L^p-theory for Schrödinger systems

Abdelaziz Rhandi (University of Salerno)

Nordwestdeutsches Funktionalanalysis-Kolloquium, Essen, 22 June, 2019

Problem:

Here we are concerned with the generation of C_0 -semigroups on $L^p(\mathbb{R}^d; \mathbb{C}^m), 1 , associated with$

 $\mathcal{L}u:=\Delta_Q u+Vu,$

Problem:

Here we are concerned with the generation of C_0 -semigroups on $L^p(\mathbb{R}^d; \mathbb{C}^m)$, 1 , associated with

$$\mathcal{L}u:=\Delta_Q u+Vu,$$

where $\Delta_Q u = [\operatorname{div}(Q \nabla u_k)]_{k=1,\dots,m}$ and $V : \mathbb{R}^d \to \mathbb{R}^{m \times m}$ be a matrix-valued function with entries in $L^{\infty}_{\operatorname{loc}}(\mathbb{R}^d)$.

Motivations:

• Time-dependent Born–Openheimer theory: See for example Betz-Goddard-Teufel, Proc. R. Soc. A. 2009.

Motivations:

- Time-dependent Born–Openheimer theory: See for example Betz-Goddard-Teufel, Proc. R. Soc. A. 2009.
- Analysis of the weighted ∂-problem in C^d, Bergman operators, Kohn Laplacians: See B. Helffer et al., the Ph.D. thesis of Gian Maria Dall'Ara "Matrix Schrödinger operators and weighted Bergman kernels", Scuola Normale Sup. Pisa 2015.

Motivations:

- Time-dependent Born–Openheimer theory: See for example Betz-Goddard-Teufel, Proc. R. Soc. A. 2009.
- Analysis of the weighted ∂-problem in C^d, Bergman operators, Kohn Laplacians: See B. Helffer et al., the Ph.D. thesis of Gian Maria Dall'Ara "Matrix Schrödinger operators and weighted Bergman kernels", Scuola Normale Sup. Pisa 2015.
- Study of Nash equilibria to stochastic differential games: Cf. Addona, Angiuli, Lorenzi, Tessitore, ESAIM Control. Optim. Calc. Var. 2017.

Introduction:

Generation of C_0 -semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Schrödinger operators with complex potentials:

Schrödinger operators with complex potentials:

Given scalar-valued functions $v,w:\mathbb{R}^d\to\mathbb{R},$ and consider the matrix potential

$$V(x) = \begin{pmatrix} w(x) & -v(x) \\ v(x) & w(x) \end{pmatrix} = w(x) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + v(x) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Schrödinger operators with complex potentials:

Given scalar-valued functions $v, w : \mathbb{R}^d \to \mathbb{R}$, and consider the matrix potential

$$V(x) = \begin{pmatrix} w(x) & -v(x) \\ v(x) & w(x) \end{pmatrix} = w(x) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + v(x) \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Diagonalizing the latter matrix via the matrix $P = \begin{pmatrix} 1 & 1 \\ -i & i \end{pmatrix}$, we see that $\Delta_Q + V$ is similar, via P, to the diagonal operator

$$\begin{pmatrix} \Delta_Q & 0 \\ 0 & \Delta_Q \end{pmatrix} + \begin{pmatrix} w(x) + iv(x) & 0 \\ 0 & w(x) - iv(x) \end{pmatrix}.$$

Introduction:

Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Problems:

 The generation of a C₀-semigroup of the L^p-realization L_p of *L* on L^p(ℝ^d, ℂ^m);
 Introduction: Generation of C_0 -semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

- The generation of a C₀-semigroup of the L^p-realization L_p of *L* on L^p(ℝ^d, ℂ^m);
- Characterization of $D(L_p)$.

- The generation of a C₀-semigroup of the L^p-realization L_p of *L* on L^p(ℝ^d, ℂ^m);
- Characterization of $D(L_p)$.
- Positivity, ultracontractivity and Gaussian estimates;

Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

- The generation of a C₀-semigroup of the L^p-realization L_p of *L* on L^p(ℝ^d, ℂ^m);
- Characterization of $D(L_p)$.
- Positivity, ultracontractivity and Gaussian estimates;
- Compactness of the resolvent.

Introduction: Generation of C_0 -semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Assumptions:

Throughout this part we assume

Assumptions:

Throughout this part we assume (a) $Q : \mathbb{R}^d \to \mathbb{R}^{d \times d}$ be Lipschitz cont. s.t. $q_{ij} = q_{ji}, \forall i, j \in \{1, \dots, d\},$ $\eta_1 |\xi|^2 \leq \Re \langle Q(x)\xi, \xi \rangle \leq \eta_2 |\xi|^2$ (b) $V : \mathbb{R}^d \to \mathbb{R}^{m \times m}$ s.t. $v_{ij} \in L^{\infty}_{loc}(\mathbb{R}^d),$ $\Re \langle V(x)\xi, \xi \rangle \leq 0, \quad \forall x \in \mathbb{R}^d, \xi \in \mathbb{C}^m.$

Examples:

If the above dissipativity condition for V is not satisfied, then it can happen that no generation of C_0 -semigroup is obtained

