On Abstract Friedrichs Systems and Some of their Applications.

41. Nordwestdeutsches Funktionalanalysis-Kolloquium an der U D-E in Essen

Rainer Picard
Department of Mathematics
TU Dresden, Germany

Essen 2019, Germany

Introduction

Key idea: exponential weight function $t \mapsto \exp (-\rho t), \rho \in \mathbb{R}$, generates a weighted L^{2}-space $H_{\rho, 0}(\mathbb{R}, X)$ (inner product $\langle\cdot \mid \cdot\rangle_{\rho, 0,0}$, norm: $\left.|\cdot|_{\rho, 0,0}\right), X$ a real Hilbert space,

$$
(\varphi, \psi) \mapsto \int_{\mathbb{R}}\langle\varphi(t) \mid \psi(t)\rangle_{H} \exp (-2 \rho t) d t
$$

Time-differentiation ∂_{t} as a closed operator in $H_{\rho, 0}(\mathbb{R}, X)$ induced by

$$
\begin{aligned}
\circ_{1}(\mathbb{R}, H) \subseteq H_{\rho, 0}(\mathbb{R}, H) & \rightarrow H_{\rho, 0}(\mathbb{R}, H), \\
\varphi & \mapsto \varphi^{\prime}
\end{aligned}
$$

Introduction

Time-differentiation ∂_{t} is a normal operator in $H_{\rho, 0}(\mathbb{R}, X)$

$$
\partial_{\mathrm{t}}=\mathfrak{s y m}\left(\partial_{\mathrm{t}}\right)+\mathfrak{s k e w}\left(\partial_{\mathrm{t}}\right)=\frac{1}{2}\left(\partial_{\mathrm{t}}+\partial_{\mathrm{t}}^{*}\right)+\frac{1}{2}\left(\partial_{\mathrm{t}}-\partial_{\mathrm{t}}^{*}\right)
$$

with $\mathfrak{s y m}\left(\partial_{\mathrm{t}}\right)$ self-adjoint and, $\mathfrak{s k e w}\left(\partial_{\mathrm{t}}\right)$ skew-selfadjoint and commuting resolvents:

$$
\mathfrak{s y m}\left(\partial_{\mathrm{t}}\right)=\rho .
$$

For $\rho \in \mathbb{R} \backslash\{0\}$: continuous invertibility of ∂_{t}. For $\left.\rho \in\right] 0, \infty[$:

$$
\mathfrak{s y m}\left(\partial_{\mathrm{t}}\right)=\rho>0 .
$$

Introduction

Dynamic abstract Friedrichs system $(1954,1958)$: For A skew-selfadjoint in a real Hilbert space H

$$
\begin{aligned}
& \partial_{\mathrm{t}} M_{0}+M_{1}+A= \\
& =\left(\rho M_{0}+\mathfrak{s y m}\left(M_{1}+M_{1}+A\right)\right)+\left(\left(\partial_{t}-\rho\right) M_{0}+\mathfrak{s k e w}\left(M_{1}\right)+A\right) \\
& =E_{0}+\mathscr{A} .
\end{aligned}
$$

E_{0} symmetric strictly positive definite, \mathscr{A} skew-selfadjoint in $H_{\rho, 0}(\mathbb{R}, H)$. W.l.o.g. $E_{0}=1$, since we have the congruence

$$
\sqrt{E_{0}}\left(1+\sqrt{E_{0}^{-1}} \mathscr{A} \sqrt{E_{0}^{-1}}\right) \sqrt{E_{0}}=E_{0}+\mathscr{A}
$$

and note that

$$
\sqrt{E_{0}^{-1}} \mathscr{A} \sqrt{E_{0}^{-1}}
$$

remains skew-selfadjoint. Such dynamic abstract Friedrichs systems are of interest in the following. Indeed, our core topic focuses on the skew-selfadjointness of the operator A as the center-piece of abstract Friedrichs systems.

