Fast Directional Matrix-Vector Multiplications

Analysis and Numerical Experiments
Raphael Watschinger and Günther Of
Institute of Applied Mathematics
AANMPDE12, July 1-5 2019
FUF
Der Wissenschaftsfonds.

Outline

1. Motivation
2. Fast Directional Matrix-Vector Multiplications
3. Numerical Examples - Parameter Study
4. Conclusion

Outline

1. Motivation

2. Fast Directional Matrix-Vector Multiplications

3. Numerical Examples - Parameter Study
4. Conclusion

Raphael Watschinger and Günther Of, Institute of Applied Mathematics

Helmholtz equation

For $\kappa>0$ consider the boundary value problem

$$
\begin{aligned}
\Delta u+\kappa^{2} u & =0, & & \text { in } \Omega^{\text {ext }} \subset \mathbb{R}^{3}, \\
u & =g, & & \text { on } \Gamma:=\partial \Omega
\end{aligned}
$$

+ radiation condition,

Helmholtz equation

For $\kappa>0$ consider the boundary value problem

$$
\begin{aligned}
\Delta u+\kappa^{2} u & =0, & & \text { in } \Omega^{\mathrm{ext}} \subset \mathbb{R}^{3}, \\
u & =g, & & \text { on } \Gamma:=\partial \Omega
\end{aligned}
$$

+ radiation condition,
Consider the single layer potential $\tilde{V} t$ of a function t on Γ :

$$
\tilde{V} t(x)=\int_{\Gamma} f(x, y) t(y) d y, \quad f(x, y):=\frac{\exp (i \kappa|x-y|)}{4 \pi|x-y|}
$$

Helmholtz equation

For $\kappa>0$ consider the boundary value problem

$$
\begin{aligned}
\Delta u+\kappa^{2} u=0, & \text { in } \Omega^{\text {ext }} \subset \mathbb{R}^{3}, \\
u=g, & \text { on } \Gamma:=\partial \Omega
\end{aligned}
$$

+ radiation condition,
Consider the single layer potential $\tilde{V} t$ of a function t on Γ :

$$
\tilde{V} t(x)=\int_{\Gamma} f(x, y) t(y) d y, \quad f(x, y):=\frac{\exp (i \kappa|x-y|)}{4 \pi|x-y|}
$$

$\tilde{V} t$ satisfies Helmholtz equation + radiation condition!

Helmholtz equation

For $\kappa>0$ consider the boundary value problem

$$
\begin{aligned}
\Delta u+\kappa^{2} u=0, & \text { in } \Omega^{\text {ext }} \subset \mathbb{R}^{3}, \\
u=g, & \text { on } \Gamma:=\partial \Omega
\end{aligned}
$$

+ radiation condition,
Consider the single layer potential $\tilde{V} t$ of a function t on Γ :

$$
\tilde{V} t(x)=\int_{\Gamma} f(x, y) t(y) d y, \quad f(x, y):=\frac{\exp (i \kappa|x-y|)}{4 \pi|x-y|}
$$

$\tilde{V} t$ satisfies Helmholtz equation + radiation condition!
If $V t:=\gamma_{0}^{\text {ext }} \tilde{V} t=g$ we have a solution.

Problem Formulation and Discretization

Task: Given $g \in H^{1 / 2}(\Gamma)$ find $t \in H^{-1 / 2}(\Gamma)$ s.t. $V t=g$.

Problem Formulation and Discretization

Task: Given $g \in H^{1 / 2}(\Gamma)$ find $t \in H^{-1 / 2}(\Gamma)$ s.t. $V t=g$.
Discrete Galerkin variational formulation

$$
\left\langle V t_{h}, \tau_{h}\right\rangle=\left\langle g, \tau_{h}\right\rangle
$$

for piecewise constant test and trial functions $\left(t_{h}, \tau_{h} \in S_{h}^{0}(\Gamma)\right)$.

Problem Formulation and Discretization

Task: Given $g \in H^{1 / 2}(\Gamma)$ find $t \in H^{-1 / 2}(\Gamma)$ s.t. $V t=g$.
Discrete Galerkin variational formulation

$$
\left\langle V t_{h}, \tau_{h}\right\rangle=\left\langle g, \tau_{h}\right\rangle
$$

for piecewise constant test and trial functions $\left(t_{h}, \tau_{h} \in S_{h}^{0}(\Gamma)\right)$.
Equivalent system of linear equations: $V_{h} \underline{t}=\underline{g}$,

$$
V_{h}[j, k]=\left\langle V \varphi_{k}, \varphi_{j}\right\rangle=\int_{\Gamma_{j}} \int_{\Gamma_{k}} f(x, y) \mathrm{d} s_{y} \mathrm{~d} s_{x},
$$

The problem

Solution of $V_{h} \underline{t}=\underline{g}$ with iterative solvers requires matrix-vector multiplications.

