A Priori Error Analysis for an Optimal Control Problem Governed by a Variational Inequality of the Second Kind

Monika Weymuth

Universität der Bundeswehr München Institut für Mathematik und Computergestützte Simulation

joint work with Christian Meyer (TU Dortmund)

AANMPDE 12: Strobl, Austria, 4th July 2019

^{der Bundeswehr} Universität 🥎 <mark>München</mark>

- The Optimal Control Problem
- 2 Finite Element Discretization
- 3 Finite Element Error Analysis
- Strong Stationarity Conditions in 1D
- Conclusion

Problem Formulation

Problem (P)

$$\min_{(y,u)\in H_0^1(\Omega)\times L^2(\Omega)} J(y,u) := \frac{1}{2} \|y-y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2$$

s.t.
$$\int_{\Omega} \nabla y \cdot \nabla (v - y) \, dx + \|v\|_{L^{1}(\Omega)} - \|y\|_{L^{1}(\Omega)} \ge \langle u, v - y \rangle \quad \forall v \in H^{1}_{0}(\Omega)$$

- ullet $\Omega\subset\mathbb{R}^d$ (d=1,2) a bounded domain with $C^{1,1}$ -boundary
- $y_d \in L^2(\Omega)$, $\alpha > 0$

The control-to-state operator $S: H^{-1}(\Omega) \to H^1_0(\Omega)$, $u \mapsto y$ is in general nonlinear and not Gâteaux-differentiable

Lemma (Existence and Uniqueness, Lipschitz Continuity of S)

For every $u \in H^{-1}(\Omega)$ the VI has a unique solution $y \in H_0^1(\Omega)$. The solution operator S is globally Lipschitz continuous.

Universität 🏠 München

Known Results

Lemma (Complementarity)

A function $y \in H^1_0(\Omega)$ solves VI, iff there exists a $q \in L^\infty(\Omega)$ such that

$$\begin{split} &\int_{\Omega} \nabla y \cdot \nabla v \; \mathrm{d}x + \int_{\Omega} q v \; \mathrm{d}x = \langle u, v \rangle \quad \forall v \in H^1_0(\Omega) \\ &q(x)y(x) = |y(x)|, \quad |q(x)| \leq 1 \quad \text{a.e. in } \Omega. \end{split}$$

Hence, if $u \in L^p(\Omega)$, $p \in (1, \infty)$, then $y \in W_0^{2,p}(\Omega)$.

Proposition (Existence of Global Optima)

There exists a globally optimal solution of (P) which is in general not unique.

Proposition (Regularity of Optimal Solutions)

Every locally optimal solution satisfies $\overline{u} \in H^1(\Omega)$.

Universität 🙀 München

Variational Discretization

Problem (P_h)

$$\begin{split} & \min_{(y_h, u) \in V_h \times L^2(\Omega_h)} J(y_h, u) := \frac{1}{2} \|y_h - y_d\|_{L^2(\Omega_h)}^2 + \frac{\alpha}{2} \|\mathbf{u}\|_{L^2(\Omega_h)}^2 \\ \text{s.t.} & \int_{\Omega_h} \nabla y_h \cdot \nabla (v_h - y_h) \, \mathrm{d}x + \|v_h\|_{L^1(\Omega_h)} - \|y_h\|_{L^1(\Omega_h)} \ge \langle u, v_h - y_h \rangle \ \, \forall v_h \in V_h \end{split}$$

- ullet \mathcal{T}_h shape-regular and quasi-uniform triangulation with mesh size h
- $\Omega_h = \bigcup_{T \in \mathcal{T}_h} T \subseteq \Omega$, $\max_{x \in \partial \Omega_h} \operatorname{dist}(x, \partial \Omega) \leq Ch^2$
- $\bullet \ V_h := \{ v_h \in H^1_0(\Omega_h) : \ v_h|_T \in \mathbb{P}_1(T) \ \forall T \in \mathcal{T}_h \}$
- No discretization of the control!

Lemma (Existence and Uniqueness)

For all $u \in H^{-1}(\Omega)$ the discrete VI has a unique solution $y_h \in V_h$.

