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Lie Groups and Bastiani's Differential Calculus

e Lie group is infinite-dimensional manifold with smooth group structure.

e Infinite-dimensional manifold M is Hausdorff topological space, covered
by charts that map open subsets of M homeomorphically to open
subsets of a fixed Hausdorff locally convex vector space (modeling
space), such that coordinate changes are smooth:

e f: F O U — E differentiable if directional derivative exist:

(D) (x) :==limeso 7 - (F(x+h-v)—f(x))EE  VxeU, veE.



Lie Groups and Bastiani's Differential Calculus

e Lie group is infinite-dimensional manifold with smooth group structure.

e Infinite-dimensional manifold M is Hausdorff topological space, covered
by charts that map open subsets of M homeomorphically to open
subsets of a fixed Hausdorff locally convex vector space (modeling
space), such that coordinate changes are smooth:

e f: F O U — E differentiable if directional derivative exist:
(D) (x) :==limeso 7 - (F(x+h-v)—f(x))EE  VxeU, veE.
e f of class C! if differentiable with
df: Ux F > (x,v)— (D,f)(x) € E
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Lie Groups and Bastiani's Differential Calculus

e Lie group is infinite-dimensional manifold with smooth group structure.

e Infinite-dimensional manifold M is Hausdorff topological space, covered
by charts that map open subsets of M homeomorphically to open
subsets of a fixed Hausdorff locally convex vector space (modeling
space), such that coordinate changes are smooth:

e f: F O U — E differentiable if directional derivative exist:
(D) (x) :==limeso 7 - (F(x+h-v)—f(x))EE  VxeU, veE.
e f of class C! if differentiable with
df: Ux F > (x,v)— (D,f)(x) € E

continuous w.r.t. X-topology (HLCVS) = d.f =df(x,-) linear.
e f of class C? iff of class C!, with (of class C" — inductively)

d[df]: Ux F > E

of class Clfor U= Ux FCF=F x F.



Lie Groups and Bastiani's Differential Calculus

e Lie group is infinite-dimensional manifold with smooth group structure.

e Infinite-dimensional manifold M is Hausdorff topological space, covered
by charts that map open subsets of M homeomorphically to open
subsets of a fixed Hausdorff locally convex vector space (modeling
space), such that coordinate changes are smooth:

e f: F O U — E differentiable if directional derivative exist:
(D) (x) :==limeso 7 - (F(x+h-v)—f(x))EE  VxeU, veE.
e f of class C! if differentiable with
df: Ux F > (x,v)— (D,f)(x) € E

continuous w.r.t. X-topology (HLCVS) = d.f =df(x,-) linear.
e Alternatively, f of class C" if (dPf(x,...) — multilinear)

dPf: (x;vp, ..., 1) — (Dvp(Dvp_l(. (D (1) ))N(x)

defined for all x € U, v1,...,v, € F and continuous, for 1 < p < n.



Overview Lie group G with Lie algebra g

In 1983 Milnor introduced regularity as tool to extend elementary results in
Lie theory to infinite dimensions. (integr. of Lie algebra homomorphisms)

Roughly speaking: G is CK-regular (k € NU {lip, oo}) if
¢=dR,1(p)  for o€ C[0,1]9)

has solution y = Evol(¢) € C5T1([0, 1], G) with smooth dependence on ¢.



Overview Lie group G with Lie algebra g

In 1983 Milnor introduced regularity as tool to extend elementary results in
Lie theory to infinite dimensions. (integr. of Lie algebra homomorphisms)

Roughly speaking: G is CK-regular (k € NU {lip, oo}) if
¢=dR(p)  for  geCX(0,1].9)
has solution y = Evol(¢) € C5T1([0, 1], G) with smooth dependence on ¢.
Regularity Problem: When is Lie group CK-regular ? (k = 0)
Further Motivation:
e exp(X) = Evol(¢x)(1) with ¢x:[0,1] >t~ X € g constant.
e Let (P, M) be principal G-bundle, w € Q(P,g), s: M 2 U — P local
section, and v € C}([0,1], U). Then,
Y(t) == (s 0)(t) - Evol(—(s"w)(7))(t) ~ Vte[0,1]

horizontal lift of v in s(7(0)), i.e., 7(1) = P%(s(0)) (holonomy).