Examples:

If the above dissipativity condition for V is not satisfied, then it can happen that no generation of C_0 -semigroup is obtained **Example:**

Examples:

If the above dissipativity condition for V is not satisfied, then it can happen that no generation of C_0 -semigroup is obtained **Example:**

Take $d = 1, m = 2, \mathcal{L}\phi = \phi'' + V\phi$,

$$V(x) = \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix}, \qquad x \in \mathbb{R}.$$

Examples:

If the above dissipativity condition for V is not satisfied, then it can happen that no generation of C_0 -semigroup is obtained **Example:**

Take $d = 1, m = 2, \mathcal{L}\phi = \phi'' + V\phi$,

$$V(x) = egin{pmatrix} 0 & x \ 0 & 0 \end{pmatrix}, \qquad x \in \mathbb{R}.$$

A direct computation shows that $\lambda \phi - \mathcal{L}\phi = f$ does not admit solutions in the maximal domain $D_{p,\max}(\mathcal{L}) = \{\phi \in L^p(\mathbb{R}; \mathbb{R}^2) : \mathcal{L}\phi \in L^p(\mathbb{R}; \mathbb{R}^2)\}$ for any $\lambda > 0$ and $f \in L^p(\mathbb{R}; \mathbb{R}^2)$.

Vector-valued Kato's inequality:

Vector-valued Kato's inequality:

Proposition 1:

Vector-valued Kato's inequality:

Proposition 1: For $u = (u_1, \ldots, u_m) \in H^1_{loc}(\mathbb{R}^d; \mathbb{R}^m)$ s.t. $\Delta_Q u_j \in L^1_{loc}(\mathbb{R}^d), j = 1, \ldots, d$, the following hold: $\Delta_Q |u| \ge \mathfrak{U}_{\{u \neq 0\}} \frac{1}{|u|} \sum_{i=1}^m u_j \Delta_Q u_j$

in the sense of distributions.

Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Generation of a semigroup in $L^2(\mathbb{R}^d; \mathbb{C}^m)$:

Kato's inequality implies:

Generation of a semigroup in $L^2(\mathbb{R}^d; \mathbb{C}^m)$:

Kato's inequality implies:

►
$$L_2 u = \mathcal{L} u, u \in D(L_2) := \{u \in H^1(\mathbb{R}^d, \mathbb{C}^m) : \mathcal{L} u \in L^2(\mathbb{R}^d, \mathbb{C}^m)\}$$
 generates a C_0 -semigroup on $L^2(\mathbb{R}^d, \mathbb{C}^m)$.

Generation of a semigroup in $L^2(\mathbb{R}^d; \mathbb{C}^m)$:

Kato's inequality implies:

►
$$L_2 u = \mathcal{L} u, u \in D(L_2) := \{u \in H^1(\mathbb{R}^d, \mathbb{C}^m) : \mathcal{L} u \in L^2(\mathbb{R}^d, \mathbb{C}^m)\}$$
 generates a C_0 -semigroup on $L^2(\mathbb{R}^d, \mathbb{C}^m)$.

•
$$C_c^{\infty}(\mathbb{R}^d,\mathbb{R}^m)$$
 is a core for L.

Trotter-Kato product formula:

$$T(t)f = \lim_{n\to\infty} \left[e^{\frac{t}{n}\Delta_Q}e^{\frac{t}{n}V}\right]^n f, \quad t>0, f\in L^2(\mathbb{R}^d;\mathbb{C}^m).$$

Generation of a semigroup in $L^2(\mathbb{R}^d; \mathbb{C}^m)$:

Kato's inequality implies:

▶
$$L_2u = \mathcal{L}u, u \in D(L_2) := \{u \in H^1(\mathbb{R}^d, \mathbb{C}^m) : \mathcal{L}u \in L^2(\mathbb{R}^d, \mathbb{C}^m)\}$$
 generates a C_0 -semigroup on $L^2(\mathbb{R}^d, \mathbb{C}^m)$.

•
$$C^{\infty}_{c}(\mathbb{R}^{d},\mathbb{R}^{m})$$
 is a core for L.

Trotter-Kato product formula:

$$T(t)f = \lim_{n\to\infty} \left[e^{\frac{t}{n}\Delta_Q}e^{\frac{t}{n}V}\right]^n f, \quad t>0, f\in L^2(\mathbb{R}^d;\mathbb{C}^m).$$

T(·) can be extrapolated to a C₀-semigroup T_p(·) on L^p(ℝ^d; ℂ^m), 1 ≤ p < ∞.</p> Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Further properties:

(1) $T(\cdot)$ can be extended to a C_0 -semigroup on $L^1(\mathbb{R}^d; \mathbb{C}^m)$.

Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Further properties:

T(·) can be extended to a C₀-semigroup on L¹(ℝ^d; ℂ^m).
 C_c[∞](ℝ^d; ℂ^m) is a core for L_p.