The Time Derivative as a Normal Operator

Fourier-Laplace transform: unitary extension of

$$
\begin{aligned}
\stackrel{\circ}{C}_{\infty}(\mathbb{R}, X) \subseteq H_{\rho, 0}(\mathbb{R}, X) & \rightarrow H_{0,0}(\mathbb{R}, X)=L^{2}(\mathbb{R}, X) \\
\varphi & \mapsto \mathscr{L}_{\rho} \varphi
\end{aligned}
$$

with $\mathscr{L}_{\rho} \varphi(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \exp (-\mathrm{i} x t) \exp (-\rho t) \varphi(t) d t, x \in \mathbb{R}$.
is spectral representation for $\mathfrak{I m} \partial_{t}$:

$$
\mathfrak{I m} \partial_{t}=\frac{1}{\mathrm{i}} \mathfrak{\mathfrak { F k e w }} \partial_{t}=\mathscr{L}_{\rho}^{-1} \mathbf{m}_{0} \mathscr{L}_{\rho}
$$

and so

$$
\partial_{t}=\mathscr{L}_{\rho}^{-1}\left(\mathrm{i} \mathrm{~m}_{0}+\rho\right) \mathscr{L}_{\rho}
$$

Here \mathbf{m}_{0} is the selfadjoint multiplication-by-argument operator in $L^{2}(\mathbb{R}, X)$:

$$
\left(\mathbf{m}_{0} \varphi\right)(x)=x \varphi(x)
$$

for $x \in \mathbb{R}$ and $\varphi \in \dot{C}_{\infty}(\mathbb{R}, X)$.

Material Law Operator:

$$
\mathscr{M}=M\left(\partial_{t}^{-1}\right) .
$$

for $\Phi \in \dot{C}_{\infty}(\mathbb{R}, X)$.
Here $(M(z))_{z \in R_{c}(r, r)}$ is a uniformly bounded, holomorphic family of linear operators in H with $r \geq \frac{1}{2 \rho}>0$. The operator $M\left(\partial_{t}^{-1}\right)$ will be referred to as the material law operator. The operator-valued function M will be referred to as the material law function.

Material Law Operator:

$$
\mathscr{M}=M\left(\partial_{t}^{-1}\right) .
$$

It is

$$
M\left(\partial_{t}^{-1}\right):=\mathscr{L}_{\rho}^{-1} M\left(\frac{1}{i \mathbf{m}_{0}+\rho}\right) \mathscr{L}_{\rho}
$$

where

for $\Phi \in \dot{C}_{\infty}(\mathbb{R}, X)$.

Here $(M(z))_{z \in B_{c}(r, r)}$ is a uniformly bounded, holomorphic family of
linear operators in H with $r \geq \frac{1}{2 \rho}>0$. The operator $M\left(\partial_{t}^{-1}\right)$ will be referred to as the material law operator. The operator-valued function M will be referred to as the material law function.

Material Law Operator:

$$
\mathscr{M}=M\left(\partial_{t}^{-1}\right) .
$$

It is

$$
M\left(\partial_{t}^{-1}\right):=\mathscr{L}_{\rho}^{-1} M\left(\frac{1}{i \mathrm{~m}_{0}+\rho}\right) \mathscr{L}_{\rho}
$$

where $M\left(\frac{1}{i \mathrm{~m}_{0}+\rho}\right) \Phi:=\left(\omega \mapsto M\left(\frac{1}{\mathrm{i} \omega+\rho}\right) \Phi(\omega)\right)$
for $\Phi \in \stackrel{\circ}{C}_{\infty}(\mathbb{R}, X)$.
Here $(M(z))_{z \in B_{\mathbb{C}}(r, r)}$ is a uniformly bounded, holomorphic family of
linear operators in H with $r \geq \frac{1}{2 \rho}>0$. The operator $M\left(\partial_{t}^{-1}\right)$ will
be referred to as the material law operator. The operator-valued function M will be referred to as the material law function.

Material Law Operator:

$$
\mathscr{M}=M\left(\partial_{t}^{-1}\right) .
$$

It is

$$
M\left(\partial_{t}^{-1}\right):=\mathscr{L}_{\rho}^{-1} M\left(\frac{1}{i \mathrm{~m}_{0}+\rho}\right) \mathscr{L}_{\rho}
$$

where $M\left(\frac{1}{i \mathrm{~m}_{0}+\rho}\right) \Phi:=\left(\omega \mapsto M\left(\frac{1}{\mathrm{i} \omega+\rho}\right) \Phi(\omega)\right)$
for $\Phi \in \stackrel{\circ}{C}_{\infty}(\mathbb{R}, X)$.
Here $(M(z))_{z \in B_{\mathbb{C}}(r, r)}$ is a uniformly bounded, holomorphic family of linear operators in H with $r \geq \frac{1}{2 \rho}>0$. The operator $M\left(\partial_{t}^{-1}\right)$ will be referred to as the material law operator. The operator-valued function M will be referred to as the material law function.