Universität München

Properties of the Discrete Problem

Solution operator of discrete VI: $S_h: H^{-1}(\Omega) \to V_h \subset H^1_0(\Omega), \ u \mapsto y_h$

Lemma (Lipschitz Continuity of S_h)

The solution operator S_h is globally Lipschitz continuous.

Proposition (Existence of Global Optima)

Problem (P_h) has a solution which is in general not unique.

Proposition (Variational Discretization = Full Discretization)

If \overline{u}_h is a local optimal solution of (P_h) , then $\overline{u}_h \in V_h$.

L^{∞} -Error Estimates for the State

- ullet No classical Nitsche-trick in L^2 due to lack of regularity of the dual problem
- ullet Use L^{∞} -error estimates to circumvent this difficulty

Theorem

If $u \in L^p(\Omega)$, $p \in (1, \infty)$, then there exists a constant C > 0 such that

$$||y-y_h||_{L^{\infty}(\Omega)} \leq C|\log(h)|h^{2-d/p}(||u||_{L^p(\Omega)}+1).$$

If $u \in L^{\infty}(\Omega)$, then there exists a constant C > 0 such that

$$||y - y_h||_{L^{\infty}(\Omega)} \le C(h|\log(h)|)^2(||u||_{L^{\infty}(\Omega)} + 1).$$

C is independent of h.

The proof is based on Nochetto 1988.

Quadratic Growth Condition and Strong Convergence of \overline{u}_h

Let $\overline{u} \in L^2(\Omega)$ be a fixed local optimum of (P).

Quadratic growth condition (QGC)

A local solution $\overline{u}\in L^2(\Omega)$ fulfills the quadratic growth condition, if there are $\epsilon,\ \delta>0$ such that

$$J(S(\overline{u}), \overline{u}) \leq J(S(u), u) - \delta \|u - \overline{u}\|_{L^2(\Omega)}^2 \quad \forall u \in L^2(\Omega): \ \|u - \overline{u}\|_{L^2(\Omega)} \leq \epsilon.$$

Lemma (Strong Convergence in $L^2(\Omega)$)

Suppose that \overline{u} satisfies (QGC). Then there is a sequence $\{\overline{u}_h\}$ of locally optimal solutions to (P_h) with $\overline{u}_h \to \overline{u}$ in $L^2(\Omega)$ as $h \to 0$.

Universität 🉀 <mark>München</mark>

Strong Convergence and Uniform Boundedness of \overline{u}_h

Proof of strong convergence:

• Consider localized problem (P_h^{ϵ})

$$\min J(S_h(u), u) = \frac{1}{2} \|S_h(u) - y_d\|_{L^2(\Omega)}^2 + \frac{\alpha}{2} \|u\|_{L^2(\Omega)}^2 \quad \text{s.t. } \|u - \overline{u}\|_{L^2(\Omega)} \le \epsilon$$

- Global solutions \overline{u}_h of (P_h^{ϵ}) converge strongly in $L^2(\Omega)$
- Local optimality of \overline{u}_h for (P_h) for h > 0 sufficiently small (Casas/Tröltzsch 2002)

Lemma (Uniform Boundedness in $H^1(\Omega)$)

The sequence $\{\overline{u}_h\}$ is uniformly bounded in $H^1(\Omega)$.

Universität 🏠 <mark>München</mark>

Convergence Rates

Theorem (1D)

Let $\Omega \subset \mathbb{R}$. If \overline{u} satisfies the quadratic growth condition, then there exists a constant C>0 such that, for h>0 sufficiently small,

$$\|\overline{u} - \overline{u}_h\|_{L^2(\Omega)} \le Ch|\log(h)|.$$

Theorem (2D)

Let $\Omega \subset \mathbb{R}^2$ be sufficiently regular. If \overline{u} satisfies the quadratic growth condition, then, for every $\epsilon > 0$, there exists a constant $C_{\epsilon} > 0$ such that, for h > 0 sufficiently small, $\|\overline{u} - \overline{u}_h\|_{L^2(\Omega)} \leq C_{\epsilon} h^{1-\epsilon}$.