Further properties:

T(·) can be extended to a C₀-semigroup on L¹(ℝ^d; ℂ^m).
 C_c[∞](ℝ^d; ℂ^m) is a core for L_p.
 Trotter-Kato product formula:

$$T_p(t)f = \lim_{n\to\infty} \left[e^{\frac{t}{n}\Delta_Q}e^{\frac{t}{n}V}\right]^n f, \quad t>0, f\in L^p(\mathbb{R}^d;\mathbb{C}^m).$$

(4)
$$D(L_p) = \{ u \in L^p(\mathbb{R}^d; \mathbb{C}^m) \cap W^{2,p}_{loc}(\mathbb{R}^d; \mathbb{C}^m) : \mathcal{L}u \in L^p(\mathbb{R}^d; \mathbb{C}^m) \} =: D_{p,\max}(\mathcal{L}), \ 1$$

Analyticity and positivity of $T(\cdot)$:

Example: Consider

$$V(x) = egin{pmatrix} 0 & x \ -x & 0 \end{pmatrix}, \qquad x \in \mathbb{R}.$$

Analyticity and positivity of $T(\cdot)$:

Example: Consider

$$V(x) = egin{pmatrix} 0 & x \ -x & 0 \end{pmatrix}, \qquad x \in \mathbb{R}.$$

$$P^{-1}L_{\rho}P = \begin{pmatrix} \Delta & 0 \\ 0 & \Delta \end{pmatrix} + x \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},$$

Analyticity and positivity of $T(\cdot)$:

Example: Consider

$$V(x) = egin{pmatrix} 0 & x \ -x & 0 \end{pmatrix}, \qquad x \in \mathbb{R}.$$

$$P^{-1}L_pP = \begin{pmatrix} \Delta & 0 \\ 0 & \Delta \end{pmatrix} + x \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},$$

 $\{T_p(t): t \ge 0\}$ is analytic if and only if both the two semigroups generated by $B_{\pm} := \Delta \pm ix$ are analytic on $L^p(\mathbb{R})$.

Analyticity and positivity of $T(\cdot)$:

Example: Consider

$$V(x) = egin{pmatrix} 0 & x \ -x & 0 \end{pmatrix}, \qquad x \in \mathbb{R}.$$

$$P^{-1}L_{p}P = \begin{pmatrix} \Delta & 0 \\ 0 & \Delta \end{pmatrix} + x \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},$$

 $\{T_p(t): t \ge 0\}$ is analytic if and only if both the two semigroups generated by $B_{\pm} := \Delta \pm ix$ are analytic on $L^p(\mathbb{R})$. Consider $\mathcal{U}_{\sigma}f(x) = f(x - \sigma), x \in \mathbb{R}, f \in L^p(\mathbb{R})$, for arbitrary fixed $\sigma \in \mathbb{R}$. So,

$$\mathfrak{U}_{-\sigma}B_{\pm}\mathfrak{U}_{\sigma}=B\mp i\sigma I.$$

Analyticity and positivity of $T(\cdot)$:

Example: Consider

$$V(x)=egin{pmatrix} 0&x\ -x&0 \end{pmatrix},\qquad x\in\mathbb{R}.$$

$$P^{-1}L_{p}P = \begin{pmatrix} \Delta & 0 \\ 0 & \Delta \end{pmatrix} + x \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},$$

 $\{T_p(t): t \ge 0\}$ is analytic if and only if both the two semigroups generated by $B_{\pm} := \Delta \pm ix$ are analytic on $L^p(\mathbb{R})$. Consider $\mathcal{U}_{\sigma}f(x) = f(x - \sigma), x \in \mathbb{R}, f \in L^p(\mathbb{R})$, for arbitrary fixed $\sigma \in \mathbb{R}$. So,

$$\mathfrak{U}_{-\sigma}B_{\pm}\mathfrak{U}_{\sigma}=B\mp i\sigma I.$$

Thus, the semigroups generated by B_{\pm} are not analytic.

Analyticity and positivity of $T_p(\cdot)$:

$\blacktriangleright - \Re \langle V(x)\xi,\xi\rangle \ge C |\Im \langle V(x)\xi,\xi\rangle| \Rightarrow T_{p}(\cdot) \text{ is analytic}$
Analyticity and positivity of $T_p(\cdot)$:

Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Analyticity and positivity of $T_{\rho}(\cdot)$:

$$\blacktriangleright - \Re \langle V(x)\xi,\xi\rangle \geq C \left| \Im \langle V(x)\xi,\xi\rangle \right| \Rightarrow T_p(\cdot) \text{ is analytic}$$

Abdelaziz Rhandi (University of Salerno) Schrödinger systems

Example: Analytic semigroups

consider

$$V(x) = egin{pmatrix} -(1+|x|^r) & -x \ x & -(1+|x|^r) \end{pmatrix} = egin{pmatrix} 0 & -x \ x & 0 \end{pmatrix} - (1+|x|^r) I_2,$$

where $r \geq 1$.

