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1 Multiphysics (nonstat., nonlinear, coupled PDEs)
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Multiphysics

Multiphysics:

* Modeling the interaction of various physical phenomena
For instance:

* Solids (elastic/plastic) u,

* Fluids (Stokes, Navier-Stokes, Darcy) {v,p},

¢ Chemical concentrations c,

¢ Temperatures T,

 Saturations s.
Number of couplings:

¢ Traditionally: 2 PDEs couple

* Nowadays: often more than 2 PDEs couple



Coupling types

Volume coupling (the PDEs live in the same domain) and exchange
information via volume terms, right hand sides, coefficients.

Examples: Biot equations for modeling porous media flow, phase-field
fracture, Cahn-Hilliard phase-field models for incompressible flows.

Interface coupling (the PDEs live in different domains) and the
information of the PDEs is only exchanged on the interface.

Example: fluid-structure interaction, sharp interface models.



Details on interface coupling
Two basic methods:
¢ Interface-Tracking

¢ Interface-Capturing
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Figure: Left: the mesh is fixed and the interface must be captured. Right:
interface-tracking in which the interface is located on mesh edges.




Interface-tracking

In methods, where the domain is decomposed into elements or cells
(finite volumes, finite elements or isogeometric analysis), using
interface-tracking aligns mesh edges with the interface.

fitted methods.
For moving interfaces, the mesh elements need to be moved as well;

However, mesh elements may be deformed too much such that the
approach fails if not taken care of (expensive) re-meshing in a proper
way.



Interface-capturing

In interface-capturing methods (unfitted methods), the domain and
consequently the single elements stay fixed.

Here, the interface can move freely through the domain.

Mesh degeneration is not a problem, but capturing the interface is
difficult.

Topology changes (e.g., contact) are possible



Interface-capturing

In interface-capturing methods (unfitted methods), the domain and
consequently the single elements stay fixed.

Here, the interface can move freely through the domain.

Mesh degeneration is not a problem, but capturing the interface is
difficult.

Topology changes (e.g., contact) are possible

In this approach a further classification can be made:

Lower-dimensional approaches

Diffusive techniques.

Specific realizations:

The first method comprises extended/generalized finite elements,
cut-cell methods, finite cell methods, and locally modified finite
elements;

Diffusive methods are the famous level-set method or phase-field
methods.

Thomas Wick (LUH) Numerics for coupled problems



2 Examples of coupled PDEs
Two prototype examples
Classifications



Fluid-structure interaction

Equations for fluid flows (Navier Stokes) - Eulerian

v+ (v-Vo) =V .0(v,p) =0, V-v=0, inQrxI,

+bc and initial conditions

with Cauchy stress tensor 0'(v, p) = —pl + psvs(Vo + VoT).
Equations for (nonlinear) elasticity - Lagrangian

Fu—V-(FE@) =0 inQyxI,

+bc and initial conditions

with the stress F.(i1) = 25 E + Astrace(E)I, the strain E = (FFT —I) and F = I + V.

Coupling conditions on T}, T; oy

vr =0 and U(v,p)nf = ?f.(ﬁ)ﬁs i O,




Example: Hron/Turek benchmark FSI 2 (2006) L
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A parallel block-preconditioned monolithic solver 2

* At each Newton step, we have:

M Cus O I 0 0] M 0 0][T M 1Cus 0
A= |Cn S Cy|,m 0 I offo & of]lo I STy | (M
Cfm Cfs 5 Cme71 Cfs$71 1 0 0 X| |0 0 I

with X = F — CxS~1Cy.

e Computational performance:

1000

CPUs

Figure: FSI-2 benchmark: Strong scalability using the preconditioned GMRES
scheme for approximately 16 - 10° dofs using Q(2) — Q(2) — P(1) elements and
time step size dt = 0.01s. Average time given in seconds for the solution of one

linear system.

2]odlbauer /Langer/Wick, IINME, 2019



Phase-field fracture propagation (simplified version)
Formulation (Simplified quasi-static brittle fracture)

For the loading steps n = 1,2,3, ..., N: Find a displacement function u : B x I — R? and a
phase-field indicator function ¢ : B x I — [0,1], where I := (0, T] is the ‘time’/loading interval, such

that
~V - (¢*Vu) =f
PIVuP —enp— 1(1-9) <0
ot <0

1
(ol VulP —eag—(1-9)] a9 =0

inBxI, (u-equation)
inBx1, (¢-equation)
in B x I, (crack irreversibility)

in Bx 1. (compatibility condition)

To formulate a well-posed problem, boundary and initial conditions are needed:

u(x, t) = up(x,t)
u(x,t) =0
¢*Vu-n=0
09 =0
¢(x,0) = po

on dQp x I,

on )y X I,

on (90 UaoQYy) X I,
onoB x I,

on B x {0},

with an initial fracture ¢y and with € > 0 as the so-called phase-field regularization parameter.

