)f]> < To(t)|f|?, t>0, f e C°(RY;R™).
Proof.
For f € C°(RY;R™) and fixed p € (1,00), set u(t,-) = T(t)f, for
t > 0.
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:
To(+) the semigroup on LP(RY) generated by the scalar operator
Ag = div(QV-), with domain W?2P(RY).
Lemma 8:
IT(t)f]? < To(t)|f]?, t>0, f € C°(R%R™).

Proof.
For f € C°(RY;R™) and fixed p € (1,00), set u(t,-) = T(t)f, for
t > 0. One has f € D(A;) C W2I(R?; R™). Thus u €

loc

C([0,00); WA (RY; R™)) N C1([0, 00); LI(RY; R™)), Vg € (1, 00).
So, the scalar function |u|? € C([0, 00); V\/,if(Rd)), and

Abdelaziz Rhandi (University of Salerno) Schrédinger systems



Ultracontractivity and Gaussian estimates:

Ultracontractivity:
To(+) the semigroup on LP(RY) generated by the scalar operator
Ag = div(QV-), with domain W?2P(RY).
Lemma 8:
IT(t)f]? < To(t)|f]?, t>0, f € C°(R%R™).

Proof.
For f € C°(RY;R™) and fixed p € (1,00), set u(t,-) = T(t)f, for
t > 0. One has f € D(A;) C W2I(R?; R™). Thus u €

loc

C([0,00); WA (RY; R™)) N C1([0, 00); LI(RY; R™)), Vg € (1, 00).
So, the scalar function |u|? € C([0, 00); V\/,if(Rd)), and

1 m
§atyuy2 = (Oru,u) =Y div(QVug)uy + (Vu, u)
k=1

Abdelaziz Rhandi (University of Salerno Schrédinger systems



Ultracontractivity and Gaussian estimates:

Ultracontractivity:

Set w(s,-) = To(t — s)|ul?(s,), s € [0, t].
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:

Set w(s,-) = To(t — s)|ul?(s,), s € [0, t].
So,
Dew(s,) = — To(t — ) glul(s,) + Tolt — )05 uf(s, )
=To(t — 5)(s|ul*(s,") — Dglul*(s. "))
=To(t —s)v(s,-) <O0.
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:

get w(s,-) = To(t — s)|ul?(s,), s € [0, t].

dew(s, ) = — To(t — $)Bglul®(s,) + To(t — 5)dslul*(s, )
=To(t — 5)(s|ul*(s,") — Dglul*(s. "))
=To(t —s)v(s,-) <O0.

Hence, w(t,-) < w(0,-). O
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:

Lemma 8 =
> d
IT()flloo < Mt™2|f|y, t>0f € LHR%C™).
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:

Lemma 8 =
> d
IT()flloo < Mt™2|f|y, t>0f € LHR%C™).

> JK(t,-,-) € L°(RY x RY; R™ ™) s .

(T(H)F)(x) = /Rd K(t,x,y)f(y)dy, t >0, x e RY f e LP(R?;C™).
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Ultracontractivity and Gaussian estimates:

Ultracontractivity:

Lemma 8 =
> d
IT()flloo < Mt™2|f|y, t>0f € LHR%C™).

> JK(t,-,-) € L°(RY x RY; R™ ™) s .

(T(H)F)(x) = /Rd K(t,x,y)f(y)dy, t >0, x e RY f e LP(R?;C™).

x — y|?
4t

|kij(t,x,y)| < Clt_%exp{—Cg 1, x,yERd, t>0.
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Ultracontractivity and Gaussian estimates:

Compactness:

Abdelaziz Rhandi i ity of Salerno) Schrédinger systems



Ultracontractivity and Gaussian estimates:

Compactness:

Assume in addition that
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Ultracontractivity and Gaussian estimates:

Compactness:

Assume in addition that 3x : RY — [0, 00) with
lim |00 K(X) = 00 s.t. [V(x)E] > w(x)[¢], Vx € RY, € € R™.
Then, Vp € (1,00),
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Ultracontractivity and Gaussian estimates:

Compactness:

Assume in addition that 3x : RY — [0, 00) with
lim |00 K(X) = 00 s.t. [V(x)E] > w(x)[¢], Vx € RY, € € R™.
Then, Vp € (1,00),

e [, has compact resolvent;
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Ultracontractivity and Gaussian estimates:

