Stability of Galerkin discretizations of parabolic IVPs

Korteweg-de Vries Institute for Mathematics

Jan Westerdiep, Rob Stevenson AANMPDE12, Strobl, July 2019

Contents

- Today: heat equation (cf. [SW19] for linear parabolic IBVPs)
- We'll look at two space-time variational formulations
- and investigate the properties of their discretizations

Heat equation (strong form)

Time domain $I:=(0, T)$, space domain $\Omega \subset \mathbb{R}^{d}$, space-time cylinder $I \times \Omega$.

Contents

- Today: heat equation (cf. [SW19] for linear parabolic IBVPs)
- We'll look at two space-time variational formulations
- and investigate the properties of their discretizations

Heat equation (strong form)

Time domain $I:=(0, T)$, space domain $\Omega \subset \mathbb{R}^{d}$, space-time cylinder $I \times \Omega$.

Contents

- Today: heat equation (cf. [SW19] for linear parabolic IBVPs)
- We'll look at two space-time variational formulations $>$ and investigate the properties of their discretizations

Heat equation (strong form)

Time domain $I:=(0, T)$, space domain $\Omega \subset \mathbb{R}^{d}$, space-time cylinder $I \times \Omega$. Given functions u_{0} and f, find $u: I \times \Omega \rightarrow \mathbb{R}$ s.t.

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}-\Delta u & =f \\
& \text { on } I \times \Omega, \\
u & =0 \\
& \text { on } I \times \partial \Omega, \quad \text { (bdr condition) } \\
u=u_{0} & \text { on }\{0\} \times \Omega . \text { (initial condition) }
\end{aligned}\right.
$$

Contents

- Today: heat equation (cf. [SW19] for linear parabolic IBVPs)
- We'll look at two space-time variational formulations
- and investigate the properties of their discretizations

Heat equation (strong form)

Time domain $I:=(0, T)$, space domain $\Omega \subset \mathbb{R}^{d}$, space-time cylinder $I \times \Omega$. Given functions u_{0} and f, find $u: I \times \Omega \rightarrow \mathbb{R}$ s.t.

$$
\left\{\begin{aligned}
\frac{\partial u}{\partial t}-\Delta u & =f \\
& \text { on } I \times \Omega, \\
u & =0 \\
& \text { on } I \times \partial \Omega, \quad \text { (bdr condition) } \\
u=u_{0} & \text { on }\{0\} \times \Omega . \text { (initial condition) }
\end{aligned}\right.
$$

Solving linear parabolic evolution equations numerically

- Typical approach: method of lines ("time-marching")

1. Discretize space (using eg FEM) \Longrightarrow system of coupled ODEs
2. Numerically solve ODEs (using e.g. BW Euler)

- Alternative: simultaneous space-time discretization [BJ89]
- Galerkin on space-time cylinder
- Massively parallel implementation possible
- Can hope for uniform quasi-optimality of discrete solutions
\Rightarrow Better suited for space-time adaptive refinement

Solving linear parabolic evolution equations numerically

- Typical approach: method of lines ("time-marching")

1. Discretize space (using eg FEM) \Longrightarrow system of coupled ODEs
2. Numerically solve ODEs (using e.g. BW Euler)

- Alternative: simultaneous space-time discretization [BJ89]
- Galerkin on space-time cylinder
- Massively parallel implementation possible

Solving linear parabolic evolution equations numerically

- Typical approach: method of lines ("time-marching")

1. Discretize space (using eg FEM) \Longrightarrow system of coupled ODEs
2. Numerically solve ODEs (using e.g. BW Euler)

- Alternative: simultaneous space-time discretization [BJ89]
- Galerkin on space-time cylinder
- Massively parallel implementation possible
- Can hope for uniform quasi-optimality of discrete solutions
\Rightarrow Better suited for space-time adaptive refinement

Solving linear parabolic evolution equations numerically

- Typical approach: method of lines ("time-marching")

1. Discretize space (using eg FEM) \Longrightarrow system of coupled ODEs
2. Numerically solve ODEs (using e.g. BW Euler)

- Alternative: simultaneous space-time discretization [BJ89]
- Galerkin on space-time cylinder
- Massively parallel implementation possible
- Can hope for uniform quasi-optimality of discrete solutions
\Rightarrow Better suited for space-time adaptive refinement
- Def solution space U; consider family $\left(U^{\delta}\right)_{\delta \in \Delta}$ of trial spaces. Discrete solutions $u^{\delta} \in U^{\delta}$ are uniformly quasi-optimal when

$$
\left\|u-u^{\delta}\right\| u \leq C_{\Delta} \inf _{w^{\delta} \in U^{\delta}}\left\|u-w^{\delta}\right\| u \quad(u \in U, \quad \delta \in \Delta)
$$

- Akin to Céa's Lemma.
- Gives us certainty about error reduction.

