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Problem Formulation

Problem (P)

min
(y ,u)∈H1

0 (Ω)×L2(Ω)
J(y , u) :=

1

2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω)

s.t.

∫
Ω

∇y · ∇(v − y) dx + ‖v‖L1(Ω) − ‖y‖L1(Ω) ≥ 〈u, v − y〉 ∀v ∈ H1
0 (Ω)

Ω ⊂ Rd (d = 1, 2) a bounded domain with C 1,1-boundary

yd ∈ L2(Ω), α > 0

The control-to-state operator S : H−1(Ω)→ H1
0 (Ω), u 7→ y is in general

nonlinear and not Gâteaux-differentiable

Lemma (Existence and Uniqueness, Lipschitz Continuity of S)

For every u ∈ H−1(Ω) the VI has a unique solution y ∈ H1
0 (Ω).

The solution operator S is globally Lipschitz continuous.
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Known Results

Lemma (Complementarity)

A function y ∈ H1
0 (Ω) solves VI, iff there exists a q ∈ L∞(Ω) such that∫

Ω

∇y · ∇v dx +

∫
Ω

qv dx = 〈u, v〉 ∀v ∈ H1
0 (Ω)

q(x)y(x) = |y(x)|, |q(x)| ≤ 1 a.e. in Ω.

Hence, if u ∈ Lp(Ω), p ∈ (1,∞), then y ∈W 2,p
0 (Ω).

Proposition (Existence of Global Optima)

There exists a globally optimal solution of (P) which is in general not unique.

Proposition (Regularity of Optimal Solutions)

Every locally optimal solution satisfies u ∈ H1(Ω).
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Variational Discretization

Problem (Ph)

min
(yh,u)∈Vh×L2(Ωh)

J(yh, u) :=
1

2
‖yh − yd‖2

L2(Ωh) +
α

2
‖u‖2

L2(Ωh)

s.t.

∫
Ωh

∇yh ·∇(vh − yh)dx + ‖vh‖L1(Ωh) − ‖yh‖L1(Ωh) ≥ 〈u, vh − yh〉 ∀vh ∈ Vh

Th shape-regular and quasi-uniform triangulation with mesh size h

Ωh =
⋃

T∈Th T ⊆ Ω, maxx∈∂Ωh
dist(x , ∂Ω) ≤ Ch2

Vh := {vh ∈ H1
0 (Ωh) : vh|T ∈ P1(T ) ∀T ∈ Th}

No discretization of the control!

Lemma (Existence and Uniqueness)

For all u ∈ H−1(Ω) the discrete VI has a unique solution yh ∈ Vh.
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Properties of the Discrete Problem

Solution operator of discrete VI: Sh : H−1(Ω)→ Vh ⊂ H1
0 (Ω), u 7→ yh

Lemma (Lipschitz Continuity of Sh)

The solution operator Sh is globally Lipschitz continuous.

Proposition (Existence of Global Optima)

Problem (Ph) has a solution which is in general not unique.

Proposition (Variational Discretization = Full Discretization)

If uh is a local optimal solution of (Ph), then uh ∈ Vh.
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L∞-Error Estimates for the State

No classical Nitsche-trick in L2 due to lack of regularity of the dual
problem

Use L∞-error estimates to circumvent this difficulty

Theorem

If u ∈ Lp(Ω), p ∈ (1,∞), then there exists a constant C > 0 such that

‖y − yh‖L∞(Ω) ≤ C | log(h)|h2−d/p(‖u‖Lp(Ω) + 1).

If u ∈ L∞(Ω), then there exists a constant C > 0 such that

‖y − yh‖L∞(Ω) ≤ C (h| log(h)|)2(‖u‖L∞(Ω) + 1).

C is independent of h.

The proof is based on Nochetto 1988.
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Quadratic Growth Condition and Strong Convergence of uh

Let u ∈ L2(Ω) be a fixed local optimum of (P).

Quadratic growth condition (QGC)

A local solution u ∈ L2(Ω) fulfills the quadratic growth condition, if there are
ε, δ > 0 such that

J(S(u), u) ≤ J(S(u), u)− δ‖u − u‖2
L2(Ω) ∀u ∈ L2(Ω) : ‖u − u‖L2(Ω) ≤ ε.

Lemma (Strong Convergence in L2(Ω))

Suppose that u satisfies (QGC). Then there is a sequence {uh} of locally
optimal solutions to (Ph) with uh → u in L2(Ω) as h→ 0.
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Strong Convergence and Uniform Boundedness of uh

Proof of strong convergence:

Consider localized problem (Pεh)

min J(Sh(u), u) =
1

2
‖Sh(u)−yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Ω) s.t. ‖u−u‖L2(Ω) ≤ ε

Global solutions uh of (Pεh) converge strongly in L2(Ω)

Local optimality of uh for (Ph) for h > 0 sufficiently small
(Casas/Tröltzsch 2002)

Lemma (Uniform Boundedness in H1(Ω))

The sequence {uh} is uniformly bounded in H1(Ω).
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Convergence Rates

Theorem (1D)

Let Ω ⊂ R. If u satisfies the quadratic growth condition, then there exists a
constant C > 0 such that, for h > 0 sufficiently small,

‖u − uh‖L2(Ω) ≤ Ch| log(h)|.