Thomas Wick (LUH) Numerics for coupled problems
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Single edge notched shear test in mechanics 3
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Figure: Comparison of experiment and Figure: Setting and functional
numerical simulation. evaluation in terms of the

load-displacement curve

3 All parameters taken from Miehe/Welschinger /Hofacker (2010) CMAME, (2010) INME
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Classification of fluid-structure interaction

PDE system with d 4 d + 1 variables: (v, vy, vz, iy, Uy, iz, p) for d = 3

Nonlinear constitutive models: convection term in the NSE equations,
geometric nonlinearities in the elastic strain tensor

Interface-coupled PDEs

Solid and fluid ask for different conservation properties; solid is
wave-like (conservation of energy!)

Large solid deformations: different coordinate systems. Eulerian for
fluids and Lagrangian for solids



Classification of phase-field fracture

PDE system with d + 1 variables: (uy, uy, uz, ¢) (d=3)

Nonlinear constitutive models (stress splitting) in the displacement
equation

Volume-coupled PDEs
Variational inequality (crack irreversibility constraint)
Three types of nonlinearities:

1 nonlinear effects in the model (e.g., stress splitting)
2 nonlinear effects through coupling terms

3 nonlinear effects due to the variational inequality



More information in the GAMM-Leitartikel 02/2018

ZIELORIENTIERTE NUMERIK FUR
MULTIPHYSIKSIMULATIONEN

VON THOMAS WICK

Multiphysik

Multiphysik bezeu:hnel ein |nlerd|52|pllnares Forschungs-
gebiet, in dem h; ische Pha
miteinander gekoppelt werden Oft basieren diese Be-
schreibungen auf kontinuumsmechanischen Modellen,
welche auf sogenannte Systeme von Differentialglei-
chungen (DGL) fiihren.
Die Interdisziplinaritéat erfordert ein Grundverstéandnis von
Theorie, Numerik/Wissenschaftlichem Rechnen und Pra-
xis. Oftmals erfolgt die Spezialisierung auf eines der drei
Gebiete, welches nichtsdestotrotz schnell sehr herausfor-
dernd werden kann. Im Folgenden konzentrieren wir uns
auf Aspekte des Wissenschaftlichen Rechnens in Multi-
physiksimulationen.
Die zugrundeli 1 Di jleichungen sind mei-
stens von partieller Natur (PDGL), hangen also von min-
destens zwei unabhangigen Variablen ab. Diese PDGL
sind im Allgemeinen instationar, nichtlinear, gekoppelt und
1 Ungleict ingen unterworfen. Theo-

solcher Skalenunterschiede wird in absehbarer Zeit nicht
moglich sein, wenngleich Multiskalen-Methoden ein sehr
aktives Forschungsfeld darstellen. Auf diesen letzten
Punkt wird im weiteren Verlauf des Artikels nicht weiter
eingegangen.

Kopplungsbedingungen

Ein entscheidender Aspekt in der Multiphysik betrifft die
Analyse, das numerische Design und die Implementierung
der Kopplungsbedlngungen Grundsatzlich kann zwischen
2wei Klassen werden: pplungen
und Interfacekopplungen. Bei Volumenkopplungen wird

tber Koeffizienten oder Rechte-Seiten-Terme gekoppelt.
Die verschiedenen Gleichungen sind aber im selben Gebiet
definiert. Im Gegensatz dazu sind bei Interfacekopplungen
die Gleichungen in verschiedenen Gebieten definiert und
koppeln an dem inneren Rand, dem sogenannten Inter-
face. Es gibt kein Patentrezept zur allgemeinen Losung. Im

retische Eriebnisse sind - wenn Uberhauil - Iediilich an- Reielfall sind Imerfacekoiﬁlunien jedoch viel schwieriier



3 Numerical algorithms
Needs
Two-phase-flow phase-field fracture propagation



Efficient and robust numerical solutions

* Respect conservation properties of governing PDEs (e.g., local mass
conservation, energy conservation)

e [terative linear solvers (e.g., CG, GMRES)
* Appropriate nonlinear solvers (fixed-point, Newton, ...)