The Evolution Map G — fixed Lie group with Lie algebra g
B8 — continuous seminorms on g

Right Logarithmic Derivative:
5" CYK,G) =D C CK,g), p— d.R,-1(h).

AR, -1

e

Elementary Properties:
6"(n-g)=26"(p) and 6 (ulk) = 0" (1)K
6"(p-v) =6"(n) + Adu(6"(v))
6" (noo)=20-(6"(n)oo)

for all u,v € CY{(K,G), g€ G, K C K, and g: K" — K of class C.
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Right Logarithmic Derivative:
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Elementary Properties:
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for all u,v € CY{(K,G), g€ G, K C K, and g: K" — K of class C.



The Evolution Map G — fixed Lie group with Lie algebra g
B8 — continuous seminorms on g

Right Logarithmic Derivative:

8" C(K,G) =D C CUK,g),  pr— duR,—1(p).
Evolution Map:
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The Evolution Map G — fixed Lie group with Lie algebra g
B8 — continuous seminorms on g

Right Logarithmic Derivative:
8" C(K,G) =D C CUK,g),  pr— duR,—1(p).
Evolution Map:
Evol: ® = C}(K,G),  ¢=06"(n)—p (6"(1) = ¢)
Product Integral:
Ji¢=Evol(¢lsq)(t) € G VI[s,t] C dom[g], ¢ € D.
Elementary Properties:
6"(n-g)=06"(n) and  6"(ulkr) = 6" (1)K
5" (- v) = 87 () + Ad,(6"(1)
6"(nog)=0-(6"(n)oe)

for all u,v € CY{(K,G), g€ G, K C K, and g: K" — K of class C.



The Evolution Map G — fixed Lie group with Lie algebra g
B8 — continuous seminorms on g

Right Logarithmic Derivative:
8" C(K,G) =D C CUK,g),  pr— duR,—1(p).
Evolution Map:
Evol: ® =+ Ci(K,G),  ¢=6"(u) ~n (6" (1) = )
Product Integral:
Ji¢=Evol(¢lsq)(t) € G VI[s,t] C dom[g], ¢ € D.
Elementary Properties: (o= j:/ ®)

j:/(ﬁ:j;(]ﬁ Jﬂ:l¢ splitting
Jo - Juv=Fo+ Adj‘:¢(¢) product
j o= j 0-(¢oo) substitution
for all ¢,9 € @ N CO([r,r],9), and o: [, €] — [r, 1] pos. of class C*.



-l
Glueing with Bump Functions () Jo=J.

‘ O = ‘ () ()O ()
Interval [a, b] given, then find

o:[a, b] — [a,b] smooth with  p(a) = a, o(b) = b,
such that ¢: [a, b] — [0, 2] is bump function, i.e.,
Olapy 20 and D) =0=pO(b) VIieN.

Thus, given ¢ € ® N C([a, b], g), we have

fo=[10 (600

¢ 0-(¢o0)

| | -
a b a b

“t;
. 01q5



Glueing with Bump Functions () 5-"5:5? .

“t;
. 01q5

‘()—‘() ()O()

Interval [a, b] given, then find
o:[a, b] — [a,b] smooth with  p(a) = a, o(b) = b,

such that ¢: [a, b] — [0, 2] is bump function, i.e.,

Ol(a) 7 0 and 0@ =0=0p00p) VeeN.

