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Introduction

Introduction

Key idea: exponential weight function t — exp(—pt), p € R,
generates a weighted L?-space H) o (R, X) (inner product (1")p00r
norm: |-|,54), X a real Hilbert space,

(0.¥) = [ (0(5)|w(0)y exp(~2p1) k.

Time-differentiation d; as a closed operator in Hy o (R, X) induced
by

G (R, H) C Hy o (R,H) — Hpo (R, H),
o—q.
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Introduction

Introduction

Time-differentiation d; is a normal operator in H, o (R, X)

1 1
at =shm (a() +5E€m(at) = 5 (at + a[*) + E (a[ — 9[*)

with shm(d,) self-adjoint and , stew(d;) skew-selfadjoint and
commuting resolvents:

sym(d) = p.
For p € R\ {0}: continuous invertibility of d;. For p €]0,c0[:

sym(d) =p > 0.
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Introduction

Dynamic abstract Friedrichs system (1954,1958): For A
skew-selfadjoint in a real Hilbert space H

(dMo+ My + A)U=F |
oMo+ M, +A=
= (pMo —|—st)m(M1)) + ((8t — p) Mo + stetro (Ml) + A)
=E+4.
Ey symmetric strictly positive definite, &7 skew-selfadjoint in
Hpo (R,H). W.l.o.g. Ey =1, since we have the congruence

N <1+\/E(,—1WEO—1) N/
and note that
Ejtar\[Eyt

remains skew-selfadjoint. Such dynamic abstract Friedrichs systems
are of interest in the following. Indeed, our core topic focuses on
the skew-selfadjointness of the operator A as the center-piece
of abstract Friedrichs systems.




The Time Derivative as a Normal Operator

Solution Theory Basic Solution Theory

The Time Derivative as a Normal Operator

Fourier-Laplace transform: unitary extension of
Co (R, X) C Hy o (R, X) — Hoo (R,X) = L*(R, X)
Q0= 2L

with A / _
o(x)= exp(—ixt)exp(—pt) @(t) dt,x € R.
Ton
is spectral representation fcir Jmo;:
Jmao; = Tﬁ’éem&t = .fp_lmo %
and so
o =2, Limo+p) %,
Here mg is the selfadjoint multiplication-by-argument operator in
L2(R,X):
(R, %) (o) (x) = x9 (x)
for x e R and ¢ € C.. (R, X).
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Material Law Operator:

M =M (3.

1
It is M(d;1) == $p1M<im0+p> %,

o (i) (o) )

for ® € Co (R, X).




Material Law Operators as Functions of the Time Derivative

Material Law Operator:

M=M (9.

1
It is M(d;1) == $p1M<im0+p> %,

o (i) (o) )

for ® € Co (R, X).
Here (M (2)),cp. (s is @ uniformly bounded, holomorphic family of
linear operators in H with r > % > 0. The operator M (d; ) will

be referred to as the material law operator. The operator-valued
function M will be referred to as the material law function.




The Time Derivative as a Normal Operator

Solution Theory Basic Solution Theory

Basic Solution Theory H, o (R, H)

Evolutionary Problem:
(M (9,1 )+ A U=F

When is (9;M (8{1) + A) (and its adjoint) strictly positive definite
in Hp o (R, H) (for all sufficiently large p € R>0)?
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Basic Solution Theory H, o (R, H)

Evolutionary Problem:
(M (9,1 )+ A U=F
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The Time Derivative as a Normal Operator

Solution Theory Basic Solution Theory

Basic Solution Theory H, o (R, H)

Evolutionary Problem:
(M (9,1 )+ A U=F

When is (9;M (8{1) + A) (and its adjoint) strictly positive definite
in Hp o (R, H) (for all sufficiently large p € R>0)?
Assumptions(S):

o A skew-selfadjoint in H (lifted toH, o (R, H)),

@ z+— M(z) (values in L(H,H)), for simplicity analytic at 0.
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The Time Derivative as a Normal Operator

Solution Theory Basic Solution Theory

Basic Solution Theory H, o (R, H)

Evolutionary Problem:
(M (9,1 )+ A U=F

When is (9;M (8{1) + A) (and its adjoint) strictly positive definite
in Hp o (R, H) (for all sufficiently large p € R>0)?
Assumptions(S):
o A skew-selfadjoint in H (lifted toH, o (R, H)),
@ z+— M(z) (values in L(H,H)), for simplicity analytic at 0.
e M(0) > 0 selfadjoint, pM(0) +sym(M’'(0)) > cp >0
(strictly positive definite) for p sufficiently large.
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The Basic Solution Theorem

Theorem

Let M and A satisfy Assumptions (S). Then we have for all
sufficiently large p € R-q that for every f € Hy o (R, H) there is a
unique solution U € H, o (R, H) of the problem

(M (o7 H)+ A U=TF.

T —
The solution operator <8tM (8{1) + A) is continuous and causal
on Hpo (R, H).
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The Basic Solution Theorem

Theorem

Let M and A satisfy Assumptions (S). Then we have for all
sufficiently large p € R-q that for every f € Hy o (R, H) there is a
unique solution U € H, o (R, H) of the problem

(M (o7 H)+ A U=TF.

