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Problem Formulation
Problem (P)

1 «Q
i J = |y — yall? —|lull?
(y,u)eH?('S?)XU(Q) (v, u) 2||y yallz) + 5 lull2(q)

st [ Uy V(v —y) et Il — Il = (v —y) Yo e H(@)

o Q CRY(d=1,2) a bounded domain with C'!-boundary
o ys€L%Q), a>0

The control-to-state operator S : H=1(Q) — H3(Q), u — y is in general
nonlinear and not Gateaux-differentiable
Lemma (Existence and Uniqueness, Lipschitz Continuity of S)

For every u € H=1(Q) the VI has a unique solution y € H}(Q).
The solution operator S is globally Lipschitz continuous.
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Known Results

Lemma (Complementarity)
A function y € H}(2) solves VI, iff there exists a q € L°°(Q) such that
/Vy-Vv dx+/ qv dx = (u,v) Vv e HY}(Q)
Q Q
a(x)y(x) = Iy, la(x)[ <1 ae inQ.

Hence, if u € LP(Q), p € (1,00), then y € W P(R).

Proposition (Existence of Global Optima)

There exists a globally optimal solution of (P) which is in general not unique.

Proposition (Regularity of Optimal Solutions)

Every locally optimal solution satisfies 11 = H*((2).
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Variational Discretization

Problem (Pj)

1 «
i J = =|lyn — yall? —||ul||?
ML) L (v, u) := S lvn = vallie,) + 511Ul

st. [ Vyn-V(vh — yn)dx + [Vall i@,y = lyall,) = (U ve — yn) Yvi € Vi
Qy

o Tp, shape-regular and quasi-uniform triangulation with mesh size h
o Q= UTeTh T CQ, maxxeaq,dist(x, Q) < Ch?
o V) = {VhEH&(Qh)Z Vh|T€P1(T) VTG%}

@ No discretization of the control!

Lemma (Existence and Uniqueness) J

For all u € H=1(RQ) the discrete VI has a unique solution y, € V.
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Properties of the Discrete Problem

Solution operator of discrete VI: Sy : H=1(Q) — Vi, C H}(Q), u > yn

Lemma (Lipschitz Continuity of Sp)

The solution operator Sy, is globally Lipschitz continuous.

Proposition (Existence of Global Optima)

Problem (Py) has a solution which is in general not unique.

Proposition (Variational Discretization = Full Discretization)

If ay, is a local optimal solution of (Py,), then up, € V.
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L°°-Error Estimates for the State

o No classical Nitsche-trick in L? due to lack of regularity of the dual
problem

o Use L*°-error estimates to circumvent this difficulty

Theorem
If ue LP(Q), p € (1,00), then there exists a constant C > 0 such that

ly = yalles(@) < Cllog(h)|h*~/P(|[ul| o) + 1).
If u € L>°(Q2), then there exists a constant C > 0 such that

Iy = yalli=(@y < €(hltog(m)(lull (@ + 1)

C is independent of h.

The proof is based on Nochetto 1988.
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Quadratic Growth Condition and Strong Convergence of uy,

Let T € L2(R) be a fixed local optimum of (P).

Quadratic growth condition (QGC)

A local solution T € L?(Q2) fulfills the quadratic growth condition, if there are
€, 0 > 0 such that

J(S(@), 1) < J(S(u),u) = 8|lu—Tll}q YueLlP(Q): u—T|r@q <e

Lemma (Strong Convergence in L3(Q))

Suppose that U satisfies (QGC). Then there is a sequence {TUp} of locally
optimal solutions to (Pp) with Ty, — T in L2(Q) as h — 0.
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Strong Convergence and Uniform Boundedness of 1,

Proof of strong convergence:
o Consider localized problem (Pj)
. 1 2 (6% 2 _
min J(Sn(u), u) = S1ISh(u) = yall L) + 5 lulliz@) st lu—Tllize) < e

o Global solutions uy, of (Pf) converge strongly in L2(Q)

o Local optimality of T, for (Py) for h > 0 sufficiently small
(Casas/Trdltzsch 2002)

Lemma (Uniform Boundedness in H*(Q))
The sequence {tp} is uniformly bounded in H'(). J
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Convergence Rates

Theorem (1D)

Let Q C R. If U satisfies the quadratic growth condition, then there exists a
constant C > 0 such that, for h > 0 sufficiently small,

1T — Tl o) < Chllog(h)|.