Example: Analytic semigroups

consider

$$V(x) = \begin{pmatrix} -(1+|x|^r) & -x \\ x & -(1+|x|^r) \end{pmatrix} = \begin{pmatrix} 0 & -x \\ x & 0 \end{pmatrix} - (1+|x|^r)I_2,$$

where $r\geq 1.$ For $\xi=egin{pmatrix} \xi_1\\ \xi_2 \end{pmatrix}\in \mathbb{C}^2$ one has

 $\langle V(x)\xi,\xi\rangle = -(1+|x|^r)(\xi_1^2+\xi_2^2)+x(\xi_1\bar{\xi}_2-\bar{\xi}_1\xi_2).$

Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Example: Analytic semigroups

So,

Example: Analytic semigroups

So,

$$\Re \langle V(x)\xi,\xi
angle = -(1+|x|^r)(\xi_1^2+\xi_2^2)$$

and

$$i\Im\langle V(x)\xi,\xi\rangle = x(\xi_1\bar{\xi}_2-\bar{\xi}_1\xi_2).$$

Example: Analytic semigroups

So,

$$\Re \langle V(x)\xi,\xi
angle = -(1+|x|^r)(\xi_1^2+\xi_2^2)$$

and

$$i\Im\langle V(x)\xi,\xi\rangle = x(\xi_1\bar{\xi}_2-\bar{\xi}_1\xi_2).$$

Hence,

 $|\Im\langle V(x)\xi,\xi\rangle|\leq 2|x||\xi_1\xi_2|\leq (1+|x|^r)(\xi_1^2+\xi_2^2)=\Re\langle -V(x)\xi,\xi\rangle.$

Example: Analytic semigroups

So,

$$\Re \langle V(x)\xi,\xi
angle = -(1+|x|^r)(\xi_1^2+\xi_2^2)$$

and

$$i\Im\langle V(x)\xi,\xi\rangle = x(\xi_1\bar{\xi}_2-\bar{\xi}_1\xi_2).$$

Hence,

 $|\Im\langle V(x)\xi,\xi\rangle|\leq 2|x||\xi_1\xi_2|\leq (1+|x|^r)(\xi_1^2+\xi_2^2)=\Re\langle -V(x)\xi,\xi\rangle.$

Thus the semigroup is analytic.

Ultracontractivity:

 $T_0(\cdot)$ the semigroup on $L^p(\mathbb{R}^d)$ generated by the scalar operator $\Delta_Q = \operatorname{div}(Q\nabla \cdot)$, with domain $W^{2,p}(\mathbb{R}^d)$.

Introduction: Generation of C_0 -semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Ultracontractivity:

 $T_0(\cdot)$ the semigroup on $L^p(\mathbb{R}^d)$ generated by the scalar operator $\Delta_Q = \operatorname{div}(Q\nabla \cdot)$, with domain $W^{2,p}(\mathbb{R}^d)$. Lemma 8:

 $|T(t)f|^2 \leq T_0(t)|f|^2, \qquad t>0, \ f\in C^\infty_c(\mathbb{R}^d;\mathbb{R}^m).$

Introduction: Generation of C_0 -semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Ultracontractivity:

 $T_0(\cdot)$ the semigroup on $L^p(\mathbb{R}^d)$ generated by the scalar operator $\Delta_Q = \operatorname{div}(Q\nabla \cdot)$, with domain $W^{2,p}(\mathbb{R}^d)$. Lemma 8:

$$|T(t)f|^2 \leq T_0(t)|f|^2, \qquad t>0, f\in C^\infty_c(\mathbb{R}^d;\mathbb{R}^m).$$

Proof.

Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Ultracontractivity:

 $T_0(\cdot)$ the semigroup on $L^p(\mathbb{R}^d)$ generated by the scalar operator $\Delta_Q = \operatorname{div}(Q\nabla \cdot)$, with domain $W^{2,p}(\mathbb{R}^d)$. Lemma 8:

 $|T(t)f|^2 \leq T_0(t)|f|^2, \qquad t>0, f\in C^\infty_c(\mathbb{R}^d;\mathbb{R}^m).$

Proof.

For $f \in C^\infty_c(\mathbb{R}^d;\mathbb{R}^m)$ and fixed $p \in (1,\infty)$, set $u(t,\cdot) = T(t)f$, for $t \ge 0$.

Ultracontractivity:

 $T_0(\cdot)$ the semigroup on $L^p(\mathbb{R}^d)$ generated by the scalar operator $\Delta_Q = \operatorname{div}(Q\nabla \cdot)$, with domain $W^{2,p}(\mathbb{R}^d)$. Lemma 8:

 $|T(t)f|^2 \leq T_0(t)|f|^2, \qquad t>0, f\in C^\infty_c(\mathbb{R}^d;\mathbb{R}^m).$

Proof.

For $f \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R}^m)$ and fixed $p \in (1, \infty)$, set $u(t, \cdot) = T(t)f$, for $t \ge 0$. One has $f \in D(A_q) \subset W^{2,q}_{loc}(\mathbb{R}^d; \mathbb{R}^m)$. Thus $u \in C([0,\infty); W^{2,q}_{loc}(\mathbb{R}^d; \mathbb{R}^m)) \cap C^1([0,\infty); L^q(\mathbb{R}^d; \mathbb{R}^m)), \forall q \in (1,\infty)$. So, the scalar function $|u|^2 \in C([0,\infty); W^{2,p}_{loc}(\mathbb{R}^d))$, and

Ultracontractivity:

 $T_0(\cdot)$ the semigroup on $L^p(\mathbb{R}^d)$ generated by the scalar operator $\Delta_Q = \operatorname{div}(Q\nabla \cdot)$, with domain $W^{2,p}(\mathbb{R}^d)$. Lemma 8:

 $|T(t)f|^2 \leq T_0(t)|f|^2, \qquad t>0, f\in C^\infty_c(\mathbb{R}^d;\mathbb{R}^m).$

Proof.