* Relaxation of possible constraints (e.g., irreversibility condition in
phase-field fracture)

e Adaptive methods:

* Mesh adaptivity in space and/or time
* Adaptive stopping criteria for linear and nonlinear solvers
* A posteriori error estimation (possibly goal-oriented)

¢ Balancing of errors: e.g., discretization and iteration errors *

e Parallelization (MPI, ...)

* Load-balancing when mesh adaptation is combined with parallelization

4Talk by Bernhard Endtmayer
5Talk by Daniel JodIbauer

Thomas Wick (LUH) Numerics for coupled problems



Practical realization
® The modeling, design and numerical analysis and implementation of multiphysics
problems with the previous aims is NOT a one-man-show (resp. one-woman-show) !
¢ Joint efforts ! (social aspect of research! Try to be open and curious!)
® International interdisciplinarity !

6Bangerth et al; since 1998
"Heister/Wick; PAMM, 2018
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® Governing software must be:
* sufficiently sophisticated
¢ relatively easy to use
* sustainable
¢ flexible
* must have a good documentation!

6Bangerth et al; since 1998
"Heister/Wick; PAMM, 2018


https://www.dealii.org/
www.dopelib.net

Practical realization
® The modeling, design and numerical analysis and implementation of multiphysics
problems with the previous aims is NOT a one-man-show (resp. one-woman-show) !

¢ Joint efforts ! (social aspect of research! Try to be open and curious!)
® International interdisciplinarity !
® Governing software must be:

* sufficiently sophisticated

¢ relatively easy to use

* sustainable

¢ flexible

* must have a good documentation!
® For me (since the year 2007):

¢ Open-source finite element package deal.II® https://www.dealii.org/
* Phase-field fracture code’
¢ Differential and optimization environment library DOpElib8
www.dopelib.net
But there others as well: dune, fenics, UG4, Gascoigne3D/RoDoBo, NGSolve,
FreeFem++, ...

6Bangerth et al; since 1998
"Heister/Wick; PAMM, 2018



https://www.dealii.org/
www.dopelib.net

Multiphysics (nonstat., nonlinear, coupled PDEs)

Examples of coupled PDEs

Numerical algorithms

Two-phase-flow phase-field fracture propagation

Towards multiscale phenomena

Conclusions



Example: Two-phase-flow phase-field fracture
propagation °

* Five PDEs to be coupled: displacements, phase-field, pressure,
saturation, fracture-width-calculation

e Illustration: fracture embedded in a porous medium, two-phase Darcy
flow inside the fracture

z3

— tip

flow v \ ¥

" Interface: A

T —h

9Lee/Mikelic/ Wheeler/Wick; SIAM MMS, 2018
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Algorithm
Questions:
* Q1: How to discretize the equations?
* Q2: How to couple the equations?

* Q3: how to solve the discretized systems?



Algorithm
Questions:
* Q1: How to discretize the equations?
* Q2: How to couple the equations?
* Q3: how to solve the discretized systems?
Answer to Q2:
* iterative coupling (known in subsurface modeling as fixed-stress)

* Flowchart of the algorithm:

Solve

Solve Solve . Compute width

Pressure (p) Saturation (s) Displacement- (w) using (¢rs)
Phase-Field (u, ) L

1

Fixed-Stress Iteration




Discretization

(Nonlinear) displacements: standard continuous Galerkin Q

(Nonlinear; variational inequality) phase-field: standard Q;

¢ Fracture-width-problem: standard continuous Galerkin Q;

(Implicit) Pressure diffraction equation: enriched Galerkin!? (cont.
Galerkin with one extra DoF; DG implementation!)

(Explicit) Saturation equation: enriched Galerkin

105un /Liu; 2009



Discretized equations

¢ Displacements and phase-field are very similar to what we have seen
before

11 12

e State: width problem, pressure diffraction equation , saturation

equation

11 Ladyzhenskaja/Solonnikov/Uralceva; AMS Vol. 23, 1968
127 jons/ Magenes, tome 1, chapitre 3, section 4, 1968



Width problem

Formulation
Find W' € C%([0, T); Vi(T)) such that

Ay (W) =Fp(y) Vi € Vi(T)

where
Aw(W. ) = (YW, V) + 0 /r | Wyds,
F

F(yp) = e/rnll W, - ds.