Theorem (2D)

Let Ω ⊂ R2 be sufficiently regular. If u satisfies the quadratic growth
condition, then, for every ε > 0, there exists a constant Cε > 0 such that, for
h > 0 sufficiently small,

‖u − uh‖L2(Ω) ≤ Cεh
1−ε.

Convergence rate in 3D:
√
| log(h)|h3/2

The same results as for the obstacle problem (Meyer/Thoma 2013)
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Proof of Convergence Rates I

We set f (u) := J(S(u), u) and fh(u) := J(Sh(u), u).

{uh} sequence of locally optimal solutions to (Ph) with uh → u in L2(Ω)

These local solutions are global solutions of (Pεh) for h > 0 sufficiently
small and thus

fh(uh) ≤ fh(u) (1)

For h sufficiently small uh ∈ {u ∈ L2(Ω) : ‖u − u‖L2(Ω) ≤ ε}

QGC and (1) imply

δ‖uh − u‖2
L2(Ω) ≤ f (uh)− fh(uh) + fh(u)− f (u) + fh(uh)− fh(u)

≤ |f (uh)− fh(uh)|+ |f (u)− fh(u)|
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Proof of Convergence Rates II

|f (uh)− fh(uh)| ≤ 1

2
‖Sh(uh)− S(uh)‖2

L2(Ω)

+ ‖Sh(uh)− S(uh)‖L2(Ω)‖S(uh)− yd‖L2(Ω)

Use the continuous embeddings H1(Ω) ↪→ C (Ω) in 1D respectively
H1(Ω) ↪→ Lp(Ω) ∀p <∞ in 2D and the L∞-error estimates for the
states in order to estimate

‖Sh(uh)− S(uh)‖L2(Ω).

The uniform boundedness of {uh} in H1(Ω) and the Lipschitz continuity
of S imply the uniform boundedness of ‖S(uh)− yd‖L2(Ω).

We end up with

|f (uh)− fh(uh)| ≤ C (h |log(h)|)2, respectively ≤ Ch2(1−ε).

Apply the same argument for |f (u)− fh(u)|.
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Derivation of Optimality Conditions

Control problems governed by VIs exhibit a lack of regularity since the
solution operator S is in general not Gâteaux-differentiable

=⇒ Derivation of necessary and sufficient optimality conditions is very
challenging

Approaches for the derivation of optimality conditions:

Regularization techniques (e.g. de los Reyes 2011)
I Optimality conditions for the original problem are obtained as a limit of

the regularized ones
I Loss of information by passage to the limit =⇒ less rigorous optimality

system

Use differentiability properties of S (e.g. de los Reyes/Meyer 2016)
I Sharp optimality system
I Assumptions on the active set in order to prove directional

differentiability of S
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Directional Differentiability in 1D

Let u, h ∈ L2(a, b). η := S ′(u, h) solves the following variational inequality:
Find η ∈ K(y) such that∫ b

a

η′ · (v − η)′ dx + 2
∑
x∈M

η(x)(v(x)− η(x))

|y ′(x)|
≥ 〈h, v − η〉 ∀v ∈ K(y)

with
K(y) := {v ∈Wy : v(x) ≤ 0 ∀x ∈ (a, b) : y(x) = 0 ∧ −1 ≤ u(x) < 1,

v(x) ≤ 0 ∀x ∈ (a, b) : y ′(x) = 0 ∧ x ∈ ∂{y(x) < 0},
v(x) ≥ 0 ∀x ∈ (a, b) : y(x) = 0 ∧ −1 < u(x) ≤ 1,

v(x) ≥ 0 ∀x ∈ (a, b) : y ′(x) = 0 ∧ x ∈ ∂{y(x) > 0}}

Wy :=

{
v ∈ H1

0 (a, b) :
∑
x∈M

v(x)2

|y ′(x)|
<∞

}
M := {x ∈ (a, b) : y(x) = 0, y ′(x) 6= 0}

(cf. [Christof/Meyer 2018]).
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Strong Stationarity Conditions in 1D

Theorem

There exists an adjoint state p ∈ H1
0 (a, b) and a multiplier µ ∈ H−1(a, b)

such that the following strong stationarity system is fullfilled:∫ b

a

y ′ · v ′ dx +

∫ b

a

qv dx = 〈u, v〉 ∀v ∈ H1
0 (a, b)

q(x)y(x) = |y(x)|, |q(x)| ≤ 1 a.e. in (a, b)∫ b

a

p′ · v ′ dx + 2
∑
x∈M

p(x)v(x)

|y ′(x)|
+ 〈µ, v〉W ∗y ,Wy =

∫ b

a

(y − yd) · v dx ∀v ∈Wy

p ∈ K(y), 〈µ,w〉W ∗y ,Wy ≥ 0 ∀w ∈ K(y)

p + αu = 0 a.e. in (a, b)
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Conclusion

Summary:

Error analysis for optimal control problems subject to VIs is quite
challenging

I No classical Nitsche-trick in L2

I Derivation of necessary and sufficient optimality conditions is complicated

Proof of nearly optimal a priori error estimates for the FE-discretization
is based on

I L∞-estimates for the state
I Quadratic growth condition
I Uniform boundedness of uh in H1(Ω)

Strong stationarity conditions in 1D

Open problems:

Identify cases with low regularity based on the problem data

Higher order of convergence in case of higher regularity?

Practicable second-order sufficient conditions with minimal gap
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