Simultaneous space-time variational formulation

$$
\begin{aligned}
(B u)(v) & :=\int_{1} \int_{\Omega} \frac{\partial u}{\partial t} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\int_{I} \int_{\Omega} \nabla_{\boldsymbol{x}} u \cdot \nabla_{\boldsymbol{x}} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t \\
f(v) & :=\int_{I} \int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
\end{aligned}
$$

Space-time variational form of heat equation

Take $U:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right) \cap H^{1}\left(I ; H^{-1}(\Omega)\right)$ and $V:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right)$. Given $u_{0} \in L_{2}(\Omega), f \in V^{\prime}$, find $u \in U$ s.t.

```
(Bu)(v)+\langle\mp@subsup{\gamma}{0}{}u,\sigma\mp@subsup{\rangle}{\mp@subsup{L}{2}{}(\Omega)}{}=f(v)+\langle\mp@subsup{u}{0}{},\sigma\mp@subsup{\rangle}{\mp@subsup{L}{2}{}(\Omega)}{}}(v\inV,\sigma\in\mp@subsup{L}{2}{}(\Omega)
```

- Problem is well-posed [SS09], but applying standard Galerkin to $\left[\begin{array}{c}B\end{array}\right] u=\left[\begin{array}{c}g \\ g_{10}\end{array}\right]$ does not work (operator not coercive).
- Petrov-Galerkin road (cf. [Ste15]) provably not quasi-optimal in natural norm.

Simultaneous space-time variational formulation

$$
\begin{aligned}
(B u)(v) & :=\int_{1} \int_{\Omega} \frac{\partial u}{\partial t} v \mathrm{~d} x \mathrm{~d} t+\int_{1} \int_{\Omega} \nabla_{x} u \cdot \nabla_{x} v \mathrm{~d} x \mathrm{~d} t \\
f(v) & :=\int_{1} \int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
\end{aligned}
$$

Space-time variational form of heat equation

Take $U:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right) \cap H^{1}\left(I ; H^{-1}(\Omega)\right)$ and $V:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right)$.

- Problem is well-posed [SS09], but applying standard Galerkin to $\left[\begin{array}{c}B \\ \sim_{0}\end{array}\right] u=\left[\begin{array}{c}g \\ \mathrm{In}\end{array}\right]$ does not work (operator not coercive).
- Petrov-Galerkin road (cf. [Ste15]) provably not quasi-optimal in natural norm.

Simultaneous space-time variational formulation

$$
\begin{aligned}
(B u)(v) & :=\int_{I} \int_{\Omega} \frac{\partial u}{\partial t} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\int_{I} \int_{\Omega} \nabla_{\boldsymbol{x}} u \cdot \nabla_{\boldsymbol{x}} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t \\
f(v) & :=\int_{I} \int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
\end{aligned}
$$

Space-time variational form of heat equation

Take $U:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right) \cap H^{1}\left(I ; H^{-1}(\Omega)\right)$ and $V:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right)$. Given $u_{0} \in L_{2}(\Omega), f \in V^{\prime}$, find $u \in U$ s.t.
$(B u)(v)+\left\langle\gamma_{0} u, \sigma\right\rangle_{L_{2}(\Omega)}=f(v)+\left\langle u_{0}, \sigma\right\rangle_{L_{2}(\Omega)} \quad\left(v \in V, \sigma \in L_{2}(\Omega)\right)$.

Simultaneous space-time variational formulation

$$
\begin{aligned}
(B u)(v) & :=\int_{1} \int_{\Omega} \frac{\partial u}{\partial t} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\int_{I} \int_{\Omega} \nabla_{\boldsymbol{x}} u \cdot \nabla_{\boldsymbol{x}} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t \\
f(v) & :=\int_{I} \int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
\end{aligned}
$$

Space-time variational form of heat equation

Take $U:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right) \cap H^{1}\left(I ; H^{-1}(\Omega)\right)$ and $V:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right)$. Given $u_{0} \in L_{2}(\Omega), f \in V^{\prime}$, find $u \in U$ s.t.
$(B u)(v)+\left\langle\gamma_{0} u, \sigma\right\rangle_{L_{2}(\Omega)}=f(v)+\left\langle u_{0}, \sigma\right\rangle_{L_{2}(\Omega)} \quad\left(v \in V, \sigma \in L_{2}(\Omega)\right)$.

- Problem is well-posed [SS09], but applying standard Galerkin to $\left[\begin{array}{c}B \\ \gamma_{0}\end{array}\right] u=\left[\begin{array}{l}g \\ u_{0}\end{array}\right]$ does not work (operator not coercive). Petrov-Galerkin road (cf. [Ste15]) provably not quasi-optimal in natural norm.

Simultaneous space-time variational formulation

$$
\begin{aligned}
(B u)(v) & :=\int_{1} \int_{\Omega} \frac{\partial u}{\partial t} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t+\int_{I} \int_{\Omega} \nabla_{x} u \cdot \nabla_{x} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t \\
f(v) & :=\int_{1} \int_{\Omega} f v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t
\end{aligned}
$$

Space-time variational form of heat equation

Take $U:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right) \cap H^{1}\left(I ; H^{-1}(\Omega)\right)$ and $V:=L_{2}\left(I ; H_{0}^{1}(\Omega)\right)$. Given $u_{0} \in L_{2}(\Omega), f \in V^{\prime}$, find $u \in U$ s.t.
$(B u)(v)+\left\langle\gamma_{0} u, \sigma\right\rangle_{L_{2}(\Omega)}=f(v)+\left\langle u_{0}, \sigma\right\rangle_{L_{2}(\Omega)} \quad\left(v \in V, \sigma \in L_{2}(\Omega)\right)$.