Pressure diffraction problem

Formulation
At time t" and the fixed-stress level | 4 1, let ul, ®, Wi, s! e given. Furthermore, let the previous

time step solutions U"~1, P"~1 be given. We iterate for | = 1,2,3, ... such that: Find P'*1 € Vf‘]-;’:

S(Pl+1r¢) = F(lp)r Ve hk'

where the Incomplete Interior Penalty Galerkin (IIPG) is employed to be compatible with the
saturation system. Here the variational form is defined as

Pl+1 pr— 1
S(PH1, ) = / o pdx+ ¥ / KL VP! . Vi dx
KeTy,

KeTy,

- ¥ [EKavP Ty lay+ T [ K P T Ty + X [ g,

et} eck] KeTy
where ay > 0 is a penalty parameter and the right hand side is defined as

L [ 6VP(s)) - Vydx+ ¥ [(el0Pu(s)} [ylar.

KeTy, EEEl

Fp) = X [ flyax-

}CET;,

Thomas Wick (LUH) Numerics for coupled problems
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Saturation equation
Formulation

Let the previous fixed-stress solutions ul, ', W', P! and the previous time step solutions ur-1, pr=1, 611 pe given. At time
t" we iterate for | = 1,2,3,...: Find S € fos such that

WS 9) =R(y), Ve Vi, ©)
where the variational form defined as
141 I = 5 . 141
WS y) = ¥ [T —yix+ ¥ [, VS Vg
KeT, KeTy,

- L [(eanVST Wlav+ £ [ G iels T l9l 4, 0
ecgl ¢ ecgl "¢

where a is a penalty parameter and we note that terms with p .y, are artificial diffusion to stabilize and avoid spurious
oscillations for the advection system. Then,

/V’V(pdx— E/V’ ] dy + 2 /qslpdx an
}CET;,
The diffraction coefficients are defined as
6 = Xk -0+ xk (9F0Fini). 12
7=k 0+ 1k (Peinifiing): (13)



Numerical solution

2D and 3D; code: IPACS (Integrated Phase Field Advanced Crack
Simulator) based on deal.IT'3; approx 16 000 lines of code

Nonlinear quasi-monolithic displacement/phase-field system is solved
with Newton’s method and line search algorithms. The constraint
minimization problem is treated with a semi-smooth Newton method
(i.e., a primal-dual active set method).

Inside Newton: GMRES with block-diagonal preconditioning (AMG
from trilinos)

Width problem: conjugate gradient (CG) solver and symmetric
successive over-relaxation (SSOR) preconditioning.

Pressure and saturation diffraction problems are solved with generalized
minimal residual method (GMRES) solvers with diagonal
block-preconditioning.

13

www.dealii.org

Thomas Wick (LUH) Numerics for coupled problems



Predictor-corrector mesh adaptivity

time n time n+1

* J(U) = ¢ < cwithc=0.5for .
example. mesn1 |||

* The key challenge in phase-field
methods is the relation of the
model regularization parameter ¢

and the spatial mesh size i (high mesnz 9 |
mesh resolution required!) since EEREERE -
h<e. FH

* Wish: Fix a (very) small € during Figure: Predictor-corrector scheme: 1.
the entire computation. advance in time, crack leaves fine mesh. 2.

refine and go back in time (interpolate old
— Predictor-corrector mesh solution). 3. advance in time on new

adaptivity with hanging nodes =~ mesh. Repeat until mesh doesn’t change
(the mesh grows with the anymore. Refinement is triggered for
fracture). @ < C = 0.2 (green contour line) here.



Software and parallel solution 4

¢ Critical issue: how to solve linear systems efficiently?
® Robustness with respect to ¢, «, 1 ???
Solution:
¢ High performance parallel computing with adaptive meshes
® dealll www.dealii.org
® MPI (message parsing interface)
® p4est (parallel dynamic management of a collection of adaptive octrees)
¢ trilinos (AMG - algebraic multigrid)

Figure: Exemplified visualization of parallel computing on 4 processors. The different
sub-domains are associated with different processors. Depending on mesh
refinement, the workload for each processor is adjusted dynamically at each time
step.

4Heister /Wick; PAMM, 2018
Thomas Wick (LUH) Numerics for coupled problems
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Some brief results 1°

B a0
BHR B

Figure: The width problem, the pressure and saturation distributions at
T = 0.01s, 2s, 10s.

151 ee /Mikelic/ Wheeler/ Wick; SIAM MMS, 2018




4 Towards multiscale phenomena
Several scales in time: FSI plus chemistry plus solid growth
A global-local approach in space for phase-field fracture
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Frei/Richter/Wick (JCP, 2016): Mechano-chemical FSI
with solid contact

* Contact of solids (current topic!).