T —
The solution operator <8tM (8{1) + A) is continuous and causal
on Hpo (R, H).

Causal? For every a € R we have:
If F € Hpo(R, H) vanishes on the time interval | — oo, a, then so

does (8tM (9:1) —|—A>71 F.



The Time Derivative as a Normal Operator

Solution Theory Basic Solution Theory

An lllustrative Example

Frequently,

0 -G’
(e v)

where G is a closed densely defined linear operator.

We recall that we will here consider only simple material laws
M (9;1) = M(0)+ 0, M'(0),

i.e. on the case associated with abstract Friedrichs systems:

[ (0eM (0)+ M’ (0)+A) U = F. ]
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Consider a material law with
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An lllustrative Example

Consider a material law with

M(atl)—<0 82> 1< 1-&) 08)>,81,82€{0,1}.

02+ G*G 0
e g =16=1 (G 2, >~< 9t> by a formal

row operation (' hyperbollc
B (9 — d+G*GO
0 g =16=0: (G 1 >~< G 1> by a formal row
operation (“parabolic”). Note that & =0,& =1 is analogous.
g =0,6=0: L -6 L+6760
S I G 1
operation (“elliptic”).

> by a formal row



Tool 1: Abstract grad —div Systems.
: The Mother-Descendant Mechanism

Four Tools for Establishing Skew-Selfadjointness Tool 4+

Four Tools for Establishing Skew- Selfadjomtness
Tool 1: Abstract grad-div Systems.

For abstract grad —div systems the spatial operator A is still of the
form
0 —G*
(a0 )

G = :D(G)CHy—»Hi®---®H,
Gn

but here

(in the standard case of grad —div systems Gx = ék or Gy = di but
in general Gy need not necessarily be closable). Thus, the range
space is a direct sum of real Hilbert spaces.
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Application: Acoustics with Damping Boundary

Constraints

acoustics: A= < 0 B (dlv) ) :< 0 grad>
div 0 div 0

where

k = p.c2 bulk modulus, p, mass density, ¢, speed of sound.

We expand this to

FEED) (G ED) (@) (6)



Application: Acoustics with Damping Boundary

Constraints

Here "
0 B ( div )
Z _ 5div,8Q
( div > 0
5div739
with
5div,¢9§2f = an S L2 (QQ),
(5d1v,8§2f) (0) aQ(pn f Volyq <q)\n f>L2(aQ).
We note
div div
C
( 0 ) . <5div789>
and so

) . di *
(grad —5div7(m) C — <5divl\¢;§2> C (grad 0).



Application: Acoustics with Damping Boundary

Constraints

What does it mean if <V> € dom << div > > ?
T adiv,afl

From

we have

ne ={(e01(2) )= (2%) ()

() ()=t
that is

/ (grad p) w Volg +/ p(divw) Volg = / T (nTw) Volyq.
Q Q a0



Application: Acoustics with Damping Boundary

Constraints

On the other hand, we have

/ (grad p) w Volg —1—/ p(divw) Volg = / p (nT W) Volyq
Q Q Q

and so by comparison T = —p. Thus, we found

(2) <o () ) = (7,) ctomtzmare oo

We formally read off as the last equation
—B.p+n'"v=nhonaQ,
yielding (a dynamic Robin type boundary condition)

n'p; tgradp+ B.dip = d;h on Q.



Tool 1: Abstract grad —div Systems.
Tool 2: The Mother-Descendant Mechanism
Tool 3: A Coupling Mechanism

Four Tools for Establishing Skew-Selfadjointness Tool 4: Weak = Strong

Tool 2: The Mother-Descendant Mechanism

Theorem

Let G: D(C) C Hy — Hy be a closed densely defined linear
operator, Hy, k =0,1, real Hilbert spaces. If By : Hy — Xy is a
continuous linear mapping, Xo real Hilbert space such that

GB; densely defined.

By 0 0 —G* B0 . .
Then < 0 1> (G 0 > < 0 1> is skew-selfadjoint.

“Mother” and‘descendant”. Can be repeated!
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Tool 2: The Mother-Descendant Mechanism

Dirichlet boundary condition G = grad acting on tensor fields of all

ranks:
A (0 =G\ _( 0 div
“\G 0 ) \grad 0 /)

Initial boundary value problems of classical mathematical physics
can be produced from this particular “mother” operator A by
choosing suitable projections for constructing “descendants”.



Application: A Connection Between Wave Phenomena.

In Nowacki's non-symmetric elasticity we are dealing with a
skew-selfadjoint spatial operator of the form

0 —divy 2 3 2 3x3
<_gr"ad1 ! ) on 12 (Q,RY) @ L2 (,R>?).

Here, with
N T
OpW = (Op w )
where Op denotes a matrix PDE operator, we have
- T _
grad;v =Vv = (Vv ) (Jacobian of v),

— T
divo T =V T = (VT TT)



Application: A Connection Between Wave Phenomena.