Theorem (2D)

Let Q C R? be sufficiently regular. If U satisfies the quadratic growth
condition, then, for every € > 0, there exists a constant C. > 0 such that, for

h > 0 sufficiently small, e
||u — uh‘ll_z(g) < Cch .

o Convergence rate in 3D: /| log(h)|h3/2
@ The same results as for the obstacle problem (Meyer/Thoma 2013)
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Proof of Convergence Rates |

We set f(u) := J(S(u), u) and f(u) := J(Sh(u), u).

o {Tp} sequence of locally optimal solutions to (P,) with T, — T in L2(Q)

o These local solutions are global solutions of (Pf) for h > 0 sufficiently
small and thus

fn(un) < fa(u) (1)
o For h sufficiently small Ty € {u € L2(Q) : |lu—Tl|2() < €}
e QGC and (1) imply
0[@n — T () < F(T@n) — ful@n) + fo(@) — (@) + fi(Tn) — fa(@)
< [f(@n) — fa(@n)| + [f(@) — £ (T)]
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Proof of Convergence Rates ||

1
o 1F(@n) = fa(@n)| < S 11Sn(@n) — S(@h)1 72
+11Sn(@r) — S(@n) 2 15(Th) — yall20)

Use the continuous embeddings H!(Q) < C(Q) in 1D respectively
HY(Q) < LP(Q) Vp < oo in 2D and the L*>-error estimates for the
states in order to estimate

1Sh(un) — S(@n)ll2(q)-

@ The uniform boundedness of {u),} in H(Q) and the Lipschitz continuity
of S imply the uniform boundedness of ||S(Tp) — yull12()-

©

©

We end up with
|f (@) — fu(Th)| < C(h|log(h)])?, respectively < Ch?(1=9),

Apply the same argument for |f(T) — f,(T)|.

(4]
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Derivation of Optimality Conditions

Control problems governed by Vls exhibit a lack of regularity since the
solution operator S is in general not Gateaux-differentiable

— Derivation of necessary and sufficient optimality conditions is very
challenging

Approaches for the derivation of optimality conditions:
o Regularization techniques (e.g. de los Reyes 2011)
» Optimality conditions for the original problem are obtained as a limit of
the regularized ones
> Loss of information by passage to the limit = less rigorous optimality
system
o Use differentiability properties of S (e.g. de los Reyes/Meyer 2016)
» Sharp optimality system
» Assumptions on the active set in order to prove directional
differentiability of S
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Directional Differentiability in 1D

Let u, h € L?(a, b). 1 := S'(u, h) solves the following variational inequality:
Find n € K(¥) such that

/ o=y dxp2 30 IR 0D 5 g ey e k)

2R
with
Ky) ={ve Wy:v(x) <0Vxe€ (ab) y(x)=0A-1<T(x) <1,
v(x) <0Vx e (a,b):y'(x)=0Ax e d{y(x) <0},
v(x) >0Vx e (a,b) : ¥(x) =0A-1<T(x) <1,
v(x) > 0Vx € (ab):y(x)=0Ax € d{y(x) >0}}

f o 1 ) v(x)?
Wy := v eHs(ab): Y 70 <>

xeM
M :={x € (a,b):y(x) =0, y'(x) # 0}
(cf. [Christof/Meyer 2018]). Universitat (s Miinchen



Strong Stationarity Conditions in 1D

Theorem

There exists an adjoint state p € H}(a, b) and a multiplier u € H=1(a, b)
such that the following strong stationarity system is fullfilled:

/by/ e dx-l-/bav dx = (G,v) Vv € Hi(a,b)
_(X)_(X) = [yl [a(x)[ <1 ae in(a,b)

b b
/_’ vdx—l—ZZP ()+<#,V>W;,W7=/(}_/—}/d)'VdXVVG Wy

2 k)
S IC(}_/)v </1'7 W>W;,Wy >0 Vwe K:(.)_/)
p+ati=0 a.e. in(a,b)
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Conclusion

Summary:
@ Error analysis for optimal control problems subject to Vls is quite
challenging

» No classical Nitsche-trick in L2
» Derivation of necessary and sufficient optimality conditions is complicated

@ Proof of nearly optimal a priori error estimates for the FE-discretization
is based on

» L°°-estimates for the state
» Quadratic growth condition
» Uniform boundedness of T, in H'(Q)

o Strong stationarity conditions in 1D

Open problems:
o Identify cases with low regularity based on the problem data
o Higher order of convergence in case of higher regularity?

o Practicable second-order sufficient conditions with minimal gap
Universitdt (5 Miinchen
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