For $f \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R}^m)$ and fixed $p \in (1, \infty)$, set $u(t, \cdot) = T(t)f$, for $t \ge 0$. One has $f \in D(A_q) \subset W^{2,q}_{loc}(\mathbb{R}^d; \mathbb{R}^m)$. Thus $u \in C([0,\infty); W^{2,q}_{loc}(\mathbb{R}^d; \mathbb{R}^m)) \cap C^1([0,\infty); L^q(\mathbb{R}^d; \mathbb{R}^m)), \forall q \in (1,\infty)$. So, the scalar function $|u|^2 \in C([0,\infty); W^{2,p}_{loc}(\mathbb{R}^d))$, and

$$\begin{split} \frac{1}{2}\partial_t |u|^2 &= \langle \partial_t u, u \rangle = \sum_{k=1}^m \operatorname{div}(Q \nabla u_k) u_k + \langle V u, u \rangle \\ &\leq \frac{1}{2} \Delta_Q |u|^2. \end{split}$$

Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Ultracontractivity:

Set $w(s, \cdot) = T_0(t-s)|u|^2(s, \cdot), s \in [0, t].$

Ultracontractivity:

Set
$$w(s, \cdot) = T_0(t-s)|u|^2(s, \cdot), s \in [0, t].$$

So,

$$\begin{split} \partial_s w(s,\cdot) &= - T_0(t-s)\Delta_Q |u|^2(s,\cdot) + T_0(t-s)\partial_s |u|^2(s,\cdot) \\ &= T_0(t-s)(\partial_s |u|^2(s,\cdot) - \Delta_Q |u|^2(s,\cdot)) \\ &= T_0(t-s)v(s,\cdot) \leq 0. \end{split}$$

Ultracontractivity:

Set
$$w(s, \cdot) = T_0(t-s)|u|^2(s, \cdot), s \in [0, t].$$

So,

$$\begin{split} \partial_s w(s,\cdot) &= - T_0(t-s)\Delta_Q |u|^2(s,\cdot) + T_0(t-s)\partial_s |u|^2(s,\cdot) \\ &= T_0(t-s)(\partial_s |u|^2(s,\cdot) - \Delta_Q |u|^2(s,\cdot)) \\ &= T_0(t-s)v(s,\cdot) \leq 0. \end{split}$$

Hence, $w(t, \cdot) \leq w(0, \cdot)$.

Ultracontractivity:

Lemma 8 \Rightarrow

$\|T(t)f\|_{\infty} \leq Mt^{-\frac{d}{2}}\|f\|_1, \quad t>0\,f\in L^1(\mathbb{R}^d;\mathbb{C}^m).$

Ultracontractivity:

Lemma 8 \Rightarrow

 $\|T(t)f\|_{\infty} \leq Mt^{-\frac{d}{2}}\|f\|_1, \quad t>0 f \in L^1(\mathbb{R}^d;\mathbb{C}^m).$

►
$$\exists K(t, \cdot, \cdot) \in L^{\infty}(\mathbb{R}^d \times \mathbb{R}^d; \mathbb{R}^{m \times m})$$
 s.t.
 $(T(t)f)(x) = \int_{\mathbb{R}^d} K(t, x, y)f(y)dy, \ t > 0, x \in \mathbb{R}^d, f \in L^p(\mathbb{R}^d; \mathbb{C}^m).$

Ultracontractivity:

Lemma 8 \Rightarrow

 $\|T(t)f\|_{\infty} \leq Mt^{-\frac{d}{2}}\|f\|_1, \quad t > 0 f \in L^1(\mathbb{R}^d; \mathbb{C}^m).$

►
$$\exists K(t, \cdot, \cdot) \in L^{\infty}(\mathbb{R}^d \times \mathbb{R}^d; \mathbb{R}^{m \times m})$$
 s.t.
 $(T(t)f)(x) = \int_{\mathbb{R}^d} K(t, x, y)f(y)dy, \ t > 0, x \in \mathbb{R}^d, f \in L^p(\mathbb{R}^d; \mathbb{C}^m).$

$$|k_{ij}(t,x,y)| \leq C_1 t^{-\frac{d}{2}} \exp\{-C_2 \frac{|x-y|^2}{4t}\}, x, y \in \mathbb{R}^d, t > 0.$$

Compactness:

Compactness:

Assume in addition that

Compactness:

Assume in addition that $\exists \kappa : \mathbb{R}^d \to [0,\infty)$ with $\lim_{|x|\to\infty} \kappa(x) = \infty$ s.t. $|V(x)\xi| \ge \kappa(x)|\xi|, \ \forall x \in \mathbb{R}^d, \ \xi \in \mathbb{R}^m$. Then, $\forall \rho \in (1,\infty)$,

Compactness:

Assume in addition that $\exists \kappa : \mathbb{R}^d \to [0,\infty)$ with $\lim_{|x|\to\infty} \kappa(x) = \infty$ s.t. $|V(x)\xi| \ge \kappa(x)|\xi|, \ \forall x \in \mathbb{R}^d, \ \xi \in \mathbb{R}^m$. Then, $\forall p \in (1,\infty)$,

• L_p has compact resolvent;

Compactness:

Assume in addition that $\exists \kappa : \mathbb{R}^d \to [0,\infty)$ with $\lim_{|x|\to\infty} \kappa(x) = \infty$ s.t. $|V(x)\xi| \ge \kappa(x)|\xi|, \ \forall x \in \mathbb{R}^d, \ \xi \in \mathbb{R}^m$. Then, $\forall p \in (1,\infty)$,

- L_p has compact resolvent;
- $\sigma(L_p)$ is independent of p and consists of eigenvalues only.

Compactness:

Compactness:

Compactness may fail even if all entries in the potential V are unbounded near ∞ .

Compactness:

Compactness may fail even if all entries in the potential V are unbounded near $\infty.$

Example 4:

Take

$$V(x) = egin{pmatrix} -|x| \ |x| \ |x| \ -|x| \end{pmatrix}, \ x \in \mathbb{R}^d.$$

Compactness:

Compactness may fail even if all entries in the potential V are unbounded near $\infty.$

Example 4:

Take

$$V(x) = egin{pmatrix} -|x| \ |x| \ |x| \ -|x| \end{pmatrix}, \,\, x \in \mathbb{R}^d.$$

For $f \in W^{2,p}(\mathbb{R}^d; \mathbb{C}^m)$, $u = (f, f) \in D(L_p)$ and $L_p u = (\Delta_p f, \Delta_p f)$.

Compactness:

Compactness may fail even if all entries in the potential V are unbounded near $\infty.$

Example 4:

Take

$$V(x) = egin{pmatrix} -|x| \ |x| \ |x| \ -|x| \end{pmatrix}, \,\, x \in \mathbb{R}^d.$$

For $f \in W^{2,p}(\mathbb{R}^d; \mathbb{C}^m)$, $u = (f, f) \in D(L_p)$ and $L_p u = (\Delta_p f, \Delta_p f)$. So,

Compactness:

Compactness may fail even if all entries in the potential V are unbounded near $\infty.$

Example 4:

Take

$$V(x) = egin{pmatrix} -|x| \ |x| \ |x| \ -|x| \end{pmatrix}, \,\, x \in \mathbb{R}^d.$$

For $f \in W^{2,p}(\mathbb{R}^d; \mathbb{C}^m)$, $u = (f, f) \in D(L_p)$ and $L_p u = (\Delta_p f, \Delta_p f)$. So,

$$S_p(t)u = \begin{pmatrix} e^{t\Delta_p}f\\ e^{t\Delta_p}f \end{pmatrix}, \ t > 0, \ f \in L^p(\mathbb{R}^d).$$

Compactness:

Compactness may fail even if all entries in the potential V are unbounded near $\infty.$

Example 4:

Take

$$V(x) = egin{pmatrix} -|x| & |x| \ |x| & -|x| \end{pmatrix}, \,\, x \in \mathbb{R}^d.$$

For $f \in W^{2,p}(\mathbb{R}^d; \mathbb{C}^m)$, $u = (f, f) \in D(L_p)$ and $L_p u = (\Delta_p f, \Delta_p f)$. So,

$$S_p(t)u = \begin{pmatrix} e^{t\Delta_p}f\\ e^{t\Delta_p}f \end{pmatrix}, \ t > 0, \ f \in L^p(\mathbb{R}^d).$$

Thus,

Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Compactness:

Compactness may fail even if all entries in the potential V are unbounded near $\infty.$

Example 4:

Take

$$V(x) = egin{pmatrix} -|x| \ |x| \ |x| \ -|x| \end{pmatrix}, \,\, x \in \mathbb{R}^d.$$

For $f \in W^{2,p}(\mathbb{R}^d; \mathbb{C}^m)$, $u = (f, f) \in D(L_p)$ and $L_p u = (\Delta_p f, \Delta_p f)$. So,

$$S_p(t)u = \begin{pmatrix} e^{t\Delta_p}f\\ e^{t\Delta_p}f \end{pmatrix}, \ t > 0, \ f \in L^p(\mathbb{R}^d).$$

Thus, $S_p(\cdot)$ cannot be compact.

Introduction: Generation of C_0 -semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

$D(L_p) = W^{2,p}(\mathbb{R}^d, \mathbb{C}^m) \cap D(V)?$

Introduction: Generation of C₀-semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

$$D(L_p) = W^{2,p}(\mathbb{R}^d, \mathbb{C}^m) \cap D(V)?$$

(Maximal inequality)

$$egin{aligned} & c_1(\|Vf\|_{p}+\|f\|_{W^{2,p}(\mathbb{R}^d,\mathbb{C}^m)}) \leq \|L_pf\| \leq c_2(\|Vf\|_{p}+\|f\|_{W^{2,p}(\mathbb{R}^d,\mathbb{C}^m)})? \ & f \in D(L_p), \ 1$$

