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Universität Bielefeld Motivation and derivation from SDEs

From SDEs to linear FPK-equations

For T > 0, consider the stochastic differential equation in Rd :

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ∈ [0, T ] (SDE)

i.e. b = (b1, . . . , bd) : [0, T ]× Rd → Rd, σ = (σij)i,j≤d : [0, T ]× Rd → Symd
+

measurable, W = (Wt)∈[0,T ] Rd-valued Brownian motion.[
σ ≡ idRd =⇒ (SDE) is "ODE perturbed by randomly drawn Brownian paths"

]
Let X = (Xt)t∈[0,T ] be a probabilistic weak solution (continuous!) on a
probability space (Ω,F ,P) with a Brownian motion W (i.e. t 7→ Xt(ω) solves
(SDE) for P-a.a. ω ∈ Ω) with P ◦X−1

0 =: γ and let

pt := P ◦X−1
t (probability measure on Rd for each t ∈ [0, T ])

be the corresponding curve of marginals.

Note: Continuity of t 7→ Xt(ω) =⇒ curve of measures t 7→ pt is continuous in
Pd (Borel probability measures on Rd with topology of weak convergence,
Polish!).
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By the time-dependent Itô formula ("fundamental theorem of calculus for
stochastic processes")

d

dt

∫
Rd
f(t, x)dpt(x)

(∗)
=

∫
Rd
∂tf(t, x) + Ltf(t, x)dpt(x)

for all f ∈ C∞c ((0, T )× Rd), where
Ltf(t, x) :=

∑d
i=1 bi(t, x)∂if(t, x) +

∑d
i,j=1

1
2aij(t, x)∂i∂jf(t, x) ("generator"

or "Kolmogorov operator" of (SDE)) and aij := (σσT )ij .

Integrating (∗) w.r.t. Lebesgue measure dt on [0, T ]:∫ T

0

1 · d
dt

∫
Rd
f(t, x)dpt(x)dt =

∫ T

0

∫
Rd
∂tf(t, x) + Ltf(t, x)dpt(x)dt.

By integration by parts (f(0, ·) ≡ 0 ≡ f(T, ·)!):

0 =

∫ T

0

∫
Rd
∂tf(t, x) + Ltf(t, x)dpt(x)dt.
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=⇒ The path of probability measures (pt)t∈[0,T ] (recall: pt := P ◦X−1
t ) fulfills:

(i) t 7→ pt is weakly continuous

(ii)
∫ T

0

∫
Rd ∂tf(t, x) + Ltf(t, x)dpt(x)dt = 0 ∀ f ∈ C∞c ((0, T )× Rd)

(iii) p0 = γ.

In general, such curves of probability measures are called solutions to the
Cauchy problem of the linear Fokker-Planck-Kolmogorov equation (w.r.t. bi, aij)
with i.c. (s, ν), formally{

∂tµt = ∂i∂j(
1
2aijµt)− ∂i(biµt)

µs = ν,
(FPK)

with (s, ν) ∈ [0, T ]×Pd = initial condition ("curve of probability measures starts
in ν at time s")

Thus: FPK-equations are second-order PDEs for (probability) measures and we
look for weak solutions in the sense of integrating against sufficiently many test
functions.
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Definition
For measurable coefficients bi, aij : [s, T ]× Rd → R, i, j ≤ d, set
Ltf(t, x) :=

∑d
i=1 bi(t, x)∂if(t, x) +

∑d
i,j=1 aij(t, x)∂i∂jf(t, x). A weakly

continuous curve (µt)t∈[s,T ] in Pd is called (continuous) solution to (FPK) with
i.c. (s, ν) ∈ [0, T ]× Pd, if

1 "coefficients are integrable against (µt)t∈[s,T ]dt"

2
∫ T
s

∫
Rd ∂tf(t, x) + Ltf(t, x)dµt(x)dt = 0 ∀ f ∈ C∞c ((s, T )× Rd)

3 µs = ν.

We denote the set of all such solutions by FP (s, ν).

Remarks:
(i) First point irrelevant for us: Will only consider globally bounded coefficients.

(iii) Seen above: Marginals of solution to (SDE) solve the corresponding
FPK-eq.!

(iv) Results on existence, uniqueness, properties of solutions: See [2] by
Bogachev, Krylov, Röckner, Shaposhnikov.
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Well-known: If (SDE) has unique weak probabilistic solution for any initial time
and distribution (e.g. for Lipschitz and sublinear growth of coefficients, but also
under much weaker conditions), then these solutions form a Markov process.

In particular, setting

Xs,ν = (Xs,ν
t )t∈[s,T ] = solution with i.c. (s, ν) and ps,νt := distribution of Xs,ν

t ,

the following flow equations are satisfied for the marginals of the solutions:

ps,νt = p
r,ps,νr
t ∀ 0 ≤ s ≤ r ≤ t ≤ T, ν as above. (CK)

(Chapman-Kolmogorov equations in probability theory).