Thus, given ¢ € ® N C([a, b], g), we have

Jo=J0o-(¢00).
L 1 1 | R I L /| 1
1 1 ] 1 1 1 1 1 1 ] ] 1
0 5] [%) t3 ty ts 1 0 t1 to t3 ts ts

j<15 an1 (pn-100n-1) .- J o0 ( ¢OOQO)(z)j¢n—1"~'

qoo(¢) <2 max(qoo(¢0)7 ) qoo(d)nfl)) VqeP



ck([0,1], ) C dom[Evol] i ©pp(@) = [ p(6() ds

Ck-semiregular Mackey complete - [-continuity
[MH18] \ [MH17) [MH17]
o al k-confined : ;
Mackey k-continuity fulfilled if AE [MH18] locally u—convexé

MH1g] [MH17]

diff. under the integral CP-continuity

(h,)=¢+h-¢

clear IAE (MH18]
[MH17] :

Ck-differentiability = Ck_continuity

Ck-regular (evol, C*)

locally pi-convex: To each p € 3, there exists q € B with
(poS)(E1(X1) ... - =7H(X0)) < a(X) + ... +a(Xn)

if q(X1)+...+q(X,) <1, forall n>1. Introduced in [HG12]




Ck([ov 1], g) € dom[Evol]
Ck-semiregular

Mackey k-continuity

[MH18]

diff. under the integral

O(h,-)=¢+h-1

Ck-differentiability

[MH

17]

< g Mack./int. complete

Mackey complete

[MH18] \ Uy
I‘/'/' i
‘af k-confined

fulfilled if AE [MH18]

[MH17]

evoly is C!

[HG12] |
Ck-regular (evol, C*)

©pp(@) = [ p(6() ds
[-continuity
[MH17]
‘locally p-convex:

[MH17]

CP-continuity

clear TAE [MH18];

Ck-continuity

AE (asymptotic estimate): To each v € 3, there exists v < to € 3, such that

o([X0, [Xau [ - X Y. Q1) < 0(X0) - .. - 0(X,) - ()

(Banach, abelian, nilpotent)

for Xy,.... X, Y €g,n>1.



p(®) = [ p(9(s)) ds
[1-continuity

[MH17]

k-confined locally ji-convex

fulfilled if AE [MH18]

Mackey k-continuity

[MH18] (MH17]
: : CO-continuit
diff. under the integral Yy

clear TAE [MH18]

Oh,)=¢+h-9 [MH]_?]
Ck-differentiability Ck-continuity
[HG12] |

< g Mack./int. complete

Ck-regular (evol, C*)

M. c.: Each Mackey-Cauchy sequence in G converges; i.e., each {g,}nen C G with

(hoS)(gn" &) <t Amn VmneN, peP

for {Cp}peﬁp - RZO; R>O 2 {)\m,n}(m,n)eNxN — 0.



: 5 P(e) = [ p(6(s)) ds

Ck([ov 1], g) € dom[Evol]
Ck-semiregular : Mackey complete L1 continuity

(e \
Fivy, .
2/ k-confined

Mackey k-continuity

[MH17]

locally p-convex

[MH18] (MH17]
: : CO-continuit
diff. under the integral Yy

clear TAE [MH18]

“o(h) = ¢+ h-
o) v [MH17]

Ck-differentiability

(:> g Mack./int. complete [HG12]}
.............................................. " Choregular (evoly C)

Ck-continuity

M.k-c.: {@ntnen —mx @ = limP (dn= (00 (JSdnc 56 Uin>Ny)

Mackey-like convergence in the C*-topology — e.g., for k € N:
Ph(d—0n)<cp-Xy  VneEN, peP

for {Cp}pegp g Rzo, R>0 2 {)‘n}néN — 0.
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Ck([ov 1], g) € dom[Evol]
Ck-semiregular —— Mackey complete L[L-continuity

[MH18] \
I‘/'/‘ i
nld k-confined

Mackey k-continuity

[MH17]

locally p-convex

[MH18] (MH17]
: : CO-continuit
diff. under the integral Yy

clear TAE [MH18]

“o(h) =+ h-
(o) =g+ by [MH17]

Ck-differentiability

(:> g Mack./int. complete [HG12]|
. . Ck_regu|ar (evolk COO)

Ck-continuity

hlneo J (B, ) = deLy o) ( Adgg a(0,);-:(019(0,5)) ds) € Trop )G

®: (—¢,¢) x [0,1] — g with ®(h,-) € C*([0,1],g) and 819(0,-) € CX([0,1],g), such that to
pEP,s=k: Lps>0<eps <ewith
1/1hl- e (®(h,-) = ®(0,)) < Lps VO < |hl <eps.