Introduction: Generation of C_0 -semigroups with maximal domain: Ultracontractivity and Gaussian estimates: Maximal inequalities:

Assumptions:

$$\blacktriangleright$$
 $v_{ij} \in W^{1,\infty}_{\mathrm{loc}}(\mathbb{R}^d)$,
Assumptions:

$$\begin{array}{l} \blacktriangleright \quad v_{ij} \in W^{1,\infty}_{\mathrm{loc}}(\mathbb{R}^d), \\ \blacktriangleright \quad \langle V(x)\xi,\xi\rangle \leq 0, \quad \forall x \in \mathbb{R}^d, \, \xi \in \mathbb{R}^m, \end{array}$$

Assumptions:

Example:

Consider d = 1, m = 2. Choosing $r \in [1, 2)$,

$$V(x) = egin{pmatrix} 0 & 1+|x|^r \ -(1+|x|^r) & 0 \end{pmatrix} = (1+|x|^r) egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}, \; x \in \mathbb{R}.$$

Example:

Consider d = 1, m = 2. Choosing $r \in [1, 2)$,

$$V(x) = egin{pmatrix} 0 & 1+|x|^r \ -(1+|x|^r) & 0 \end{pmatrix} = (1+|x|^r) egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}, \; x \in \mathbb{R}.$$

We find $\langle V(x)\xi,\xi\rangle = 0, \forall x \in \mathbb{R}, \xi \in \mathbb{R}^2$.

Example:

Consider d = 1, m = 2. Choosing $r \in [1, 2)$,

$$V(x) = egin{pmatrix} 0 & 1+|x|^r \ -(1+|x|^r) & 0 \end{pmatrix} = (1+|x|^r) egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}, \; x \in \mathbb{R}.$$

We find $\langle V(x)\xi,\xi\rangle = 0, \forall x \in \mathbb{R}, \xi \in \mathbb{R}^2$. Moreover,

$$D_x V(x) \cdot (-V(x))^{-\alpha} = r|x|^{r-2}(1+|x|^r)^{-\alpha} x \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}^{-\alpha}$$

Example:

Consider d = 1, m = 2. Choosing $r \in [1, 2)$,

$$V(x) = egin{pmatrix} 0 & 1+|x|^r \ -(1+|x|^r) & 0 \end{pmatrix} = (1+|x|^r) egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}, \; x \in \mathbb{R}.$$

We find $\langle V(x)\xi,\xi\rangle = 0, \forall x \in \mathbb{R}, \xi \in \mathbb{R}^2$. Moreover,

$$D_x V(x) \cdot (-V(x))^{-lpha} = r |x|^{r-2} (1+|x|^r)^{-lpha} x \begin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}^{-lpha}$$

Now, if we pick $\alpha \in (\frac{r-1}{r}, \frac{1}{2})$, then $r-1-\alpha r < 0$, so that $x \mapsto D_x V(x) \cdot (-V(x))^{-\alpha}$ is bounded.

Maximal inequalities results:

Maximal inequalities results:

Theorem 1:

Under the above assumptions, $-(\Delta_Q + V)$, defined on $W^{2,p}(\mathbb{R}^d, \mathbb{C}^m) \cap D(V_p)$, is closed, densely defined and sectorial. So, Lumer-Phillips Theorem implies $L_p = \Delta_Q + V$ with domain $W^{2,p}(\mathbb{R}^d, \mathbb{C}^m) \cap D(V_p)$ generates a C_0 -semigroup of contractions on $L^p(\mathbb{R}^d, \mathbb{R}^m)$, 1 .

Skech of the proof:

Set

Skech of the proof:

Set

$$egin{aligned} & C_{\lambda,\mu}f := (-A_p)(\lambda - A_p)^{-1}[(-A_p)^{-1}(\mu - V_p)^{-1} - (\mu - V_p)^{-1}(-A_p)^{-1}]f, \ & orall f \in L^p(\mathbb{R}^d, \mathbb{C}^m), \ \lambda \in \Sigma_{\pi - heta_{A_p}}, \ \mu \in \Sigma_{\pi - heta_{V_p}}. \end{aligned}$$

Skech of the proof:

Set

$$C_{\lambda,\mu}f := (-A_{\rho})(\lambda - A_{\rho})^{-1}[(-A_{\rho})^{-1}(\mu - V_{\rho})^{-1} - (\mu - V_{\rho})^{-1}(-A_{\rho})^{-1}]f,$$

 $\forall f \in L^{p}(\mathbb{R}^{d}, \mathbb{C}^{m}), \, \lambda \in \Sigma_{\pi - \theta_{A_{p}}}, \, \mu \in \Sigma_{\pi - \theta_{V_{p}}}.$ We show

$$\|C_{\lambda,\mu}f\|_p \leq \frac{M}{|\lambda|^{\frac{1}{2}}|\mu|^{2-\alpha}}\|f\|_p.$$

Skech of the proof:

Set

$$C_{\lambda,\mu}f := (-A_p)(\lambda - A_p)^{-1}[(-A_p)^{-1}(\mu - V_p)^{-1} - (\mu - V_p)^{-1}(-A_p)^{-1}]f,$$

$$\forall f \in L^{p}(\mathbb{R}^{d}, \mathbb{C}^{m}), \lambda \in \Sigma_{\pi-\theta_{A_{p}}}, \mu \in \Sigma_{\pi-\theta_{V_{p}}}.$$

We show

$$\|C_{\lambda,\mu}f\|_p \leq \frac{M}{|\lambda|^{\frac{1}{2}}|\mu|^{2-\alpha}}\|f\|_p.$$

Use a noncommutative version of the Dore-Venni perturbation theorem, see Monniaux-Prüss, TAM. 1997, to conclude.