Basic Solution Theory $H_{\rho, 0}(\mathbb{R}, H)$

Evolutionary Problem:

$$
\overline{\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)} U=F
$$

When is $\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)$ (and its adjoint) strictly positive definite in $H_{\rho, 0}(\mathbb{R}, H)$ (for all sufficiently large $\rho \in \mathbb{R}_{>0}$)?
Assumptions(S):

Basic Solution Theory $H_{\rho, 0}(\mathbb{R}, H)$

Evolutionary Problem:

$$
\overline{\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)} U=F
$$

When is $\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)$ (and its adjoint) strictly positive definite in $H_{\rho, 0}(\mathbb{R}, H)$ (for all sufficiently large $\rho \in \mathbb{R}_{>0}$)?
Assumptions(S):

- A skew-selfadjoint in H (lifted to $H_{\rho, 0}(\mathbb{R}, H)$),
- $z \mapsto M(z)$ (values in $L(H, H)$), for simplicity analytic at 0 .
- $M(0) \geq 0$ selfadjoint, $\rho M(0)+\mathfrak{s y m}\left(M^{\prime}(0)\right) \geq c_{0}>0$ (strictly positive definite) for ρ sufficiently large.

Basic Solution Theory $H_{\rho, 0}(\mathbb{R}, H)$

Evolutionary Problem:

$$
\overline{\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)} U=F
$$

When is $\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)$ (and its adjoint) strictly positive definite in $H_{\rho, 0}(\mathbb{R}, H)$ (for all sufficiently large $\rho \in \mathbb{R}_{>0}$)?

Assumptions(S):

- A skew-selfadjoint in H (lifted to $H_{\rho, 0}(\mathbb{R}, H)$),
- $z \mapsto M(z)$ (values in $L(H, H)$), for simplicity analytic at 0 .
- $M(0) \geq 0$ selfadjoint, $\rho M(0)+5 y m\left(M^{\prime}(0)\right) \geq c_{0}>0$ (strictly positive definite) for ρ sufficiently large.

Basic Solution Theory $H_{\rho, 0}(\mathbb{R}, H)$

Evolutionary Problem:

$$
\overline{\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)} U=F
$$

When is $\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)$ (and its adjoint) strictly positive definite in $H_{\rho, 0}(\mathbb{R}, H)$ (for all sufficiently large $\rho \in \mathbb{R}_{>0}$)?
Assumptions(S):

- A skew-selfadjoint in H (lifted to $H_{\rho, 0}(\mathbb{R}, H)$),
- $z \mapsto M(z)$ (values in $L(H, H)$), for simplicity analytic at 0 .
- $M(0) \geq 0$ selfadjoint, $\rho M(0)+\mathfrak{s y m}\left(M^{\prime}(0)\right) \geq c_{0}>0$ (strictly positive definite) for ρ sufficiently large.

Theorem

Let M and A satisfy Assumptions (S). Then we have for all sufficiently large $\rho \in \mathbb{R}_{>0}$ that for every $f \in H_{\rho, 0}(\mathbb{R}, H)$ there is a unique solution $U \in H_{\rho, 0}(\mathbb{R}, H)$ of the problem

$$
\overline{\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)} U=f
$$

The solution operator $\left(\overline{\partial_{t} M\left(\partial_{t}^{-1}\right)+A}\right)^{-1}$ is continuous and causal on $H_{\rho, 0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have:
If $F \in H_{\rho, 0}(\mathbb{R}, H)$ vanishes on the time interval $]-\infty, a[$, then so does $\left(\overline{\partial_{t} M\left(\partial_{t}^{-1}\right)+A}\right)$

Theorem

Let M and A satisfy Assumptions (S). Then we have for all sufficiently large $\rho \in \mathbb{R}_{>0}$ that for every $f \in H_{\rho, 0}(\mathbb{R}, H)$ there is a unique solution $U \in H_{\rho, 0}(\mathbb{R}, H)$ of the problem

$$
\overline{\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)} U=f
$$

The solution operator $\left(\overline{\partial_{t} M\left(\partial_{t}^{-1}\right)+A}\right)^{-1}$ is continuous and causal on $H_{\rho, 0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have:
If $F \in H_{\rho, 0}(\mathbb{R}, H)$ vanishes on the time interval $]-\infty, a[$, then so does $\left(\overline{\partial_{t} M\left(\partial_{t}^{-1}\right)+A}\right)$