- Problem is well-posed [SS09], but applying standard Galerkin to $\left[\begin{array}{c}B \\ \gamma_{0}\end{array}\right] u=\left[\begin{array}{l}g \\ u_{0}\end{array}\right]$ does not work (operator not coercive).
- Petrov-Galerkin road (cf. [Ste15]) provably not quasi-optimal in natural norm.

First alternative space-time formulation

$$
(B u)(v):=\underbrace{\int_{1} \int_{\Omega} \frac{\partial u}{\partial t} v \mathrm{~d} x \mathrm{~d} t}_{=:\left(\partial_{t} u\right)(v)}+\underbrace{\int_{1} \int_{\Omega} \nabla_{x} u \cdot \nabla_{x} v \mathrm{~d} x \mathrm{~d} t}_{=:(A u)(v)}
$$

- [And13]: minimal residual Petrov-Galerkin discretizations $u^{\delta}:=\arg \min \left\|B w^{\delta}-f\right\|_{V^{\prime}}$.
- Equivalent to Galerkin discretization of

'Andreev' self-adjoint saddle-point formulation [And13]

where $\mu, \sigma=0$.

First alternative space-time formulation

$$
(B u)(v):=\underbrace{\int_{1} \int_{\Omega} \frac{\partial u}{\partial t} v d x d t}_{=:\left(\partial_{t} u\right)(v)}+\underbrace{\int_{1} \int_{\Omega} \nabla_{x} u \cdot \nabla_{x} v d x d t}_{=:(A u)(v)}
$$

- [And13]: minimal residual Petrov-Galerkin discretizations

$$
u^{\delta}:=\underset{w^{\delta} \in U^{\delta}}{\arg \min }\left\|B w^{\delta}-f\right\| v^{\prime}
$$

- Equivalent to Galerkin discretization of.

'Andreev' self-adjoint saddle-point formulation [And13]

where $\mu, \sigma=0$.

First alternative space-time formulation

$$
(B u)(v):=\underbrace{\int_{I} \int_{\Omega} \frac{\partial u}{\partial t} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t}_{=:\left(\partial_{t} u\right)(v)}+\underbrace{\int_{I} \int_{\Omega} \nabla_{\boldsymbol{x}} u \cdot \nabla_{\boldsymbol{x}} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t}_{=:(A u)(v)}
$$

- [And13]: minimal residual Petrov-Galerkin discretizations

$$
u^{\delta}:=\underset{w^{\delta} \in U^{\delta}}{\arg \min }\left\|B w^{\delta}-f\right\| v^{\prime}
$$

- Equivalent to Galerkin discretization of...

'Andreev' self-adjoint saddle-point formulation [And13]

Find $\left[\begin{array}{c}\mu \\ \sigma \\ u\end{array}\right] \in V \times L_{2}(\Omega) \times U$ s.t. $\left[\begin{array}{ccc}A & 0 & B \\ 0 & \text { Id } & \gamma_{0} \\ B^{\prime} & \gamma_{0}^{\prime} & 0\end{array}\right]\left[\begin{array}{c}\mu \\ \sigma \\ u\end{array}\right]=\left[\begin{array}{c}f \\ u_{0} \\ 0\end{array}\right]$
where $\mu, \sigma=0$.

First alternative space-time formulation

$$
(B u)(v):=\underbrace{\int_{I} \int_{\Omega} \frac{\partial u}{\partial t} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t}_{=:\left(\partial_{t} u\right)(v)}+\underbrace{\int_{I} \int_{\Omega} \nabla_{\boldsymbol{x}} u \cdot \nabla_{\boldsymbol{x}} v \mathrm{~d} \boldsymbol{x} \mathrm{~d} t}_{=:(A u)(v)}
$$

- [And13]: minimal residual Petrov-Galerkin discretizations

$$
u^{\delta}:=\underset{w^{\delta} \in U^{\delta}}{\arg \min }\left\|B w^{\delta}-f\right\| v^{\prime}
$$

- Equivalent to Galerkin discretization of...

'Andreev' self-adjoint saddle-point formulation [And13]

Find $\left[\begin{array}{c}\mu \\ \sigma \\ u\end{array}\right] \in V \times L_{2}(\Omega) \times U$ s.t. $\left[\begin{array}{ccc}A & 0 & B \\ 0 & \text { Id } & \gamma_{0} \\ B^{\prime} & \gamma_{0}^{\prime} & 0\end{array}\right]\left[\begin{array}{c}\mu \\ \sigma \\ u\end{array}\right]=\left[\begin{array}{c}f \\ u_{0} \\ 0\end{array}\right]$
where $\mu, \sigma=0$.

- Schur complement: $\left(B^{\prime} A^{-1} B+\gamma_{0}^{\prime} \gamma_{0}\right) u=B^{\prime} A^{-1} f+\gamma_{0}^{\prime} u_{0}$.