More general potentials:

Consider $0 < v \in W^{1,\infty}_{loc}(\mathbb{R}^d)$, B_p the multiplication by v in $L^p(\mathbb{R}^d, \mathbb{C}^m)$. Let $v_{\varepsilon} = v(1 + \varepsilon v)^{-1}$, $\varepsilon > 0$. Denote by $B_{p,\varepsilon}$ the multiplication by v_{ε} (the Yosida approximation of B_p).

More general potentials:

Consider $0 < v \in W^{1,\infty}_{loc}(\mathbb{R}^d)$, B_p the multiplication by v in $L^p(\mathbb{R}^d, \mathbb{C}^m)$. Let $v_{\varepsilon} = v(1 + \varepsilon v)^{-1}$, $\varepsilon > 0$. Denote by $B_{p,\varepsilon}$ the multiplication by v_{ε} (the Yosida approximation of B_p). **Theorem 2:**

 $L_p - sB_p$ with domain $D(L_p) \cap D(B_p)$ for suitable s > 0 generates a contraction C_0 -semigroup on $L^p(\mathbb{R}^d, \mathbb{C}^m)$, under the condition

More general potentials:

Consider $0 < v \in W^{1,\infty}_{loc}(\mathbb{R}^d)$, B_p the multiplication by v in $L^p(\mathbb{R}^d, \mathbb{C}^m)$. Let $v_{\varepsilon} = v(1 + \varepsilon v)^{-1}$, $\varepsilon > 0$. Denote by $B_{p,\varepsilon}$ the multiplication by v_{ε} (the Yosida approximation of B_p). **Theorem 2:**

 $L_p - sB_p$ with domain $D(L_p) \cap D(B_p)$ for suitable s > 0 generates a contraction C_0 -semigroup on $L^p(\mathbb{R}^d, \mathbb{C}^m)$, under the condition

$$|
abla v_arepsilon(x)|^2 \leq a(v_arepsilon(x))^2 + b(v_arepsilon(x))^3, \qquad arepsilon > 0, \; x \in \mathbb{R}^d.$$

More general potentials:

Consider $0 < v \in W^{1,\infty}_{loc}(\mathbb{R}^d)$, B_p the multiplication by v in $L^p(\mathbb{R}^d, \mathbb{C}^m)$. Let $v_{\varepsilon} = v(1 + \varepsilon v)^{-1}$, $\varepsilon > 0$. Denote by $B_{p,\varepsilon}$ the multiplication by v_{ε} (the Yosida approximation of B_p). **Theorem 2:**

 $L_p - sB_p$ with domain $D(L_p) \cap D(B_p)$ for suitable s > 0 generates a contraction C_0 -semigroup on $L^p(\mathbb{R}^d, \mathbb{C}^m)$, under the condition

$$|
abla v_arepsilon(x)|^2 \leq a(v_arepsilon(x))^2 + b(v_arepsilon(x))^3, \qquad arepsilon > 0, \; x \in \mathbb{R}^d,$$

To show such result we use a perturbation theorem due to Okazawa, Japan J. Math. 1996.

Examples:

Examples:

• For
$$r \in [1, 2), \alpha \ge 1$$
,

$$\begin{pmatrix} \Delta_Q & 0 \\ 0 & \Delta_Q \end{pmatrix} + \begin{pmatrix} |x|^\alpha & |x|^r \\ -|x|^r & |x|^\alpha \end{pmatrix}.$$

Examples:

► For
$$r \in [1, 2), \alpha \ge 1$$
,

$$\begin{pmatrix} \Delta_Q & 0 \\ 0 & \Delta_Q \end{pmatrix} + \begin{pmatrix} |x|^{\alpha} & |x|^r \\ -|x|^r & |x|^{\alpha} \end{pmatrix}.$$

$$\begin{pmatrix} \Delta_Q & 0 \\ 0 & \Delta_Q \end{pmatrix} + \begin{pmatrix} |x|\log(1+|x|^2) & |x|^r \\ -|x|^r & |x|\log(1+|x|^2) \end{pmatrix}.$$

References:

- M. Kunze, L. Lorenzi, A. Maichine and A. Rh.: Lp-theory for Schrödinger systems, to appear in Math. Nachr.
- M. Kunze, A. Maichine and A. Rh.: Vector-Valued Schrödinger operators in L^p-spaces, to appear in Disc. Cont. Dyn. Syst.
- A. Maichine and A. Rh.: On a polynomial scalar perturbation of a Schrödinger system in L^p-spaces, J. Math. Anal. Appl. 466 (2018), 655–675.

Many thanks

Abdelaziz Rhandi (University of Salerno) Schrödinger systems