Theorem

Let M and A satisfy Assumptions (S). Then we have for all sufficiently large $\rho \in \mathbb{R}_{>0}$ that for every $f \in H_{\rho, 0}(\mathbb{R}, H)$ there is a unique solution $U \in H_{\rho, 0}(\mathbb{R}, H)$ of the problem

$$
\overline{\left(\partial_{t} M\left(\partial_{t}^{-1}\right)+A\right)} U=f
$$

The solution operator $\left(\overline{\partial_{t} M\left(\partial_{t}^{-1}\right)+A}\right)^{-1}$ is continuous and causal on $H_{\rho, 0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have:
If $F \in H_{\rho, 0}(\mathbb{R}, H)$ vanishes on the time interval $]-\infty, a[$, then so does $\left(\overline{\partial_{t} M\left(\partial_{t}^{-1}\right)+A}\right)^{-1} F$.

An Illustrative Example

Frequently,

$$
A=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right)
$$

where G is a closed densely defined linear operator.
We recall that we will here consider only simple material laws

$$
M\left(\partial_{t}^{-1}\right)=M(0)+\partial_{t}^{-1} M^{\prime}(0)
$$

i.e. on the case associated with abstract Friedrichs systems:

$$
\left(\partial_{t} M(0)+M^{\prime}(0)+A\right) U=F
$$

An Illustrative Example

Consider a material law with

$$
M\left(\partial_{t}^{-1}\right)=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right)+\partial_{t}^{-1}\left(\begin{array}{cc}
\left(1-\varepsilon_{1}\right) & 0 \\
0 & \left(1-\varepsilon_{2}\right)
\end{array}\right), \varepsilon_{1}, \varepsilon_{2} \in\{0,1\}
$$

- $\varepsilon_{1}=1, \varepsilon_{2}=1:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & \partial_{t}\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}^{2}+G^{*} G & 0 \\ G & \partial_{t}\end{array}\right)$ by a formal row operation ("hyperbolic").
 operation ("parabolic"). Note that $\varepsilon_{1}=0, \varepsilon_{2}=1$ is analogous.
 operation ("elliptic").

An Illustrative Example

Consider a material law with
$M\left(\partial_{t}^{-1}\right)=\left(\begin{array}{cc}\varepsilon_{1} & 0 \\ 0 & \varepsilon_{2}\end{array}\right)+\partial_{t}^{-1}\left(\begin{array}{cc}\left(1-\varepsilon_{1}\right) & 0 \\ 0 & \left(1-\varepsilon_{2}\right)\end{array}\right), \varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$.

- $\varepsilon_{1}=1, \varepsilon_{2}=1:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & \partial_{t}\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}^{2}+G^{*} G & 0 \\ G & \partial_{t}\end{array}\right)$ by a formal row operation ("hyperbolic").
- $\varepsilon_{1}=1, \varepsilon_{2}=0:\left(\begin{array}{cc}\partial_{t}-G^{*} \\ G & 1\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}+G^{*} & G \\ G & 1\end{array}\right)$ by a formal row operation ("parabolic"). Note that $\varepsilon_{1}=0, \varepsilon_{2}=1$ is analogous.

An Illustrative Example

Consider a material law with
$M\left(\partial_{t}^{-1}\right)=\left(\begin{array}{cc}\varepsilon_{1} & 0 \\ 0 & \varepsilon_{2}\end{array}\right)+\partial_{t}^{-1}\left(\begin{array}{cc}\left(1-\varepsilon_{1}\right) & 0 \\ 0 & \left(1-\varepsilon_{2}\right)\end{array}\right), \varepsilon_{1}, \varepsilon_{2} \in\{0,1\}$.

- $\varepsilon_{1}=1, \varepsilon_{2}=1:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & \partial_{t}\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}^{2}+G^{*} G & 0 \\ G & \partial_{t}\end{array}\right)$ by a formal row operation ("hyperbolic").
- $\varepsilon_{1}=1, \varepsilon_{2}=0:\left(\begin{array}{cc}\partial_{t}-G^{*} \\ G & 1\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}+G^{*} & G \\ G & 1\end{array}\right)$ by a formal row operation ("parabolic"). Note that $\varepsilon_{1}=0, \varepsilon_{2}=1$ is analogous.
- $\varepsilon_{1}=0, \varepsilon_{2}=0:\left(\begin{array}{cc}1 & -G^{*} \\ G & 1\end{array}\right) \sim\left(\begin{array}{cc}1+G^{*} G & 0 \\ G & 1\end{array}\right)$ by a formal row operation ("elliptic").