As descendants we obtain

0 —Div)

(o) (o, 07 (010) = (i s

0 toym —grad,

i.e. classical symmetric elasticity, and classical electrodynamics

1 0 0 —divy 1 0 _ 0 curl
0 0 —letewlo /  \curl 0

%1% 2
0 Iy Ltero —grad;
0 —d;3 0> o 0 —o3 o
Where curl=Vx = d3 0 —-o , IO o | — % o3 0 -
2
—32 81 0 o3 —Q02 07 0

and 15, T=%(T-T")=1(T-T").



Application: A Connection Between Wave Phenomena.

Also acoustics can be obtained as a descendant from
non-symmetric elasticity via

1 0 0 —divy 1 0 _ 0 gradg
0 —trace / \ —grad; 0 0 —trace* )~ \divy; 0 /°

Here trace denotes the standard matrix trace and its adjoint
evaluates simply to

p0O0
trace’p=| 0 p 0 | =plaxs.
00p



L . 8 p
Four Tools for Establishing Skew-Selfadjointness Tool 4: Weak = Strong

Tool 3: Coupling of Different Physical Phenomena

Block-diagonal operator matrix:

Ag O 0
A= 0

: . 0

0 -~ 0 A,

skew-selfadjoint in H = @y ., Hk, if diagonal block entries
Ag: D(Ax) C Hx — Hk,k=0,...,n, are skew-selfadjoint.
Proper coupling: M contains off-diagonal block entries
Moo (9; 1) -+ Mo (3; 1)
M(&t_l) = : ;
Muo (9¢1) =+ Mnn (9;71)
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Application: The Reissner-Mindlin Plate Equation

Coupling elasticity and acoustics

K 0 0 0 0 0 1 0
0 Vi 0 0 0 d 0 0

% g 0 v o |1 o 0 o | A
0 0 0 c1 0 0 0 0

with

(@) ()
(58) (Lems o)

projection onto ker (d3) = L2 () assuming
Q:=Q¢xTCR?xT= M (instead of M =R3) we can reduce
this by one spatial dimension (mother-descendant mechanism) to a
(142)-dimensional evolutionary problem.



Application: The Reissner-Mindlin Plate Equation

The resulting evolutionary equation looks the same, but now it has
to be interpreted (by dropping zero rows and columns in A and
adapting the material law) in

L% (Q0,R?) & L2 (Q0,R) @ L2 (Q0,R?) @ L3 (Q0,5ym [R?*2]) with
Qp C R?.

This is the Reissner-Mindlin plate system commonly used in
engineering models.

Remark:(Kirchhoff-Love plate)

Letting k =0 and v, =0 (in consequence destroying well-posedness
for associated initial boundary value problems) and eliminating the
first and third unknowns and equations and then eliminating the
stress yields for isotropic homogeneous media

2vin +dom + (2x+ L) A%n = o,f.



Tool 1: Abstract grad —div Systems.
Too The Mother-Descendant Mechanism
Tool 3: A Coupling Mechanism

Four Tools for Establishing Skew-Selfadjointness Tool 4: Weak = Strong

Tool 4: Weak = Strong

Transmutator
[L,C,R]=LC—CR
assumed to be defined on dom (C). The commutator

[L,C]=]L,C,L]
[C,L]:=—]L,C]

is a special case.
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Tool 4. Weak = Strong

Let Ak, k=1,2, be closed densely defined operators from H to K,
dom (A; + A2) = dom (A1) Ndom (Az) dense in H.
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Let Ak, k=1,2, be closed densely defined operators from H to K,
dom (A; + A2) = dom (A1) Ndom (Az) dense in H.
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Tool 4. Weak = Strong

Let Ak, k=1,2, be closed densely defined operators from H to K,
dom (A; + A2) = dom (A1) Ndom (Az) dense in H.

Theorem

Let (Le)ecio 1y (Re)ecjo 1) be bounded families of continuous linear
mappings in K and H, respectively, and [L¢, A1 + Az, Re| defined on
dom (A1) Ndom (Az) such that [Lg, A1 + A2, Re] € £ (H,K).
Moreover,

o L} [dom ((A;+A2)")] C dom (A} +A3),
* S, * S * S
*] LE £4T0>+ 17 RE £4T0>+ 1 and [LE’A]_ +A2’ Rg] 83—"_ 0.

Then (A1 +A2)" = Aj + AS.

Let Ay, Ay be skew-selfadjoint, then under the assumptions of the
previous theorem we have

A1 + Ay skew-selfadjoint.



Tool 4. Weak = Strong

Application: (acoustics in moving media) assuming that

spm <a83 (%* Kgl >> is continuous
p« 0 ps 0 0 grad)
at(o x1>+“a3<0 K1>+<d‘i’v 0o )~

« 0 1 « 0
=9t<% K_1>+§5Um<0633<% K_1>>+A1+A2

with

A; = steto (8306 (%* qu >> , (skew-selfadjoint for suitable ¢,2)

0 grad
A= -
2 <div 0 >

Re=Le=(1+¢2d5)".



Tool 1: Abstract grad —div Systems.
Tool The Mother-Descendant Mechanism
L .. Tool 3: A Coupling Mechanism
Four Tools for Establishing Skew-Selfadjointness Tool 4: Weak = Strong

The End

Thank You for Your
Attention!
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