Why FPK-equations? If (SDE) not probabilistically weakly well-posed, then
solutions (if existing) are not necessarily Markov. Since we know: Curve of
marginals of any solution to (SDE) solves corresponding FPK-eq. and (CK)
involves only marginals, it could be hopeful to check Chapman-Kolmogorov
equations on level of FPK-equation.
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In particular, the following aspects are interesting:

1 Assume (SDE) has several probabilistic weak solutions. Then, as explained
above, the corresponding FPK-equation has several solutions and from the
SDE-approach we do not know whether the flow equations (the
Chapman-Kolmogorov equations) as above hold.
Question: Can we choose a Markovian selection on the level of the
FPK-eq., i.e. pick a solution curve γs,ν = (γs,νt )t∈[s,T ] ∈ FP (s, ν) for each
initial condition (s, ν) such that the collection of all such γs,ν fulfills (CK)?

2 In particular, this question is interesting in situations where existence of
solutions to (SDE) is a priori not known, while existence of solutions to (FPK)
can be shown!
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Universität Bielefeld Main Results

Recall: FP (s, ν) = set of all weakly continuous solutions to (FPK) with i.c. (s, ν).

Definition

Let γs,ν = (γs,νt )t∈[s,T ] ∈ FP (s, ν) for every (s, ν) ∈ [0, T ]× Pd. We say that
the family (γs,ν)(s,ν)∈[0,T ]×Pd has the flow property, if for every
0 ≤ s ≤ r ≤ t ≤ T and ν ∈ Pd we have

γs,νt = γ
r,γs,νr
t . (1)

Clear: If the FPK-eq. is well-posed, then the unique family of solutions has the
flow property. Hence, interesting cases arise when several solutions exist. Our
main theorem is:

Theorem 1
Let bi, aij be globally bounded and x-continuous and assume FP (s, ν) 6= ∅ for
every (s, ν). Then there exists a family (γs,ν)(s,ν)∈[0,T ]×Pd , which has the flow
property.
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Important aspect of the proof:

Compactness of FP (s, ν) ⊆ C([s, T ],Pd) (2)

For reasons of time we do not discuss this. From now on: Assume compactness
of FP (s, ν) ⊆ C([s, T ],Pd) for each (s, ν) ∈ [0, T ]× Pd is settled.
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Notation: QTs := Q ∩ [s, T ] for 0 ≤ s ≤ T ,

Js : C([s, T ],Pd)→ P
QTs
d (weak prod. top.!), Js((µt)t∈[s,T ]) := (µq)q∈QTs .

For I countable index set: {fi}i∈I countable measure determining Cb(Rd)-class,
{(fn, qn)|n ∈ N} enumeration of {fi}i∈I ×QTs .

Scheme of proof for Theorem 3.1.:

Note: FP (s, ν) ⊆ C([s, T ],Pd) =⇒ µ = (µt)t∈[s,T ] ∈ FP (s, ν) determined by
values on QTs =⇒ suffices to select element in Js(FP (s, ν)).
Set

Gs,ν1 : Js
(
FP (s, ν)

)
→ R, (µq)q∈QTs 7→

∫
f1dµq1 ,

u1(s, ν) := sup
Js(FP (s,ν))

Gs,ν1 (µ),

M1(s, ν) := Gs,ν1 (s, ν)−1({u1}),

i.e. M1(s, ν) is the preimage of supremum of Gs,ν1 on Js(C([s, T ],Pd)) (a priori
M1(s, ν) = ∅ possible!).
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...and iteratively for k ∈ N:

Gs,νk+1 : Mk(s, ν)→ R, (µq)q∈QTs 7→
∫
fk+1dµqk+1

,

uk+1(s, ν) := sup
Mk(s,ν)

Gs,νk+1,

Mk+1(s, ν) := Gs,νk+1(s, ν)−1({uk+1}).

Note:

1 Js(FP (s, ν)) 6= ∅ =⇒ u1(s, ν) ∈ R
(similarly uk+1(s, ν) ∈ R, provided Mk(s, ν) 6= ∅).

2 Gs,ν1 is continuous and so is Gs,νk+1, provided Mk(s, ν) 6= ∅.
3 By construction Mk(s, ν) ⊇Mk+1(s, ν) for all k ∈ N.

Want to show: |
⋂
k∈NMk(s, ν)| = 1.