Four Tools for Establishing Skew-Selfadjointness Tool 1: Abstract grad-div Systems.

For abstract grad - div systems the spatial operator A is still of the form

$$
A=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right)
$$

but here

$$
G=\left(\begin{array}{c}
G_{1} \\
\vdots \\
G_{n}
\end{array}\right): D(G) \subseteq H_{0} \rightarrow H_{1} \oplus \cdots \oplus H_{n}
$$

(in the standard case of grad-div systems $G_{k}=\partial_{k}$ or $G_{k}=\partial_{k}$ but in general G_{k} need not necessarily be closable). Thus, the range space is a direct sum of real Hilbert spaces.

Application: Acoustics with Damping Boundary

Constraints

$$
\begin{aligned}
& \text { acoustics: } A=\left(\begin{array}{cc}
0 & -(\text { div })^{*} \\
\text { div } & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \text { grad } \\
\text { div } & 0
\end{array}\right) \\
& \left(\partial_{t}\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)+A\right)\binom{v}{p}=\binom{0}{f}
\end{aligned}
$$

where

$$
\kappa=\rho_{*} c_{*}^{2} \text { bulk modulus, } \rho_{*} \text { mass density, } c_{*} \text { speed of sound. }
$$

We expand this to

Application: Acoustics with Damping Boundary

Constraints
Here

$$
\tilde{A}=\left(\begin{array}{cc}
0 & -\binom{\operatorname{div}}{\delta_{\mathrm{div}, \partial \Omega}}^{*} \\
\binom{\operatorname{div}}{\delta_{\mathrm{div}, \partial \Omega}} & 0
\end{array}\right)
$$

with

$$
\begin{gathered}
\delta_{\mathrm{div}, \partial \Omega} f=n^{\top} f \in L^{2}(\partial \Omega), \\
\left(\delta_{\mathrm{div}, \partial \Omega} f\right)(\varphi)=\int_{\partial \Omega} \varphi n^{\top} f \operatorname{Vol}_{\partial \Omega}=\left\langle\varphi \mid n^{\top} f\right\rangle_{L^{2}(\partial \Omega)} .
\end{gathered}
$$

We note

$$
\binom{\operatorname{div}}{0} \subseteq\binom{\operatorname{div}}{\delta_{\mathrm{div}, \partial \Omega}}
$$

and so

$$
\left(\operatorname{grad}-\delta_{\mathrm{div}, \partial \Omega}^{*}\right) \subseteq-\binom{\operatorname{div}}{\delta_{\mathrm{div}, \partial \Omega}}^{*} \subseteq(\operatorname{grad} 0) .
$$

Application: Acoustics with Damping Boundary Constraints

What does it mean if $\binom{v}{\tau} \in \operatorname{dom}\left(\binom{\operatorname{div}}{\delta_{\text {div }, \partial \Omega}}^{*}\right)$?
From

$$
\binom{\operatorname{div}}{\delta_{\mathrm{div}, \partial \Omega}}^{*} \subseteq(-\operatorname{grad} 0)
$$

we have

$$
\begin{aligned}
\langle\operatorname{grad} p \mid w\rangle & =\left\langle\left.(\operatorname{grad} 0)\binom{p}{\tau} \right\rvert\, w\right\rangle=\left\langle\left.-\binom{\operatorname{div}}{\delta_{\mathrm{div}, \partial \Omega}}^{*}\binom{p}{\tau} \right\rvert\, w\right\rangle \\
& =-\left\langle\binom{ p}{\tau} \left\lvert\,\binom{\operatorname{div}}{\delta_{\mathrm{div}, \partial \Omega}} w\right.\right\rangle=-\langle p \mid \operatorname{div} w\rangle-\left\langle\tau \mid \delta_{\mathrm{div}, \partial \Omega} w\right\rangle
\end{aligned}
$$

that is

$$
\int_{\Omega}(\operatorname{grad} p) w \operatorname{Vol}_{\Omega}+\int_{\Omega} p(\operatorname{div} w) \operatorname{Vol}_{\Omega}=\int_{\partial \Omega} \tau\left(n^{\top} w\right) \operatorname{Vol}_{\partial \Omega} .
$$