The problem

Solution of $V_{h} \underline{t}=\underline{g}$ with iterative solvers requires matrix-vector multiplications.

Problem:

- Quadratic complexity for storage and matrix-vector multiplications.

The problem

Solution of $V_{h} \underline{t}=\underline{g}$ with iterative solvers requires matrix-vector multiplications.

Problem:

- Quadratic complexity for storage and matrix-vector multiplications.
- Standard compression approaches do not work well in high frequency regimes (e.g. large κ) due to oscillating behavior of $\exp (i \kappa|x-y|)$.

The problem

Solution of $V_{h} \underline{t}=\underline{g}$ with iterative solvers requires matrix-vector multiplications.

Problem:

- Quadratic complexity for storage and matrix-vector multiplications.
- Standard compression approaches do not work well in high frequency regimes (e.g. large κ) due to oscillating behavior of $\exp (i \kappa|x-y|)$.

Remedy: directional approximation methods

The model problem

Instead of V_{h} consider $A \in \mathbb{C}^{N \times N}$,

$$
A[j, k]= \begin{cases}f\left(x_{j}, x_{k}\right)=\frac{\exp \left(i \kappa\left|x_{j}-x_{k}\right|\right)}{4 \pi\left|x_{j}-x_{k}\right|}, & j \neq k, \\ 0, & j=k,\end{cases}
$$

for points $\left\{x_{j}\right\}_{j=1}^{N} \subset \mathbb{R}^{3}$.
Goal: Derive fast matrix-vector multiplications for matrix A.

Outline

1. Motivation

2. Fast Directional Matrix-Vector Multiplications
3. Numerical Examples - Parameter Study
4. Conclusion

Directional approximation of the kernel

Fundamental idea:

Smoothing of Helmholtz kernel by plane wave term:

$$
f(x, y)=\frac{\exp (i \kappa|x-y|)}{4 \pi|x-y|}
$$

Directional approximation of the kernel

Fundamental idea:
Smoothing of Helmholtz kernel by plane wave term:

$$
\begin{aligned}
f(x, y) & =\frac{\exp (i \kappa|x-y|)}{4 \pi|x-y|} \\
& =\underbrace{\frac{\exp (i \kappa(|x-y|-\langle c, x-y\rangle))}{4 \pi|x-y|}} \exp (i \kappa\langle c, x-y\rangle),
\end{aligned}
$$

where $c \in \mathbb{R}^{3}$ with $|c|=1$.

Directional approximation of the kernel

Fundamental idea:
Smoothing of Helmholtz kernel by plane wave term:

$$
\begin{aligned}
f(x, y) & =\frac{\exp (i \kappa|x-y|)}{4 \pi|x-y|} \\
& =\underbrace{\frac{\exp (i \kappa(|x-y|-\langle c, x-y\rangle))}{4 \pi|x-y|}} \exp (i \kappa\langle c, x-y\rangle),
\end{aligned}
$$

where $c \in \mathbb{R}^{3}$ with $|c|=1$.
[Brandt, 1991, Engquist and Ying, 2007, Messner et al., 2012, Bebendorf et al., 2015, Börm and Melenk, 2017]

Comparison of f and f_{c}

Parameters: $\kappa=10, c=(0,-1,0) ; y=\left(y_{1}, y_{2}, 0\right)$

Directional approximation of the kernel

Let $x \in X$ and $y \in Y$ for two axis-parallel boxes $X, Y \subset \mathbb{R}^{3}$. Substitute f_{c} with its interpolant:

$$
f(x, y)=f_{c}(x, y) \exp (i \kappa\langle c, x-y\rangle)
$$

Directional approximation of the kernel

Let $x \in X$ and $y \in Y$ for two axis-parallel boxes $X, Y \subset \mathbb{R}^{3}$. Substitute f_{c} with its interpolant:

$$
f(x, y) \approx \sum_{\substack{\|\alpha\|_{\infty} \leq m \\\|\beta\|_{\infty} \leq m}} f_{c}\left(\xi_{X, \alpha}, \xi_{Y, \beta}\right)\left(L_{X, \alpha}(x) e^{i \kappa\langle c, x\rangle}\right)\left(L_{Y, \beta}(y) e^{-i \kappa\langle c, y\rangle}\right)
$$

with interpolation degree m, Lagrange polynomials $L_{X, \alpha}, L_{Y, \beta}$.