Second alternative space-time formulation

$$
B=\partial_{t}+A ; \quad\left(B^{\prime} A^{-1} B+\gamma_{0}^{\prime} \gamma_{0}\right) u=B^{\prime} A^{-1} f+\gamma_{0}^{\prime} u_{0} .
$$

- Operator is self-adjoint, coercive, invertible w/ bdd inverse!
- However, factor A^{-1} unsuitable for computation
- Possible to replace $P \approx A^{-1}$ in Schur complement equation
- which is Schur complement of.

New self-adfoint sadtle-point formulation

where $\lambda=u$.

- Advantages over (1):
- Quasi-optimality under milder conditions
- Sparser matrix $\left(\partial_{t}\right.$ in off-diagonal instead of $\left.B=\partial_{t}+A\right)$

Second alternative space-time formulation

$$
B=\partial_{t}+A ; \quad\left(B^{\prime} A^{-1} B+\gamma_{0}^{\prime} \gamma_{0}\right) u=B^{\prime} A^{-1} f+\gamma_{0}^{\prime} u_{0} .
$$

- Operator is self-adjoint, coercive, invertible w/ bdd inverse!
- However, factor A^{-1} unsuitable for computation
- Possible to replace $P \approx A^{-1}$ in Schur complement equation
- Int. by parts $\Longrightarrow B^{\prime} A^{-1} B+\gamma_{0}^{\prime} \gamma_{0}=\partial_{t}^{\prime} A^{-1} \partial_{t}+\left(A+\gamma_{T}^{\prime} \gamma_{T}\right)$;

New self-adjoint saddle-point formulation

where $\lambda=u$.

- Advantages over (1)
- Quasi-optimality under milder conditions
\rightarrow Sparser matrix $\left(\partial_{t}\right.$ in off-diagonal instead o $\left.B=\partial_{t}+A\right)$

Second alternative space-time formulation

$$
B=\partial_{t}+A ; \quad\left(B^{\prime} A^{-1} B+\gamma_{0}^{\prime} \gamma_{0}\right) u=B^{\prime} A^{-1} f+\gamma_{0}^{\prime} u_{0} .
$$

- Operator is self-adjoint, coercive, invertible w/ bdd inverse!
- However, factor A^{-1} unsuitable for computation
- Possible to replace $P \approx A^{-1}$ in Schur complement equation
- Int. by parts $\Longrightarrow B^{\prime} A^{-1} B+\gamma_{0}^{\prime} \gamma_{0}=\partial_{t}^{\prime} A^{-1} \partial_{t}+\left(A+\gamma_{T}^{\prime} \gamma_{T}\right)$;
- which is Schur complement of...

New self-adjoint saddle-point formulation

Find $\left[\begin{array}{l}\lambda \\ u\end{array}\right] \in V \times U$ st $\left[\begin{array}{cc}A & \partial_{t} \\ \partial_{t}^{\prime}-\left(A+\gamma_{T}^{\prime} \gamma_{T}\right)\end{array}\right]\left[\begin{array}{l}\lambda \\ u\end{array}\right]=\left[\begin{array}{c}f \\ -\left(f+\gamma_{0}^{\prime} u_{0}\right)\end{array}\right]$
where $\lambda=u$.

- Advantages over (1):
- Quasi-optimality under milder conditions
\rightarrow Sparser matrix $\left(\partial_{t}\right.$ in off-diagonal instead $\left.0 \quad B=\partial_{t}+A\right)$

Second alternative space-time formulation

$$
B=\partial_{t}+A ; \quad\left(B^{\prime} A^{-1} B+\gamma_{0}^{\prime} \gamma_{0}\right) u=B^{\prime} A^{-1} f+\gamma_{0}^{\prime} u_{0} .
$$

- Operator is self-adjoint, coercive, invertible w/ bdd inverse!
- However, factor A^{-1} unsuitable for computation
- Possible to replace $P \approx A^{-1}$ in Schur complement equation
- Int. by parts $\Longrightarrow B^{\prime} A^{-1} B+\gamma_{0}^{\prime} \gamma_{0}=\partial_{t}^{\prime} A^{-1} \partial_{t}+\left(A+\gamma_{T}^{\prime} \gamma_{T}\right)$;
- which is Schur complement of...

New self-adjoint saddle-point formulation

Find $\left[\begin{array}{l}\lambda \\ u\end{array}\right] \in V \times U$ st $\left[\begin{array}{cc}A & \partial_{t} \\ \partial_{t}^{\prime}-\left(A+\gamma_{T}^{\prime} \gamma_{T}\right)\end{array}\right]\left[\begin{array}{l}\lambda \\ u\end{array}\right]=\left[\begin{array}{c}f \\ -\left(f+\gamma_{0}^{\prime} u_{0}\right)\end{array}\right]$
where $\lambda=u$.