Compactness:

Assume in addition that 3x : RY — [0, 00) with
lim |00 K(X) = 00 s.t. [V(x)E] > w(x)[¢], Vx € RY, € € R™.
Then, Vp € (1,00),

e [, has compact resolvent;

e o(Lp) is independent of p and consists of eigenvalues only.
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Ultracontractivity and Gaussian estimates:

Compactness:
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Ultracontractivity and Gaussian estimates:

Compactness:

Compactness may fail even if all entries in the potential V are
unbounded near co.
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Ultracontractivity and Gaussian estimates:

Compactness:

Compactness may fail even if all entries in the potential V are
unbounded near co.

Example 4:

Take

V(x) = <_|X| |X|>, x € RY.

Xl =Ix
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Ultracontractivity and Gaussian estimates:

Compactness:

Compactness may fail even if all entries in the potential V are
unbounded near co.

Example 4:

Take

V(x) = <_|X| _|TX|>, x e R

[x]

For f € W2P(R?;C™), u = (f,f) € D(Lp) and
Lou = (Dpf, Af).

Abdelaziz Rhandi (University of Salerno) Schrédinger systems



Ultracontractivity and Gaussian estimates:

Compactness:

Compactness may fail even if all entries in the potential V are
unbounded near co.

Example 4:

Take

V(x) = <_|X| _|TX|>, x e R

[x]

For f € W2P(R?;C™), u = (f,f) € D(Lp) and
Lou = (Dpf, Apf). So,
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Ultracontractivity and Gaussian estimates:

Compactness:

Compactness may fail even if all entries in the potential V are
unbounded near co.

Example 4:

Take

V(x) = <_|X| o ) x € RY.

x| =Ix]

For f € W2P(R?;C™), u = (f,f) € D(Lp) and
Lou = (Dpf, Apf). So,

tA
Sp(t)u = <Zmp§> , t>0, f e LP(RY).
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Ultracontractivity and Gaussian estimates:

Compactness:

Compactness may fail even if all entries in the potential V are
unbounded near co.

Example 4:

Take

V(x) = <_|X| o ) x € RY.

x| =Ix]

For f € W2P(R?;C™), u = (f,f) € D(Lp) and
Lou = (Dpf, Apf). So,

tA
Sp(t)u = <Zmp§> , t>0, f e LP(RY).

Thus,
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Ultracontractivity and Gaussian estimates:

Compactness:

Compactness may fail even if all entries in the potential V are
unbounded near co.

Example 4:

Take

V(x) = <_|X| o ) x € RY.

x| =Ix]

For f € W2P(R?;C™), u = (f,f) € D(Lp) and
Lou = (Dpf, Apf). So,

tA
Sp(t)u = <Zmp§> , t>0, f e LP(RY).

Thus, Sp(+) cannot be compact.
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Maximal inequalities:

D(L,) = W?P(R? C™)n D(V)?
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Maximal inequalities:

D(L,) = W?P(R? C™)n D(V)?

» (Maximal inequality)
allVEllpHfllwzews,cm) < ILofll < (VAo +IFllwep@e,cm)?

feD(Lp),1<p<oo.
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Maximal inequalities:

Assumptions:

> v € W (RY),
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Maximal inequalities:

Assumptions:

> v € W (RY),
> (V(x)£,€) <0, VxeRY £eR™,

Abdelaziz Rhandi (University of Salerno) Schrédinger systems



Maximal inequalities:

Assumptions:

> vj € W (RY),

> (V(x)E,6) <0, VxeRY ¢eR™,

» x — DjV(x)(—V(x))~® is uniformly bounded in RY for some
a €10,1/2).
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Maximal inequalities:

Example:

Consider d = 1, m = 2. Choosing r € [1,2),

V(x) = (_(1£|X|r) 1+0!XV> — (144" (_01 (1)) xER.
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Maximal inequalities:

Example:

Consider d = 1, m = 2. Choosing r € [1,2),

V(x) = (_(1£|X|r) 1+0!XV> — (144" (_01 é) xER.

We find (V(x)£,€) =0, Vx € R, £ € R2.
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Example:

Consider d = 1, m = 2. Choosing r € [1,2),

V(x) = (_(1£|X|r) 1+0!XV> — (144" (_01 é) xER.