Application: Acoustics with Damping Boundary Constraints

On the other hand, we have

$$
\int_{\Omega}(\operatorname{grad} p) w \operatorname{Vol}_{\Omega}+\int_{\Omega} p(\operatorname{div} w) \operatorname{Vol}_{\Omega}=\int_{\partial \Omega} p\left(n^{\top} w\right) \operatorname{Vol}_{\partial \Omega}
$$

and so by comparison $\tau=-p$. Thus, we found

$$
\binom{p}{\tau} \in \operatorname{dom}\left(\binom{\operatorname{div}}{\delta_{\operatorname{div}, \partial \Omega}}^{*}\right) \Longrightarrow\binom{p}{-p} \in \operatorname{dom}(\operatorname{grad}) \oplus L^{2}(\partial \Omega)
$$

We formally read off as the last equation

$$
-\beta_{*} p+n^{\top} v=h \text { on } \partial \Omega
$$

yielding (a dynamic Robin type boundary condition)

$$
n^{\top} \rho_{*}^{-1} \operatorname{grad} p+\beta_{*} \partial_{t} p=\partial_{t} h \text { on } \partial \Omega .
$$

Tool 2: The Mother-Descendant Mechanism

Theorem

Let $G: D(C) \subseteq H_{0} \rightarrow H_{1}$ be a closed densely defined linear operator, $H_{k}, k=0,1$, real Hilbert spaces. If $B_{0}: H_{0} \rightarrow X_{0}$ is a continuous linear mapping, X_{0} real Hilbert space such that
$G B_{0}^{*}$ densely defined.
Then $\overline{\left(\begin{array}{cc}B_{0} & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}0 & -G^{*} \\ G & 0\end{array}\right)}\left(\begin{array}{cc}B_{0}^{*} & 0 \\ 0 & 1\end{array}\right)$ is skew-selfadjoint.
"Mother" and"descendant". Can be repeated!

Tool 2: The Mother-Descendant Mechanism

Dirichlet boundary condition $G=$ grad acting on tensor fields of all ranks:

$$
A:=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \text { div } \\
\operatorname{grad} & 0
\end{array}\right) .
$$

Initial boundary value problems of classical mathematical physics can be produced from this particular "mother" operator A by choosing suitable projections for constructing "descendants".

Application: A Connection Between Wave Phenomena

In Nowacki's non-symmetric elasticity we are dealing with a skew-selfadjoint spatial operator of the form

$$
\left(\begin{array}{cc}
0 & -\operatorname{div}_{2} \\
-\operatorname{grad}_{1} & 0
\end{array}\right) \text { on } L^{2}\left(\Omega, \mathbb{R}^{3}\right) \oplus L^{2}\left(\Omega, \mathbb{R}^{3 \times 3}\right) .
$$

Here, with

$$
\widetilde{\mathrm{Op}} W:=\left(\mathrm{Op} W^{\top}\right)^{\top}
$$

where Op denotes a matrix PDE operator, we have

$$
\begin{aligned}
\operatorname{grad}_{1} v & :=\widetilde{\nabla} v=\left(\nabla v^{\top}\right)^{\top} \quad(\text { Jacobian of } v), \\
\operatorname{div}_{2} T & :=\widetilde{\nabla^{\top}} T=\left(\nabla^{\top} T^{\top}\right)^{\top} .
\end{aligned}
$$

As descendants we obtain

$$
\overline{\left(\begin{array}{cc}
1 & 0 \\
0 & l_{\mathfrak{s y m}}^{*}
\end{array}\right)\left(\begin{array}{cc}
0 & -\operatorname{div}_{2} \\
- \text { grad }_{1} & 0
\end{array}\right)}\left(\begin{array}{cc}
1 & 0 \\
0 & t_{\mathfrak{s y m}}
\end{array}\right)=\left(\begin{array}{cc}
0 & - \text { Div } \\
-\mathrm{Grad} & 0
\end{array}\right)
$$

i.e. classical symmetric elasticity, and classical electrodynamics

$$
\overline{\left(\begin{array}{cc}
1 & 0 \\
0 & -I_{0}^{*} \imath_{\mathfrak{s k e v}}^{*}
\end{array}\right)\left(\begin{array}{cc}
0 & -\operatorname{div}_{2} \\
-\operatorname{grad}_{1} & 0
\end{array}\right)}\left(\begin{array}{cc}
1 & 0 \\
0 & -l_{\mathfrak{s f e r}} /_{0}
\end{array}\right)=\left(\begin{array}{cc}
0 & \text { curl } \\
\text { curl } & 0
\end{array}\right)
$$