* Different temporal time scales: two-scale approach

B & 5(t) Li(t)
O Transport of Monocytes F BN e P A
00 Transendothelial migration F(t) A(tzéigl_“f(t)
(&) okand differentiation e Pl TRTe
i & & R - -------- - ague e
S @ — 00 T, S(t) . Grewth ()
Formation of foam cells @ S

Figure: Configuration of the domain and mechanism of plaque formation. Left:
Domain in reference configuration split into fluid part / and solid S divided by the
interface I';. Right: Domain in the current (Eulerian) description with plaque
formation and narrowing of the vessel.



Multiple scales in time

Short scale: heart does beat once in about every [1]s;

Long scale: plaque growth takes place in a time span of months, i.e.
[> 1000000]s

a numerical simulation will not be able to resolve each detail while
following the long-term process

consider an averaged flow problem and focus on the long-scale
dynamics

to incorporate effects of the short-scale dynamics, we compute effective
wall stresses with the help of isolated small-scale simulations

Accurate handling of the different time-scales is an open problem.



Solution algorithms: Long-scale/short-scale

Initialize v° = 0, u’ = 0, ¢° = 0 and the vessel-width w® = 2. Set time-step k; = [1]day = [86400]s. Iterate
forn=1,2,...:

1.a) Solve quasi-stationary long-scale problem:
{c;”l, wnfl} — {vnl M",p”}

1.b) Compute the vessel width in the point A(t;)

W' =2— ZuQZ(A(Tn),Tn)

2.2) Setv®? =", u?) = " and solve the short-scale problem in I, = [[t|days, [t:]days + [1]s)

{‘US’O, us,O’ C?il,w"} — {vs,m, us,m,ps,m}, m= 1, . :Ns

2.b) Compute average wall stress in main stream direction
1 ¢
o =~ L L lo @y do
s m=1Ti

2.c) Update the foam cell concentration

&= ko (14 ofys /)




Long-scale problem: clogging

Channel width over time in cm Vorticity over time in cm?/s?

2.2 T T T T T 70 T T

2 Euler J Euler
18 1 ALE —— | 60 ALE ——
16
14 +
1.2

1L
0.8 -
0.6 |
0.4 |
0.2 |

0

L L L . 0 L L L L L
0 10 20 30 40 50 60 0 10 20 30 40 50 60

Figure: Channel width and vorticity for a long-scale simulation with reduced inflow
velocity. The inflow velocity goes to zero when the channel closes. This makes the
complete closure of the channel possible.

T

Figure: Fully Eulerian deformation when the channel is completely closed at
T = [55.8]days. The standard classical ALE technique cannot close the channel!
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Multiscale in space: Motivation '°

® Fracture process is a local event but is embedded in a big reservoir. How to choose €?
What is the meaning of ¢? How to embed local fine-scale features into a macroscale
framework with less detailed information?

Figure: Phase-field as fractured well model in a 3d large-field porous medium.

16Wick / Singh/Wheeler; 2015, SPE Journal




A predictor-corrector global-local approach 17
¢ The previous situation is too difficult. Simplify the situation in the
following.
— Global-local approach
* Global (macroscale) problem: linearized elasticity without phase-field

* Local (microscale) problem: elasticity with stress-splitting, nonlinear
constitutive laws, and phase-field

* Coupling of both problems via Lagrange multipliers

17Noii/ Aldakheel / Wick /Wriggers; 2019, arXiv:1905.07519v1
~ ThomasWick(LUH)  Numerics for coupled problems 43



A predictor-corrector global-local approach 7

¢ The previous situation is too difficult. Simplify the situation in the
following.

— Global-local approach

Global (macroscale) problem: linearized elasticity without phase-field

Local (microscale) problem: elasticity with stress-splitting, nonlinear
constitutive laws, and phase-field

* Coupling of both problems via Lagrange multipliers
e Challenge: crack path a priori unknown

— local domain a priori unknown!
* Local domain is adapted during the simulation

— predictor-corrector adaptive global-local approach

17Noii/ Aldakheel / Wick /Wriggers; 2019, arXiv:1905.07519v1
~ ThomasWick(LUH)  Numerics for coupled problems 43



The global-local algorithm

Algorithm 1 Global-Local iferative scheme combined with Robin-type boundary condi-

tions.
Input: loading data (@, 7.) o0 2p85 and Dy, respectively:
solution (e, 1. w1, din— 1 a1 Acs-1, ALn-1) and Hp 1 from step n— 1.