- Advantages over (1):
- Quasi-optimality under milder conditions
- Sparser matrix (∂_{t} in off-diagonal instead of $B=\partial_{t}+A$)

Uniform quasi-optimality of Galerkin discretizations

- Given some family $\left(U^{\delta}, V^{\delta}\right)_{\delta \in \Delta}$ of closed subspaces of $V \times U$,
- want uniform quasi-optimality of discrete sol u^{δ} of (1), (2).
(1) and (2) are well-posed, so inf-sup condition satisfied:

- Tells us something about 'degree' of well-posedness.
- Key sten: show uniform stahility discrete inf-sun constants:

Uniform quasi-optimality of Galerkin discretizations

- Given some family $\left(U^{\delta}, V^{\delta}\right)_{\delta \in \Delta}$ of closed subspaces of $V \times U$,
- want uniform quasi-optimality of discrete sol u^{δ} of (1), (2).
- (1) and (2) are well-posed, so inf-sup condition satisfied:

$$
\inf _{w \in U^{2}} \sup _{v \in V} \frac{\left(\partial_{t} w\right)(v)}{\|v\|_{V}\left\|\partial_{t} w\right\| V^{\prime}}=\alpha>0
$$

- Tells us something about 'degree' of well-posedness.
- Key step: show uniform stability discrete inf-sup constants:

Uniform quasi-optimality of Galerkin discretizations

- Given some family $\left(U^{\delta}, V^{\delta}\right)_{\delta \in \Delta}$ of closed subspaces of $V \times U$,
- want uniform quasi-optimality of discrete sol u^{δ} of (1), (2).
- (1) and (2) are well-posed, so inf-sup condition satisfied:

$$
\inf _{w \in U^{2}} \sup _{v \in V} \frac{\left(\partial_{t} w\right)(v)}{\|v\|_{V}\left\|\partial_{t} w\right\|_{V^{\prime}}}=\alpha>0
$$

- Tells us something about 'degree' of well-posedness.
- Key step: show uniform stability discrete inf-sup constants:

$$
\alpha_{\Delta}:=\inf _{\delta \in \Delta} \inf _{w^{\delta} \in U^{\delta}} \sup _{v^{\delta} \in V^{\delta}} \frac{\left(\partial_{t} w^{\delta}\right)\left(v^{\delta}\right)}{\left\|v^{\delta}\right\| v\left\|\partial_{t} w^{\delta}\right\| v^{\prime}}>0
$$

Uniform quasi-optimality of Galerkin discretizations

- Given some family $\left(U^{\delta}, V^{\delta}\right)_{\delta \in \Delta}$ of closed subspaces of $V \times U$,
- want uniform quasi-optimality of discrete sol u^{δ} of (1), (2).
- (1) and (2) are well-posed, so inf-sup condition satisfied:

$$
\inf _{w \in U} \sup _{v \in V} \frac{\left(\partial_{t} w\right)(v)}{\|v\|_{v}\left\|\partial_{t} w\right\|_{V^{\prime}}}=\alpha>0
$$

- Tells us something about 'degree' of well-posedness.
- Key step: show uniform stability discrete inf-sup constants:

$$
\alpha_{\Delta}:=\inf _{\delta \in \Delta} \inf _{w^{\delta} \in U^{\delta}} \sup _{v^{\delta} \in V^{\delta}} \frac{\left(\partial_{t} w^{\delta}\right)\left(v^{\delta}\right)}{\left\|v^{\delta}\right\| v\left\|\partial_{t} w^{\delta}\right\| V^{\prime}}>0 .
$$

- Thm. $\alpha_{\Delta}>0$ and $U^{\delta} \subseteq V^{\delta} \Longrightarrow$ quasi-optimality of (1).
- Thm. $\alpha_{\Delta}>0 \Longrightarrow$ uniform quasi-optimality of (2).

Generating uniformly stable subspaces

$$
\alpha_{\Delta}:=\inf _{\delta \in \Delta} \inf _{w^{\delta} \in U^{\delta}} \sup _{v^{\delta} \in V^{\delta}} \frac{\left(\partial_{t} w^{\delta}\right)\left(v^{\delta}\right)}{\left\|v^{\delta}\right\| v\left\|\partial_{t} w^{\delta}\right\| v^{\prime}}>0
$$

- Take Ω polygonal in 2D or connected in 1D

Collect all such δ into Δ; then $\alpha_{\Delta}>0$.

- (Result holds for far more general Ω and O; cf. [SW19])

Generating uniformly stable subspaces

$$
\alpha_{\Delta}:=\inf _{\delta \in \Delta} \inf _{w^{\delta} \in U^{\delta}} \sup _{v^{\delta} \in V^{\delta}} \frac{\left(\partial_{t} w^{\delta}\right)\left(v^{\delta}\right)}{\left\|v^{\delta}\right\| v\left\|\partial_{t} w^{\delta}\right\| V^{\prime}}>0 .
$$

- Take Ω polygonal in 2D or connected in 1D
- Use NVB for conforming refinements $\mathbb{T}=\{\mathcal{T}\}$ of \mathcal{T}_{\perp} over Ω
- Let \mathcal{O} be collection of FEM-spaces $H_{\mathcal{T}} \subset H_{0}^{1}(\Omega)$ over $\mathcal{T} \in \mathbb{T}$

Collect all such δ into Δ; then $\alpha_{\Delta}>0$.