If true, we have selected a unique element µ = (µq)q∈QTs in Js(FP (s, ν)), hence
a unique (µt)t∈[s,T ] ∈ FP (s, ν), which will then be our candidate for the member
of the flow with initial condition (s, ν).
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(i) |
⋂
k∈NMk(s, ν)| ≤ 1: (µ1

q)q∈QTs , (µ
2
q)q∈QTs ∈

⋂
k∈NMk(s, ν) yields∫

fidµ
1
q =

∫
fidµ

2
q ∀ i ∈ I, q ∈ QTs ,

hence µ2
q = µ1

q for all q ∈ QTs , since {fi}i∈I measure determining.

(ii) |
⋂
k∈NMk(s, ν)| ≥ 1: Since FP (s, ν) ⊆ C([s, T ],Pd) is compact, so is its

continuous image Js(FP (s, ν)) ⊆ PQTs
d .

=⇒ Gs,ν1 attains supremum on Js(FP (s, ν)) =⇒ M1(s, ν) is non-empty
and compact. Repeating this argument, the same holds true for each Gs,νk+1

and Mk+1(s, ν), k ∈ N.

=⇒ (Mk(s, ν))k∈N is nested sequence of non-empty compact subsets of

PQTs
d , which gives ∣∣ ⋂

k∈N
Mk(s, ν)

∣∣ ≥ 1.
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We have selected a solution (µs,νt )t∈[s,T ] ∈ FP (s, ν) to the FPK-equation for
each initial condition (s, ν) ∈ [0, T ]× Pd. It remains to show:
{µs,ν |(s, ν) ∈ [0, T ]× Pd} has the flow property. This is technical and follows
from the selection method described above.

The proof is then complete.

Important remark: The selected flow may depend on the chosen measure
determining family {fi}i∈I ⊆ Cb(Rd) as well as on the chosen enumeration of
{fi}i∈I ×QTs .

We now exploit the above selection method and the previous remark to obtain a
second interesting result:

Marco Rehmeier – Existence of flows for linear Fokker-Planck-Kolmogorov equations and its connection to well-posedness 15 / 18



Universität Bielefeld Main Results

We have selected a solution (µs,νt )t∈[s,T ] ∈ FP (s, ν) to the FPK-equation for
each initial condition (s, ν) ∈ [0, T ]× Pd. It remains to show:
{µs,ν |(s, ν) ∈ [0, T ]× Pd} has the flow property. This is technical and follows
from the selection method described above.

The proof is then complete.

Important remark: The selected flow may depend on the chosen measure
determining family {fi}i∈I ⊆ Cb(Rd) as well as on the chosen enumeration of
{fi}i∈I ×QTs .

We now exploit the above selection method and the previous remark to obtain a
second interesting result:

Marco Rehmeier – Existence of flows for linear Fokker-Planck-Kolmogorov equations and its connection to well-posedness 15 / 18



Universität Bielefeld Main Results

We have selected a solution (µs,νt )t∈[s,T ] ∈ FP (s, ν) to the FPK-equation for
each initial condition (s, ν) ∈ [0, T ]× Pd. It remains to show:
{µs,ν |(s, ν) ∈ [0, T ]× Pd} has the flow property. This is technical and follows
from the selection method described above.

The proof is then complete.

Important remark: The selected flow may depend on the chosen measure
determining family {fi}i∈I ⊆ Cb(Rd) as well as on the chosen enumeration of
{fi}i∈I ×QTs .

We now exploit the above selection method and the previous remark to obtain a
second interesting result:

Marco Rehmeier – Existence of flows for linear Fokker-Planck-Kolmogorov equations and its connection to well-posedness 15 / 18



Universität Bielefeld Main Results

Theorem 2

Let all assumptions of Theorem 1 be in force. Then the following are equivalent:

(i) The FPK-eq. is well-posed among weakly continuous probability solutions,
i.e.
∣∣FP (s, ν)

∣∣ = 1 for all (s, ν) ∈ [0, T ]× Pd.

(ii) There exists exactly one family of solutions (µs,ν)(s,ν)∈[0,T ]×Pd with the
flow-property.

Scheme of proof: With Theorem 1 in mind, (i) =⇒ (ii) is immediate.
Concerning (ii) =⇒ (i), assume by contradiction there is (s̄, ν̄) such that
|FP (s̄, ν̄)| ≥ 2, i.e. there are µ1, µ2 ∈ FP (s̄, ν̄) with µ1

q̄ 6= µ2
q̄ for some q̄ ∈ QTs̄ .

Assume: have constructed a flow family, which includes µ1 (hence not µ2). Now
we perform the selection method of the proof of Theorem 1 again, but with a
different enumeration of {fi}i∈I ×QTs̄ , for which (f1, q1) fulfills∫

f1dµ
2
q1 >

∫
f1dµ

1
q1 .