Global-Local iteration & > 1
Local boundary value problem:
o given AL AL T Hia 1 solve
phase-feld part:
(1- Njf dy H(e(u)).0d da + G‘cf Lia, - 1).6d, e
[ s 1

+G,.f INd N (dd)de + G‘Ej Ve M.V (ddp)da =0,
5, By

3
mechanical part:
f ol di) s eldug) da ’f"‘- bupds =
o, N

_[“L .5u,.<1.~+ﬂLf wp G ds = AL
i i

f(u,- —wp) - dApds =0,
o

ot
P
el T AR

set (wyp,dp.up, XL}
o given (u, Ab: Ac), set
Ak = ﬂ(:f“i'ﬂc de — f AE - fupds.

r r

Global boundary value problem:
o given Ag, Al u®, solve
o{ug) - s(dug)de — f Ap - dugds
e T

Ac-durds + A [ur-axeds - Ak,
A v
) - SAeds

o
set (ue, ur, Ac) = (ug, uf, AL,
o given (uf, AL A L) set

Al EAL/u}‘;—EAcd.q—fA?»—Eurd.s.
. N
5 = (gt At s A A ) and stop

Ac - Sug ds — f F o dugds =0,
f

N

o if Tulfilled, set (uf., ub, df wb A
else b+ 1 — k.

Output: solution (tgn, win A e, Ao Ara) and Hi .




Mode of operation of the predictor-corrector scheme

Step 58 Step 59
predictor corrector predictor corrector
[] L E
— ] -
e I B 2
1
[ ] [ [ ]
Step 60 Step 62 05
[ []] (o] EEIE
— —
& L] [ [] LT[

Figure: Mode of operation: predictor-corrector adaptive global-local approach




Heterogeneous L-shaped panel test: configuration

* Original L-shaped panel test based on Dissertation of B.]. Winkler (2001)

* We now add imperfections in parts of the domain

(0.2B) (24,2B)
B=(24,2B)\(4,B)*
homogenous
g 18
R s 3B|ean)
/
\\:.‘ u= (0. e u=(01)
y @ (2A—H.B) homogenous
0ol W Jao
a b c

Figure: Heterogeneous L-shaped panel test. (a) Geometry and loading setup with a
structural director a inclined under an angle ¢ = —15 (b) partitioning of domain into
the heterogeneity and homogeneity counterparts and (c) global finite element mesh
without potential fictitious zones.



Heterogeneous L-shaped panel test: stress evaluations

Global domain Single scale domain
max(a) N/mm?
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Figure: Maximum stress state in the heterogeneous L-shaped panel test. (a) Global
stress state and (b) single scale stress state.




Heterogeneous L-shaped panel test: fracture path
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Figure: Crack phase-field pattern for the transversely isotropic heterogeneous
L-shaped panel test with fiber direction angle of ¢ = —15°. First row: local crack
phase-field based on the adaptive scheme; Second row: mesh evolution for local
domain by considering the influence of inclusions; Third row: resulting single scale
phase-field solution at (a) # = 0.15 mm, (b) it = 0.324 mm, (c) it = 0.333 mm and (d)
it = 0.58 mm.




Heterogeneous L-shaped panel test: comparison to a
single-scale solution and computational cost
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Figure: Heterogeneous L-shaped panel test. (a) Comparison of the load-displacement
curves and (b) accumulated time-displacement curves.



5 Conclusions



Almost done ...




Conclusions

v'Examples of nonlinear, coupled PDEs (multiphysics)
v'Details on possible interactions and interfaces

v"Numerical techniques, coupling algorithms, and simulations; in
particular for more than only 2 coupled PDEs

v'Towards multiscale phenomena in time and space
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Some open questions
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Model order reduction (simplifying the equations!)
Rigorous numerical analysis for some of the mentioned problems

Example. Phase-field fracture: what happens for ¢ — 0 and & — 0; and
x — 0and h — 0?

Better understanding of the modeling and accuracy of interface
conditions in diffusive (e.g., phase-field) approaches for approximating
interfaces.

Prescription of kinematic and dynamic interface conditions for
temperature or flow

Development of a fully parallel adaptive solver for balancing
discretization errors, nonlinear iteration errors and linear iteration errors

Somewhat a goal in our FWF project P29181
More validation comparisons between experiments and simulations

Thomas Wick (LUH) Numerics for coupled problems
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The End



Thank you so much for your valuable time today!

Thanks a lot to the organizers for this kind invitation
to deliver this lecture here in Strobl!

Questions?

Thomas Wick

www.thomaswick.org
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