- Convergence rate in 3D: $\sqrt{|\log(h)|h^{3/2}}$
- The same results as for the obstacle problem (Meyer/Thoma 2013)

der Bundeswehr Universität 🉀 <mark>München</mark>

Proof of Convergence Rates I

We set f(u) := J(S(u), u) and $f_h(u) := J(S_h(u), u)$.

- $\{\overline{u}_h\}$ sequence of locally optimal solutions to (P_h) with $\overline{u}_h \to \overline{u}$ in $L^2(\Omega)$
- These local solutions are global solutions of (P_h^{ϵ}) for h>0 sufficiently small and thus

$$f_h(\overline{u}_h) \le f_h(\overline{u}) \tag{1}$$

- For h sufficiently small $\overline{u}_h \in \{u \in L^2(\Omega) : \|u \overline{u}\|_{L^2(\Omega)} \le \epsilon\}$
- QGC and (1) imply

$$\delta \|\overline{u}_h - \overline{u}\|_{L^2(\Omega)}^2 \le f(\overline{u}_h) - f_h(\overline{u}_h) + f_h(\overline{u}) - f(\overline{u}) + f_h(\overline{u}_h) - f_h(\overline{u})$$

$$\le |f(\overline{u}_h) - f_h(\overline{u}_h)| + |f(\overline{u}) - f_h(\overline{u})|$$

Universität München

Proof of Convergence Rates II

$$|f(\overline{u}_h) - f_h(\overline{u}_h)| \leq \frac{1}{2} ||S_h(\overline{u}_h) - S(\overline{u}_h)||_{L^2(\Omega)}^2 + ||S_h(\overline{u}_h) - S(\overline{u}_h)||_{L^2(\Omega)} ||S(\overline{u}_h) - y_d||_{L^2(\Omega)}$$

• Use the continuous embeddings $H^1(\Omega) \hookrightarrow C(\overline{\Omega})$ in 1D respectively $H^1(\Omega) \hookrightarrow L^p(\Omega) \ \forall p < \infty$ in 2D and the L^{∞} -error estimates for the states in order to estimate

$$||S_h(\overline{u}_h)-S(\overline{u}_h)||_{L^2(\Omega)}.$$

- The uniform boundedness of $\{\overline{u}_h\}$ in $H^1(\Omega)$ and the Lipschitz continuity of S imply the uniform boundedness of $\|S(\overline{u}_h) y_d\|_{L^2(\Omega)}$.
- We end up with

$$|f(\overline{u}_h) - f_h(\overline{u}_h)| \le C(h|\log(h)|)^2$$
, respectively $\le Ch^{2(1-\epsilon)}$.

• Apply the same argument for $|f(\overline{u}) - f_h(\overline{u})|$.

Universität 🎉 München

Derivation of Optimality Conditions

Control problems governed by VIs exhibit a lack of regularity since the solution operator S is in general not Gâteaux-differentiable

Derivation of necessary and sufficient optimality conditions is very challenging

Approaches for the derivation of optimality conditions:

- Regularization techniques (e.g. de los Reyes 2011)
 - Optimality conditions for the original problem are obtained as a limit of the regularized ones
 - \blacktriangleright Loss of information by passage to the limit \implies less rigorous optimality system
- ullet Use differentiability properties of S (e.g. de los Reyes/Meyer 2016)
 - Sharp optimality system
 - Assumptions on the active set in order to prove directional differentiability of S

Directional Differentiability in 1D

Let $u,h\in L^2(a,b)$. $\eta:=S'(u,h)$ solves the following variational inequality: Find $\eta\in\mathcal{K}(\overline{y})$ such that

$$\int_a^b \eta' \cdot (v - \eta)' \, dx + 2 \sum_{x \in \mathcal{M}} \frac{\eta(x)(v(x) - \eta(x))}{|\overline{y}'(x)|} \ge \langle h, v - \eta \rangle \quad \forall v \in \mathcal{K}(\overline{y})$$