Duhamel 0pexp(X + h- Y): ®(h,-) = ¢x + h- dy



c*([0,1], g) C dom[Evol] : pp(8) = [ p(e(s)) ds
Ck-semiregular : Mackey complete [1-continuity

[MH18] ~
Hiviay

Mackey k-continuity

[MH17]

k-confined locally ji-convex

MH18] [MH17]

diff. under the integral C-continuity

(o(h,)y=0+h-v clear TAE [MH18g]

[MH17]
: Ck-differentiability Ck-continuity
‘& g Mack. /int. complete [HG12]}
............................................... CH_regular (evol, C)
dgevoli(¥) = deLy 4 ([ Ad(gs 4)-1(¥(s)) ds) evoli := || ck(f0.11.9)

1. dgevol,: CX([0,1],g) — T(4G is linear and CP-continuous.
2. lim(p oy dg, evoli (o) = dgevoly (¢))  holds for each
— sequence {Pn}meN —mk ¢

- net {¥a}nen —n0 .




ck([0,1], g) C dom[Evol] : pp(8) = [ p(e(s)) ds

Ck-semiregular Mackey complete [1-continuity

[MH18] >
tr/l//.,g/

Mackey k-continuity fulfilled if AE [MH18]

[MH17]

locally p-convex

[MH17]

diff. under the integral C-continuity

O(h, )=+ h-v

clear TAE [MH18]
[MH17]

Ck-differentiability

& g Mack./int. complete [HG12]}
Ck-regular (evol, C*)

Ck-continuity

k-c: Can approximate ¢ € CX([0,1],g) by M.-C. sequence {¢,},en € DP([0,1], ),
such that to each q € 3, there exists m € *J3 with

qOAdU‘;¢n]71 <m VneN.

Let u(t) := Iim,,jg ¢n for each t € [0,1]; and verify (ptw.) convergence, as well as
the solution property 6" (1) = ¢. [Lt) én) - [Lt) bm) = j; Adgpep,1-1(0n — bm)




Thank you for your Attention !



Strong Trotter Property

G has strong Trotter property iff for each u € C1([0,1], G) with
£(0) € dom[exp], we have

limp pu(7/n)" = exp(7 - ((0)) V1 elo,f] (%)
uniformly for each ¢ > 0.

Proposition [MH18]:
1. If G is sequentially O-continuous, then G has strong Trotter property.
2. If G is Mackey 0-continuous, then (%) holds for each u € C([0, 1], G)
with /2(0) € dom[exp] and 5" () € C'P([0, 1], g).
Fulfilled, e.g., if G is C%-semiregular, and p is of class C2.



Mackey Completeness Mackey = “uniform in 53"

Theorem [MH17]: If G is C*-semiregular, then G is Mackey complete.

MC: Each Mackey-Cauchy sequence in G converges; i.e., each sequence
{gn}nGN C G with

(pOE)(gr;I'gn)Scp')\m.,n VmneN, peB

for {Cp}pefp - Rzo, Rso 2 {Am,n}(m,n)ENxN — 0.



Mackey Completeness Mackey = “uniform in 53"

Theorem [MH17]: If G is C*-semiregular, then G is Mackey complete.

MC: Each Mackey-Cauchy sequence in G converges; i.e., each sequence
{gn}nGN C G with

(pOE)(gr;I'gn)Scp')\m,n VmneN, peB
for {Cp}pefp C RZO, Rso 2 {Am,n}(m,n)ENxN — 0.
Sketch of the Proof:
e Pass to sufficiently fast decreasing subsequence of {g,}nen-
e Use bump functions to construct from the “differences” g, g, 1 some

¢ € C>([0,1], g) with ¢(1) =0 and

j¢|[t,,,t,,+1] =g lgn1 for to:=0, th:=> 44 2k thus

1N . t e .
(Jl(b'gol) 1:||mn(jl0+1¢.g0 ) ! (I) t'}l tiz IHIIL
=lim, (g, 'gn-1" .. .gl—lgo _go—l)—l

= lim, gp.




