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» Typical approach: method of lines (“time-marching”)
1. Discretize space (using eg FEM) = system of coupled ODEs
2. Numerically solve ODEs (using e.g. BW Euler)

» Alternative: simultaneous space-time discretization [BJ39]
» Galerkin on space-time cylinder
» Massively parallel implementation possible
» Can hope for uniform quasi-optimality of discrete solutions
= Better suited for space-time adaptive refinement

» Def solution space U; consider family (U%)sca of trial spaces.

Discrete solutions u® € U? are uniformly quasi-optimal when

lu— ||y < Ca inf lu—w’|ly (ueU, §eAd).
wlecUus

» Akin to Céa's Lemma.
» Gives us certainty about error reduction.
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Given ug € Lp(Q), f € V/, find u € U s.t.

(Bu)(v)+{vou, o) 1,iq) = f(v)+(u0,0) 1,0 (v €V, o€ Lx(RQ)).

» Problem is well-posed [SS09], but applying standard Galerkin

to [,’fo] u=[& ] does not work (operator not coercive).

» Petrov-Galerkin road (cf. [Stel5]) provably not quasi-optimal
in natural norm.
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» Schur complement: (B’A™1B + ~v§vyo)u = B'A~Lf + yjuo.
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» Operator is self-adjoint, coercive, invertible w/ bdd inverse!
» However, factor A~! unsuitable for computation
» Possible to replace P = A~1 in Schur complement equation
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New self-adjoint saddle-point formulation

A A O A
% -
SV U !32 —(A+ v’ﬂr)] H

Find

u

f‘
—(f+76Uo)] )
where A = u.

» Advantages over (1):
» Quasi-optimality under milder conditions
» Sparser matrix (0; in off-diagonal instead of B = 0; + A)
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» Thm. ap > 0and U’ C V® = quasi-optimality of (1).
» Thm. ap >0 = uniform quasi-optimality of (2).
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> We take / x Q := [0, 1]%; uniform meshes with h; = h,.

U® continuous piecewise linears in time ®
continuous piecewise linears in space

6 . . . . . .
Vandr discont. piecewise linears in time ®
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VS, discont. piecewise constants in time ®
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» Same trial space, different test space

> New system is 1.5x smaller and 2x sparser



Numerical results (ii)

—— New method
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Numerical results (iii)

—— New method
---- Andreev's method
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Figure: ||u — u®||y vs. dim U° for u(t,x) = e 2t|t — x|sinTx.



Numerical results (iv)

—— New method
---- Andreev's method

10_4;
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N
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Figure: ||lu(T,-) — (T, (@) vs. dim ue.
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Outlook

» Example: corner singularity
» For optimal error reduction, refine corners at t = 0
» Impossible in slab-framework
» In [RS19], optimal rate space-time adaptivity using wavelets
» Main disadvantage: software complexity
» Current research direction: achieving similar performance
without space-time wavelets
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Conclusion

» We saw two space-time variational formulations of heat eqn

» Andreev's minimal residual discretization yields quasi-optimal
approximation in U?

» Equivalent to self-adjoint saddle-point formulation (1)

» By taking Schur complements, find ‘reduced’ formulation (2)

» with quasi-optimality under milder assumptions;
» lower computational cost with similar performance.

» Qutlook: full space-time adaptivity at optimal rates.
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Generating uniformly stable subspaces: addendum

) 6
ap = inf inf sup (0ew”)(v)

> 0.
dEAWIEUd 5cys HV5||V||8tW6||V’

» Suppose Q C R? is a polytope.
» For H C H}(Q), define L(Q2)-orth proj Qy : H} () — H.
» If O :={H} is such that the operator norms are unif bdd,

sup 1@l £(H2 (@), HE@)) = M < o0

then the theorem holds with ap > 1/M > 0.
» Example spaces:

> Q c RY: FEM-space over quasi-uniform partition of Q
> Q C R?: FEM-space over local refinements (Carstensen 2001)