We find (V(x)£,€) =0, Vx € R, £ € R2.
Moreover,

DV (Vi) =2 x (8 o) (3 )
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Example:

Consider d = 1, m = 2. Choosing r € [1,2),

V(x) = (_(1£|X|r) 1+0!XV> — (144" (_01 é) xER.

We find (V(x)£,€) =0, Vx € R, £ € R2.
Moreover,

DV (Vi) =2 x (8 o) (3 )

I\)\l—l

Now, if we pick o € (“1,1), then r — 1 — ar < 0, so that
x = DyV(x) - (—=V(x))~® is bounded.
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Maximal inequalities results:
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Maximal inequalities results:

Theorem 1:

Under the above assumptions, —(Ag + V), defined on
W?2P(RY,C™) N D(V,), is closed, densely defined and sectorial.
So, Lumer-Phillips Theorem implies L, = Ag + V with domain
W?2P(RY,C™) N D(V,) generates a Co-semigroup of contractions
on LP(RY,R™), 1 < p < co.
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Skech of the proof:

Set
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Skech of the proof:

Set

Couf = (_Ap)()‘_Ap)_l[(_Ap)_l(H_ Vp)_l_(ﬂ_ Vp)_l(_Ap)_l]fa

Vf € LP(RY,C™), X € Trt4,0 14 E Tnoy, -
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Skech of the proof:

Set

Couf = (_Ap)()‘_Ap)_l[(_Ap)_l(H_ Vp)_l_(ﬂ_ Vp)_l(_Ap)_l]fa

Vf € LP(RY,C™), X € Trt4,0 14 E Tnoy, -
We show

1Cufllp < —1——Ifllp-

||||2
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Skech of the proof:

Set
Couf = (_Ap)()‘_Ap)_l[(_Ap)_l(H_ Vp)_l_(ﬂ_ Vp)_l(_Ap)_l]fa

Vf € LP(RY,C™), X € Trt4,0 14 E Tnoy, -
We show

I6uufll < e | pele

Use a noncommutative version of the Dore-Venni perturbation
theorem, see Monniaux-Pruss, TAM. 1997, to conclude.
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More general potentials:

Consider 0 < v € W,i’coo(Rd), B, the multiplication by v in
LP(RY,C™). Let v. = v(1 +¢ev)~1, e > 0. Denote by B, the
multiplication by v, (the Yosida approximation of B,).
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More general potentials:

Consider 0 < v € W,}J’COO(Rd), B, the multiplication by v in
LP(RY,C™). Let v. = v(1 +¢ev)~1, e > 0. Denote by B, the
multiplication by v, (the Yosida approximation of B,).

Theorem 2:

L, — sBp with domain D(Lp) N D(By) for suitable s > 0 generates
a contraction Co-semigroup on LP(R?,C™), under the condition
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More general potentials:

Consider 0 < v € W,}J’COO(Rd), B, the multiplication by v in
LP(RY,C™). Let v. = v(1 +¢ev)~1, e > 0. Denote by B, the
multiplication by v, (the Yosida approximation of B,).

Theorem 2:

L, — sBp with domain D(Lp) N D(By) for suitable s > 0 generates
a contraction Co-semigroup on LP(R?,C™), under the condition

IVv.(x)? < a(ve(x))? + b(ve(x))}, £>0, xeRC.
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More general potentials:

Consider 0 < v € W,}J’COO(Rd), B, the multiplication by v in
LP(RY,C™). Let v. = v(1 +¢ev)~1, e > 0. Denote by B, the
multiplication by v, (the Yosida approximation of B,).

Theorem 2:

L, — sBp with domain D(Lp) N D(By) for suitable s > 0 generates
a contraction Co-semigroup on LP(R?,C™), under the condition

IVv.(x)? < a(ve(x))? + b(ve(x))}, £>0, xeRC.

To show such result we use a perturbation theorem due to
Okazawa, Japan J. Math. 1996.
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Examples:
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Examples:

» Forre[l,2),a>1,
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Examples:

» Forre[l,2),a>1,

(Ao 0 >+ (IX!/Og(1+X\2) [x" )
0 Ag =X’ |x|log(1+ [x|?) )~
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Many thanks
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