Clearly, the thus selected flow will not contain µ1 and hence differs from the
orginial one.
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(i) The FPK-eq. is well-posed among weakly continuous probability solutions,
i.e.
∣∣FP (s, ν)

∣∣ = 1 for all (s, ν) ∈ [0, T ]× Pd.

(ii) There exists exactly one family of solutions (µs,ν)(s,ν)∈[0,T ]×Pd with the
flow-property.

Scheme of proof: With Theorem 1 in mind, (i) =⇒ (ii) is immediate.
Concerning (ii) =⇒ (i), assume by contradiction there is (s̄, ν̄) such that
|FP (s̄, ν̄)| ≥ 2, i.e. there are µ1, µ2 ∈ FP (s̄, ν̄) with µ1

q̄ 6= µ2
q̄ for some q̄ ∈ QTs̄ .

Assume: have constructed a flow family, which includes µ1 (hence not µ2). Now
we perform the selection method of the proof of Theorem 1 again, but with a
different enumeration of {fi}i∈I ×QTs̄ , for which (f1, q1) fulfills∫

f1dµ
2
q1 >

∫
f1dµ

1
q1 .

Clearly, the thus selected flow will not contain µ1 and hence differs from the
orginial one.
Marco Rehmeier – Existence of flows for linear Fokker-Planck-Kolmogorov equations and its connection to well-posedness 16 / 18



Universität Bielefeld Main Results

Theorem 2

Let all assumptions of Theorem 1 be in force. Then the following are equivalent:

(i) The FPK-eq. is well-posed among weakly continuous probability solutions,
i.e.
∣∣FP (s, ν)

∣∣ = 1 for all (s, ν) ∈ [0, T ]× Pd.

(ii) There exists exactly one family of solutions (µs,ν)(s,ν)∈[0,T ]×Pd with the
flow-property.

Scheme of proof: With Theorem 1 in mind, (i) =⇒ (ii) is immediate.
Concerning (ii) =⇒ (i), assume by contradiction there is (s̄, ν̄) such that
|FP (s̄, ν̄)| ≥ 2, i.e. there are µ1, µ2 ∈ FP (s̄, ν̄) with µ1

q̄ 6= µ2
q̄ for some q̄ ∈ QTs̄ .

Assume: have constructed a flow family, which includes µ1 (hence not µ2). Now
we perform the selection method of the proof of Theorem 1 again, but with a
different enumeration of {fi}i∈I ×QTs̄ , for which (f1, q1) fulfills∫

f1dµ
2
q1 >

∫
f1dµ

1
q1 .

Clearly, the thus selected flow will not contain µ1 and hence differs from the
orginial one.
Marco Rehmeier – Existence of flows for linear Fokker-Planck-Kolmogorov equations and its connection to well-posedness 16 / 18



Universität Bielefeld Main Results

Theorem 2

Let all assumptions of Theorem 1 be in force. Then the following are equivalent:

(i) The FPK-eq. is well-posed among weakly continuous probability solutions,
i.e.
∣∣FP (s, ν)

∣∣ = 1 for all (s, ν) ∈ [0, T ]× Pd.

(ii) There exists exactly one family of solutions (µs,ν)(s,ν)∈[0,T ]×Pd with the
flow-property.

Scheme of proof: With Theorem 1 in mind, (i) =⇒ (ii) is immediate.
Concerning (ii) =⇒ (i), assume by contradiction there is (s̄, ν̄) such that
|FP (s̄, ν̄)| ≥ 2, i.e. there are µ1, µ2 ∈ FP (s̄, ν̄) with µ1

q̄ 6= µ2
q̄ for some q̄ ∈ QTs̄ .

Assume: have constructed a flow family, which includes µ1 (hence not µ2). Now
we perform the selection method of the proof of Theorem 1 again, but with a
different enumeration of {fi}i∈I ×QTs̄ , for which (f1, q1) fulfills∫

f1dµ
2
q1 >

∫
f1dµ

1
q1 .

Clearly, the thus selected flow will not contain µ1 and hence differs from the
orginial one.
Marco Rehmeier – Existence of flows for linear Fokker-Planck-Kolmogorov equations and its connection to well-posedness 16 / 18



Universität Bielefeld Main Results

References

M. Rehmeier Existence of flows for linear Fokker-Planck-Kolmogorov
equations and its connection to well-posedness.
https://arxiv.org/abs/1904.04756, 2019.

V.I. Bogachev, N.V. Krylov, M. Röckner, and S.V. Shaposhnikov.
Fokker-Planck-Kolmogorov Equations. Mathematical Surveys and
Monographs. American Mathematical Society, 2015.

Marco Rehmeier – Existence of flows for linear Fokker-Planck-Kolmogorov equations and its connection to well-posedness 17 / 18



Thank you for your attention!


	Motivation and derivation from SDEs
	Main Results