where curl $=\nabla \times=\left(\begin{array}{ccc}0 & -\partial_{3} & \partial_{2} \\ \partial_{3} & 0 & -\partial_{1} \\ -\partial_{2} & \partial_{1} & 0\end{array}\right), I_{0}:\left(\begin{array}{c}\alpha_{1} \\ \alpha_{2} \\ \alpha_{3}\end{array}\right) \mapsto \frac{1}{\sqrt{2}}\left(\begin{array}{ccc}0 & -\alpha_{3} & \alpha_{2} \\ \alpha_{3} & 0 & -\alpha_{1} \\ -\alpha_{2} & \alpha_{1} & 0\end{array}\right)$
and $l_{\text {sferv }}^{*} T=\frac{1}{2}\left(T-T^{\top}\right)=\frac{1}{2}\left(T-T^{*}\right)$.

Application: A Connection Between Wave Phenomena.

Also acoustics can be obtained as a descendant from non-symmetric elasticity via

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & - \text { trace }
\end{array}\right)\left(\begin{array}{cc}
0 & -\operatorname{div}_{2} \\
-\operatorname{grad}_{1} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & - \text { trace }^{*}
\end{array}\right)=\left(\begin{array}{cc}
0 & \operatorname{grad}_{0} \\
\operatorname{div}_{1} & 0
\end{array}\right) .
$$

Here trace denotes the standard matrix trace and its adjoint evaluates simply to

$$
\operatorname{trace}^{*} p=\left(\begin{array}{ccc}
p & 0 & 0 \\
0 & p & 0 \\
0 & 0 & p
\end{array}\right)=p \mathbb{1}_{3 \times 3}
$$

Tool 3: Coupling of Different Physical Phenomena

Block-diagonal operator matrix:

$$
A=\left(\begin{array}{cccc}
A_{0} & 0 & \cdots & 0 \\
0 & \ddots & & \vdots \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & A_{n}
\end{array}\right)
$$

skew-selfadjoint in $H=\bigoplus_{k=0, \ldots, n} H_{k}$, if diagonal block entries $A_{k}: D\left(A_{k}\right) \subseteq H_{k} \rightarrow H_{k}, k=0, \ldots, n$, are skew-selfadjoint.
Proper coupling: M contains off-diagonal block entries

$$
M\left(\partial_{t}^{-1}\right):=\left(\begin{array}{ccc}
M_{00}\left(\partial_{t}^{-1}\right) & \cdots & M_{0 n}\left(\partial_{t}^{-1}\right) \\
\vdots & \ddots & \vdots \\
M_{n 0}\left(\partial_{t}^{-1}\right) & \cdots & M_{n n}\left(\partial_{t}^{-1}\right)
\end{array}\right)
$$

Coupling elasticity and acoustics
$\partial_{t}\left(\begin{array}{cccc}\kappa & 0 & 0 & 0 \\ 0 & v_{1} & 0 & 0 \\ 0 & 0 & \nu_{2} & 0 \\ 0 & 0 & 0 & C^{-1}\end{array}\right)+\left(\begin{array}{cccc}0 & 0 & -1 & 0 \\ 0 & d & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)+A$
with

$$
A=\left(\begin{array}{cc}
\left(\begin{array}{cc}
0 & \operatorname{grad}_{0} \\
\operatorname{div}_{1} & 0
\end{array}\right) & \left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) & \left(\begin{array}{cc}
0 & - \text { Div } \\
- \text { Grad } & 0
\end{array}\right)
\end{array}\right) .
$$

projection onto $\operatorname{ker}\left(\partial_{3}\right)=L^{2}\left(\Omega_{0}\right)$ assuming $\Omega:=\Omega_{0} \times \mathbb{T} \subseteq \mathbb{R}^{2} \times \mathbb{T}=: M$ (instead of $M=\mathbb{R}^{3}$) we can reduce this by one spatial dimension (mother-descendant mechanism) to a (1+2)-dimensional evolutionary problem.