Generating uniformly stable subspaces

$$
\alpha_{\Delta}:=\inf _{\delta \in \Delta} \inf _{w^{\delta} \in U^{\delta}} \sup _{v^{\delta} \in V^{\delta}} \frac{\left(\partial_{t} w^{\delta}\right)\left(v^{\delta}\right)}{\left\|v^{\delta}\right\| v\left\|\partial_{t} w^{\delta}\right\| v^{\prime}}>0
$$

- Take Ω polygonal in 2D or connected in 1D
- Use NVB for conforming refinements $\mathbb{T}=\{\mathcal{T}\}$ of \mathcal{T}_{\perp} over Ω
- Let \mathcal{O} be collection of FEM-spaces $H_{\mathcal{T}} \subset H_{0}^{1}(\Omega)$ over $\mathcal{T} \in \mathbb{T}$
- Thm. Take time slabs: take $N \in \mathbb{N}$, partition I into $\left(t_{n}\right)_{n=0}^{N}$, choose degrees $\left(q_{n} \geq 1\right)_{n=1}^{N}$. Take $\left(H_{n} \in \mathcal{O}\right)_{n=1}^{N}$. Then define

$$
\left\{\begin{array}{l}
U^{\delta}:=\left\{u: C^{0} \text { in time, in } \mathbb{P}_{q_{n}} \otimes H_{n} \text { on every slab }\right\} \\
V^{\delta}:=\left\{v: L_{2} \text { in time, in } \mathbb{P}_{q_{n}-1} \otimes H_{n} \text { on every slab }\right\}
\end{array}\right.
$$

Collect all such δ into Δ; then $\alpha_{\Delta}>0$.

Generating uniformly stable subspaces

- Take Ω polygonal in 2D or connected in 1D
- Use NVB for conforming refinements $\mathbb{T}=\{\mathcal{T}\}$ of \mathcal{T}_{\perp} over Ω
- Let \mathcal{O} be collection of FEM-spaces $H_{\mathcal{T}} \subset H_{0}^{1}(\Omega)$ over $\mathcal{T} \in \mathbb{T}$
- Thm. Take time slabs: take $N \in \mathbb{N}$, partition I into $\left(t_{n}\right)_{n=0}^{N}$, choose degrees $\left(q_{n} \geq 1\right)_{n=1}^{N}$. Take $\left(H_{n} \in \mathcal{O}\right)_{n=1}^{N}$. Then define

$$
\left\{\begin{array}{l}
U^{\delta}:=\left\{u: C^{0} \text { in time, in } \mathbb{P}_{q_{n}} \otimes H_{n} \text { on every slab }\right\} \\
V^{\delta}:=\left\{v: L_{2} \text { in time, in } \mathbb{P}_{q_{n}-1} \otimes H_{n} \text { on every slab }\right\}
\end{array}\right.
$$

Collect all such δ into Δ; then $\alpha_{\Delta}>0$.

- (Result holds for far more general Ω and \mathcal{O}; cf. [SW19])

Example U^{δ}, V^{δ} for $I \times \Omega=[0,1]^{2}$, linear FEM in space

(a) Partition of I and time slabs.

$$
\left\{\begin{array}{l}
U^{\delta}:=\left\{u: C^{0} \text { in time, in } \mathbb{P}_{q_{n}} \otimes H_{n} \text { on every slab }\right\} \\
V^{\delta}:=\left\{v: L_{2} \text { in time, in } \mathbb{P}_{q_{n}-1} \otimes H_{n} \text { on every slab }\right\}
\end{array}\right.
$$

Example U^{δ}, V^{δ} for $I \times \Omega=[0,1]^{2}$, linear FEM in space

(a) U^{δ} : function spaces on slabs.

$$
\left\{\begin{array}{l}
U^{\delta}:=\left\{u: C^{0} \text { in time, in } \mathbb{P}_{q_{n}} \otimes H_{n} \text { on every slab }\right\} \\
V^{\delta}:=\left\{v: L_{2} \text { in time, in } \mathbb{P}_{q_{n}-1} \otimes H_{n} \text { on every slab }\right\}
\end{array}\right.
$$

Example U^{δ}, V^{δ} for $I \times \Omega=[0,1]^{2}$, linear FEM in space

(a) U^{δ} : triangulations on slabs.

$$
\left\{\begin{array}{l}
U^{\delta}:=\left\{u: C^{0} \text { in time, in } \mathbb{P}_{q_{n}} \otimes H_{n} \text { on every slab }\right\} \\
V^{\delta}:=\left\{v: L_{2} \text { in time, in } \mathbb{P}_{q_{n}-1} \otimes H_{n} \text { on every slab }\right\}
\end{array}\right.
$$

Example U^{δ}, V^{δ} for $I \times \Omega=[0,1]^{2}$, linear FEM in space

(a) $U^{\delta}:$ degrees of freedom.

$$
\left\{\begin{array}{l}
U^{\delta}:=\left\{u: C^{0} \text { in time, in } \mathbb{P}_{q_{n}} \otimes H_{n} \text { on every slab }\right\} \\
V^{\delta}:=\left\{v: L_{2} \text { in time, in } \mathbb{P}_{q_{n}-1} \otimes H_{n} \text { on every slab }\right\}
\end{array}\right.
$$