with

$$\begin{split} \mathcal{K}(\overline{y}) &:= \{ v \in W_{\overline{y}} : v(x) \leq 0 \ \forall x \in (a,b) : \overline{y}(x) = 0 \land -1 \leq \overline{u}(x) < 1, \\ v(x) &\leq 0 \ \forall x \in (a,b) : \overline{y}'(x) = 0 \land x \in \partial \{ \overline{y}(x) < 0 \}, \\ v(x) &\geq 0 \ \forall x \in (a,b) : \overline{y}(x) = 0 \land -1 < \overline{u}(x) \leq 1, \\ v(x) &\geq 0 \ \forall x \in (a,b) : \overline{y}'(x) = 0 \land x \in \partial \{ \overline{y}(x) > 0 \} \} \end{split}$$

$$W_{\overline{y}} := \left\{ v \in H_0^1(a,b) : \sum_{x \in \mathcal{M}} \frac{v(x)^2}{|\overline{y}'(x)|} < \infty \right\}$$

$$\mathcal{M} := \{x \in (a, b) : \overline{y}(x) = 0, \ \overline{y}'(x) \neq 0\}$$

(cf. [Christof/Meyer 2018]).

Universität München

Strong Stationarity Conditions in 1D

Theorem

There exists an adjoint state $\overline{p} \in H_0^1(a, b)$ and a multiplier $\mu \in H^{-1}(a, b)$ such that the following strong stationarity system is fullfilled:

$$\begin{split} \int_{a}^{b} \overline{y}' \cdot v' \, \mathrm{d}x + \int_{a}^{b} \overline{q}v \, \mathrm{d}x &= \langle \overline{u}, v \rangle \quad \forall v \in \ H_{0}^{1}(a, b) \\ \overline{q}(x) \overline{y}(x) &= |\overline{y}(x)|, \ |\overline{q}(x)| \leq 1 \ \text{a.e. in } (a, b) \\ \int_{a}^{b} \overline{p}' \cdot v' \, \mathrm{d}x + 2 \sum_{x \in \mathcal{M}} \frac{\overline{p}(x)v(x)}{|y'(x)|} + \langle \mu, v \rangle_{W_{\overline{y}}^{*}, W_{\overline{y}}} &= \int_{a}^{b} (\overline{y} - y_{d}) \cdot v \, \mathrm{d}x \ \forall v \in W_{\overline{y}} \\ \overline{p} \in \mathcal{K}(\overline{y}), \quad \langle \mu, w \rangle_{W_{\overline{y}}^{*}, W_{\overline{y}}} \geq 0 \quad \forall w \in \mathcal{K}(\overline{y}) \\ \overline{p} + \alpha \overline{u} &= 0 \quad \text{a.e. in } (a, b) \end{split}$$

Universität München

Conclusion

Summary:

- Error analysis for optimal control problems subject to VIs is quite challenging
 - ightharpoonup No classical Nitsche-trick in L^2
 - Derivation of necessary and sufficient optimality conditions is complicated
- Proof of nearly optimal a priori error estimates for the FE-discretization is based on
 - \triangleright L^{∞} -estimates for the state
 - Quadratic growth condition
 - Uniform boundedness of \overline{u}_h in $H^1(\Omega)$
- Strong stationarity conditions in 1D

Open problems:

- Identify cases with low regularity based on the problem data
- Higher order of convergence in case of higher regularity?
- Practicable second-order sufficient conditions with minimal gap

References

- C. Christof, C. Meyer: Sensitivity Analysis for a Class of H₀¹-Elliptic Variational Inequalities of the Second Kind. Set-Valued Var. Anal., 2018
- J. C. De los Reyes: Optimal Control of a Class of Variational Inequalities of the Second Kind. SIAM J. Control. Optim. 49, 1629-1658, 2011.
- ▶ J. C. De los Reyes, C. Meyer: Strong Stationarity Conditions for a Class of Optimization Problems Governed by Variational Inequalities of the Second Kind. J. Optim. Theory Appl. 168, 375-409, 2016.
- C. Meyer, O. Thoma: A Priori Finite Element Error Analysis for Optimal Control of the Obstacle Problem. SIAM J. Numer. Anal. 51, 605-628, 2003.
- R. H. Nochetto: Sharp L[∞]-Error Estimates for Semilinear Elliptic Problems with Free Boundaries. Numer. Math. 54, 243-255, 1988.

Thank you for your attention!

4 D > 4 A > 4 B > 4 B >