Application: The Reissner-Mindlin Plate Equation

The resulting evolutionary equation looks the same, but now it has to be interpreted (by dropping zero rows and columns in A and adapting the material law) in
$L^{2}\left(\Omega_{0}, \mathbb{R}^{2}\right) \oplus L^{2}\left(\Omega_{0}, \mathbb{R}\right) \oplus L^{2}\left(\Omega_{0}, \mathbb{R}^{2}\right) \oplus L_{2}^{2}\left(\Omega_{0}, \mathfrak{s y m}\left[\mathbb{R}^{2 \times 2}\right]\right)$ with $\Omega_{0} \subseteq \mathbb{R}^{2}$.
This is the Reissner-Mindlin plate system commonly used in engineering models.

Remark:(Kirchhoff-Love plate)
Letting $\kappa=0$ and $v_{2}=0$ (in consequence destroying well-posedness for associated initial boundary value problems) and eliminating the first and third unknowns and equations and then eliminating the stress yields for isotropic homogeneous media

$$
\partial_{t}^{2} v_{1} \eta+d \partial_{t} \eta+(2 \kappa+\lambda) \Delta^{2} \eta=\partial_{t} f
$$

Tool 4: Weak = Strong

Transmutator

$$
[L, C, R]:=\angle C-C R
$$

assumed to be defined on dom (C). The commutator

$$
\begin{aligned}
& {[L, C]:=[L, C, L]} \\
& {[C, L]:=-[L, C]}
\end{aligned}
$$

is a special case.

Tool 4: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Tool 4: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$.

Then

Tool 4: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$.

Then

Tool 4: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$. Moreover,

- $L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$,

Tool 4：Weak＝Strong

Let $A_{k}, k=1,2$ ，be closed densely defined operators from H to K ， $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H ．

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H ，respectively，and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$ ． Moreover，
－$L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$ ，
－$L_{\varepsilon}^{*} \underset{\varepsilon \rightarrow 0+}{s} 1, R_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1$ and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 0$ ．

Tool 4：Weak＝Strong

Let $A_{k}, k=1,2$ ，be closed densely defined operators from H to K ， $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H ．

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H ，respectively，and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$ ． Moreover，
－$L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$ ，
－$L_{\varepsilon}^{*} \underset{\varepsilon \rightarrow 0+}{s} 1, R_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1$ and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 0$ ．

Tool 4: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$. Moreover,

- $L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$,
- $L_{\varepsilon}^{*} \underset{\varepsilon \rightarrow 0+}{\stackrel{s}{\rightarrow}} 1, R_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{\stackrel{s}{\rightarrow}} 1$ and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 0$.

Then

$$
\left(A_{1}+A_{2}\right)^{*}=\overline{A_{1}^{*}+A_{2}^{*}} .
$$

Tool 4: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$.
Moreover,

- $L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$,
- $L_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1, R_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1$ and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]^{*} \xrightarrow[\varepsilon \rightarrow 0+]{\stackrel{s}{\rightarrow}} 0$.

Then

$$
\left(A_{1}+A_{2}\right)^{*}=\overline{A_{1}^{*}+A_{2}^{*}}
$$

Corollary

Let A_{1}, A_{2} be skew-selfadjoint, then under the assumptions of the previous theorem we have
$\overline{A_{1}+A_{2}}$ skew-selfadjoint.

Tool 4: Weak = Strong

Application: (acoustics in moving media) assuming that $\mathfrak{s y m}\left(\alpha \partial_{3}\left(\begin{array}{cc}\rho_{*} & 0 \\ 0 & \kappa^{-1}\end{array}\right)\right)$ is continuous

$$
\begin{aligned}
& \partial_{t}\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)+\alpha \partial_{3}\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)+\left(\begin{array}{cc}
0 & \text { grad } \\
\text { div } & 0
\end{array}\right)= \\
& =\partial_{t}\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)+\frac{1}{2} \mathfrak{s y m}\left(\alpha \partial_{3}\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)\right)+A_{1}+A_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& A_{1}=\mathfrak{s k e w} \overline{\left(\partial_{3} \alpha\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)\right)},(\text { skew-selfadjoint for suitable } \alpha, \Omega) \\
& A_{2}=\left(\begin{array}{cc}
0 & \text { grad } \\
\text { div } & 0
\end{array}\right), \\
& R_{\varepsilon}=L_{\varepsilon}=\left(1+\varepsilon \partial_{3}\right)^{-1} .
\end{aligned}
$$

The End

Thank You for Your Attention!