Example U^{δ}, V^{δ} for $I \times \Omega=[0,1]^{2}$, linear FEM in space

(a) U^{δ} : degrees of freedom.

$$
\mathbb{P}_{0} \otimes H_{1}
$$

(b) V^{δ} : function spaces on slabs.

$$
\left\{\begin{array}{l}
U^{\delta}:=\left\{u: C^{0} \text { in time, in } \mathbb{P}_{q_{n}} \otimes H_{n} \text { on every slab }\right\} \\
V^{\delta}:=\left\{v: L_{2} \text { in time, in } \mathbb{P}_{q_{n}-1} \otimes H_{n} \text { on every slab }\right\}
\end{array}\right.
$$

Example U^{δ}, V^{δ} for $I \times \Omega=[0,1]^{2}$, linear FEM in space

(a) U^{δ} : degrees of freedom.

(b) V^{δ} : degrees of freedom.

$$
\left\{\begin{array}{l}
U^{\delta}:=\left\{u: C^{0} \text { in time, in } \mathbb{P}_{q_{n}} \otimes H_{n} \text { on every slab }\right\} \\
V^{\delta}:=\left\{v: L_{2} \text { in time, in } \mathbb{P}_{q_{n}-1} \otimes H_{n} \text { on every slab }\right\}
\end{array}\right.
$$

Numerical results (i)

- We take $I \times \Omega:=[0,1]^{2}$; uniform meshes with $h_{t}=h_{x}$.
> U^{δ} continuous piecewise linears in time \otimes
> continuous piecewise linears in space
> $V_{\text {Andr }}^{\delta}$ discont. piecewise linears in time \otimes
> continuous piecewise linears in space
> $V_{\text {new }}^{\delta}$ discont. piecewise constants in time \otimes
> continuous piecewise linears in space
- Same trial space, different test space
- New system is $1.5 \times$ smaller and $2 \times$ sparser

Numerical results (i)

- We take $I \times \Omega:=[0,1]^{2}$; uniform meshes with $h_{t}=h_{x}$.
U^{δ} continuous piecewise linears in time \otimes continuous piecewise linears in space
$V_{\text {Andr }}^{\delta}$ discont. piecewise linears in time \otimes continuous piecewise linears in space
$V_{\text {new }}^{\delta}$ discont. piecewise constants in time \otimes continuous piecewise linears in space
- Same trial space, different test space
- New system is $1.5 \times$ smaller and $2 \times$ sparser

Numerical results (i)

- We take $I \times \Omega:=[0,1]^{2}$; uniform meshes with $h_{t}=h_{x}$.
U^{δ} continuous piecewise linears in time \otimes continuous piecewise linears in space
$V_{\text {Andr }}^{\delta}$ discont. piecewise linears in time \otimes continuous piecewise linears in space
$V_{\text {new }}^{\delta}$ discont. piecewise constants in time \otimes continuous piecewise linears in space
- Same trial space, different test space
- New system is $1.5 \times$ smaller and $2 \times$ sparser

Numerical results (ii)

Figure: $\left\|u-u^{\delta}\right\|_{u}$ vs. $\operatorname{dim} U^{\delta}$ for $u(t, x)=e^{-2 t} \sin \pi x$.

Numerical results (iii)

Figure: $\left\|u-u^{\delta}\right\|_{u}$ vs. $\operatorname{dim} U^{\delta}$ for $u(t, x)=e^{-2 t}|t-x| \sin \pi x$.

Numerical results (iv)

Figure: $\left\|u(T, \cdot)-u^{\delta}(T, \cdot)\right\|_{L_{2}(\Omega)}$ vs. $\operatorname{dim} U^{\delta}$.

Outlook

- Example: corner singularity
- For optimal error reduction, refine corners at $t=0$
- Impossible in slab-framework
- In [RS19], optimal rate space-time adaptivity using wavelets - Main disadvantage: software complexity
- Current research direction: achieving similar performance without space-time wavelets

Outlook

- Example: corner singularity
- For optimal error reduction, refine corners at $t=0$
- Impossible in slab-framework
- In [RS19], optimal rate space-time adaptivity using wavelets - Main disadvantage: software complexity
- Current research direction: achieving similar performance without space-time wavelets

Outlook

- Example: corner singularity
- For optimal error reduction, refine corners at $t=0$
- Impossible in slab-framework
- In [RS19], optimal rate space-time adaptivity using wavelets - Main disadvantage: software complexity
- Current research direction: achieving similar performance without space-time wavelets

Outlook

- Example: corner singularity
- For optimal error reduction, refine corners at $t=0$
- Impossible in slab-framework
- In [RS19], optimal rate space-time adaptivity using wavelets - Main disadvantage: software complexity
- Current research direction: achieving similar performance without space-time wavelets

Outlook

- Example: corner singularity
- For optimal error reduction, refine corners at $t=0$
- Impossible in slab-framework
- In [RS19], optimal rate space-time adaptivity using wavelets - Main disadvantage: software complexity
- Current research direction: achieving similar performance without space-time wavelets