Mackey Completeness Mackey = “uniform in 53"

Theorem [MH17]: If G is C*-semiregular, then G is Mackey complete.

MC: Each Mackey-Cauchy sequence in G converges; i.e., each sequence
{gn}nGN C G with

(pOE)(gr;I'gn)Scp')\m,n VmneN, peB
for {Cp}pefp - Rzo, Rso 2 {Am,n}(m,n)ENxN — 0.

Theorem [MH17]: If G locally pi-convex, then CK-semiregular for k €
N> U {lip, oo} if and only if G Mackey complete and k-confined.

k-c: Can approximate ¢ € CK([0,1],g) by C°%M.-C. sequence {¢,}nen C
DP([0,1],g), such that to each q € B, there exists m € P with

qOAdU‘;d}n]_l S m VHGN (*)
Automatically k-c: if (g, [, ]) asymptotic estimate; hence, [MH18]

If G AE : Ck-regular for k > 0 — C®°-regular.



Mackey Completeness Mackey = “uniform in 53"

Theorem [MH17]: If G is C*-semiregular, then G is Mackey complete.

MC: Each Mackey-Cauchy sequence in G converges; i.e., each sequence
{gn}nGN C G with

(pOE)(gr;I'gn)Scp')\m,n VmneN, peB
for {Cp}pefp - Rzo, Rso 2 {Am,n}(m,n)ENxN — 0.

Theorem [MH17]: If G locally pi-convex, then CK-semiregular for k €
N> U {lip, oo} if and only if G Mackey complete and k-confined.

k-c: Can approximate ¢ € CK([0,1],g) by C°%M.-C. sequence {¢,}nen C
DP([0,1],g), such that to each q € B, there exists m € P with

qOAd[Ia(bn]_l S m VHGN (*)

Idea of the Proof: Let uf(t) ¢ = lim, jé ¢n for each t € [0, 1]; and verify
(ptw.) convergence, as well as the solution property 5r(j; ¢) = o.

[jé an] _1[j(t) Qbm} = jé Ad[v\“a@,]*l(gf)n - ¢m) g {jé an}neN is MC.



Mackey Continuity P (¢) = max(0 < p < k | poo(¢(P)))

Theorem [MH18]: If G is Ck-semiregular for k € NU {lip, 0o}, then G is
Mackey k-continuous.

M. k-c.: I{an}nEN —mk ¢| = !im?,o J.(.) $n = J\(.)QZ)I
(%) ()

(%) Mackey-like convergence in the Ck-topology — e.g., for k € N that
pE(d— dn) < - An VneN, peP
for {cpbpep € R0, Ro0 2 {An}nen — 0.

(**) Uniform convergence: Given e € U C G neighbourhood, there exists
Ny € N with

foon€foo-U Vtel0,1], n> Ny.



Mackey Continuity O 1 |
o & f to

Theorem [MH18]: If G is Ck-semiregular for k € NU {lip, 0o}, then G is
Mackey k-continuous.

Sketch of the Proof: (indirect argument)

e If claim is wrong, there exists e € U C G open and {¢n}nen —mk O
with {¢ ¢ € U for all n € N,

e Use bump functions p, = ¢, to construct ¢ € C*([0, 1], g) with
¢»(0) =0 and

j:n+1 ¢’[tn+17tn] = jOn(t) ¢” fOI’ tO = 1’ t,-, =1- ZZ:l 2_k'

e Choose e € V C G open with V- V™1 C U, as well as 0 < s < 1 with
Iéq&e Vfor0<t<s.

e Obtain contradiction by
n(t t t th — _
8 ( )¢n = jth ¢|[tn+1,t,,] = [L)(ls] : U0+1 ¢] levy.y-l cu,
for each t € [tpy1, ta] with t, <s.
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