Outlook

- Example: corner singularity
- For optimal error reduction, refine corners at $t=0$
- Impossible in slab-framework
$>$ In [RS19], optimal rate space-time adaptivity using wavelets - Main disadvantage: software complexity
- Current research direction: achieving similar performance without space-time wavelets

Outlook

- Example: corner singularity
- For optimal error reduction, refine corners at $t=0$
- Impossible in slab-framework
- In [RS19], optimal rate space-time adaptivity using wavelets
- Main disadvantage: software complexity

- Current research direction: achieving similar performance without space-time wavelets

Outlook

- Example: corner singularity
- For optimal error reduction, refine corners at $t=0$
- Impossible in slab-framework
- In [RS19], optimal rate space-time adaptivity using wavelets
- Main disadvantage: software complexity
- Current research direction: achieving similar performance without space-time wavelets

Conclusion

- We saw two space-time variational formulations of heat eqn
- Andreev's minimal residual discretization yields quasi-optimal approximation in U^{δ}
- Equivalent to self-adioint saddle-point formulation (1)
- By taking Schur complements, find 'reduced' formulation (2)
- with quasi-optimality under milder assumptions;
- lower computational cost with similar performance.
- Outlook: full space-time adaptivity at optimal rates.

Conclusion

- We saw two space-time variational formulations of heat eqn
- Andreev's minimal residual discretization yields quasi-optimal approximation in U^{δ}
- Equivalent to self-adjoint saddle-point formulation (1)
- By taking Schur complements, find 'reduced' formulation (2)
- with quasi-optimality under milder assumptions;
- lower computational cost with similar performance.
- Outlook: full space-time adaptivity at optimal rates.

Conclusion

- We saw two space-time variational formulations of heat eqn
- Andreev's minimal residual discretization yields quasi-optimal approximation in U^{δ}
- Equivalent to self-adjoint saddle-point formulation (1)
- By taking Schur complements, find 'reduced' formulation (2)
- with quasi-optimality under milder assumptions;
- lower computational cost with similar performance.
- Outlook: full space-time adaptivity at optimal rates.

Conclusion

- We saw two space-time variational formulations of heat eqn
- Andreev's minimal residual discretization yields quasi-optimal approximation in U^{δ}
- Equivalent to self-adjoint saddle-point formulation (1)
- By taking Schur complements, find 'reduced' formulation (2)
- with quasi-optimality under milder assumptions;
- lower computational cost with similar performance.

Conclusion

- We saw two space-time variational formulations of heat eqn
- Andreev's minimal residual discretization yields quasi-optimal approximation in U^{δ}
- Equivalent to self-adjoint saddle-point formulation (1)
- By taking Schur complements, find 'reduced' formulation (2)
- with quasi-optimality under milder assumptions;
- lower computational cost with similar performance.
- Outlook: full space-time adaptivity at optimal rates.

References

[And13] Roman Andreev, Stability of sparse space-time finite element discretizations of linear parabolic evolution equations, IMA J. Numer. Anal. 33 (2013), no. 1, 242-260.
[BJ89] Ivo Babuska and Tadeusz Janik, The h-p version of the finite element method for parabolic equations. Part I. The p-version in time, Numer. Methods Partial Differ. Equ. 5 (1989), no. 4, 363-399.
[RS19] Nikolaos Rekatsinas and Rob Stevenson, An optimal adaptive tensor product wavelet solver of a space-time FOSLS formulation of parabolic evolution problems, Adv. Comput. Math. 45 (2019), no. 2, 1031-1066.
[SS09] Christoph Schwab and Rob Stevenson, Space-time adaptive wavelet methods for parabolic evolution problems, Math. Comput. 78 (2009), no. 267, 1293-1318.
[Ste15] Olaf Steinbach, Space-Time Finite Element Methods for Parabolic Problems, Comput. Methods Appl. Math. (2015).
[SW19] Rob Stevenson and Jan Westerdiep, Stability of Galerkin discretizations of a mixed space-time variational formulation of parabolic evolution equations, Submitted (2019).

Generating uniformly stable subspaces: addendum

- Suppose $\Omega \subset \mathbb{R}^{d}$ is a polytope.
- For $H \subset H_{0}^{1}(\Omega)$, define $L_{2}(\Omega)$-orth proj $Q_{H}: H_{0}^{1}(\Omega) \rightarrow H$.
- If $\mathcal{O}:=\{H\}$ is such that the operator norms are unif bdd,

$$
\sup _{H \in \mathcal{O}}\left\|Q_{H}\right\|_{\mathcal{L}\left(H_{0}^{1}(\Omega), H_{0}^{1}(\Omega)\right)}=: M<\infty
$$

then the theorem holds with $\alpha_{\Delta} \geq 1 / M>0$.

- Example spaces:
- $\Omega \subset \mathbb{R}^{d}$: FEM-space over quasi-uniform partition of Ω
- $\Omega \subset \mathbb{R}^{2}$: FEM-space over local refinements (Carstensen 2001)