Directional approximation of the kernel

Let $x \in X$ and $y \in Y$ for two axis-parallel boxes $X, Y \subset \mathbb{R}^{3}$. Substitute f_{c} with its interpolant:

$$
f(x, y) \approx \sum_{\substack{\|\alpha\|_{\infty} \leq m \\\|\beta\|_{\infty} \leq m}} f_{C}\left(\xi_{X, \alpha}, \xi_{Y, \beta}\right)\left(L_{X, \alpha}(x) e^{i \kappa\langle c, x\rangle}\right)\left(L_{Y, \beta}(y) e^{-i \kappa\langle c, y\rangle}\right)
$$

with interpolation degree m, Lagrange polynomials $L_{X, \alpha}, L_{Y, \beta}$.
Reminder:

$$
A[j, k]= \begin{cases}\frac{\exp \left(i k\left|x_{j}-x_{k}\right|\right)}{4 \pi\left|x_{j}-x_{k}\right|}, & j \neq k, \\ 0, & j=k\end{cases}
$$

Directional approximation of the kernel

Let $x \in X$ and $y \in Y$ for two axis-parallel boxes $X, Y \subset \mathbb{R}^{3}$.
Substitute f_{c} with its interpolant:

$$
f(x, y) \approx \sum_{\substack{\|\alpha\|_{\infty} \leq m \\\|\beta\|_{\infty} \leq m}} f_{c}\left(\xi_{X, \alpha}, \xi_{Y, \beta}\right)\left(L_{X, \alpha}(x) e^{i \kappa\langle c, x\rangle}\right)\left(L_{Y, \beta}(y) e^{-i \kappa\langle c, y\rangle}\right)
$$

with interpolation degree m, Lagrange polynomials $L_{X, \alpha}, L_{Y, \beta}$.
Approximate subblocks of A corresponding to points in $X \times Y$ by

$$
\begin{gathered}
A_{X, Y} \approx L_{X, c} A_{c, X, Y} L_{Y, c}^{*}, \\
L_{X, c}[j, k]=L_{X, \alpha_{k}}(x) e^{i \kappa\left\langle c, x_{j}\right\rangle}, \quad A_{c, X, Y}[j, k]=f_{c}\left(\xi_{X, \alpha_{j}}, \xi_{Y, \beta_{k}}\right)
\end{gathered}
$$

Directional approximation of the kernel

Let $x \in X$ and $y \in Y$ for two axis-parallel boxes $X, Y \subset \mathbb{R}^{3}$. Substitute f_{c} with its interpolant:

$$
f(x, y) \approx \sum_{\substack{\|\alpha\|_{\infty} \leq m \\\|\beta\|_{\infty} \leq m}} f_{c}\left(\xi_{X, \alpha}, \xi_{Y, \beta}\right)\left(L_{X, \alpha}(x) e^{i \kappa\langle c, x\rangle}\right)\left(L_{Y, \beta}(y) e^{-i \kappa\langle c, y\rangle}\right),
$$

with interpolation degree m, Lagrange polynomials $L_{X, \alpha}, L_{Y, \beta}$.
Approximate subblocks of A corresponding to points in $X \times Y$ by

$$
\begin{gathered}
A_{X, Y} \approx L_{X, c} A_{c, X, Y} L_{Y, c}^{*}, \\
L_{X, c}[j, k]=L_{X, \alpha_{k}}(x) e^{i \kappa\left\langle c, x_{j}\right\rangle}, \quad A_{c, X, Y}[j, k]=f_{c}\left(\xi_{X, \alpha_{j}}, \xi_{Y, \beta_{k}}\right) .
\end{gathered}
$$

Admissibility criteria

Sufficient criteria ensuring a good approximation quality: [Messner et al., 2012, Bebendorf et al., 2015, Börm and Melenk, 2017]

Admissibility criteria

Sufficient criteria ensuring a good approximation quality:
[Messner et al., 2012, Bebendorf et al., 2015, Börm and Melenk, 2017]

Admissibility criteria controlling box distances

$$
\begin{array}{r}
\quad \max \{\operatorname{diam}(X), \operatorname{diam}(Y)\} \leq \eta_{2} \operatorname{dist}(X, Y), \\
\kappa(\max \{\operatorname{diam}(X), \operatorname{diam}(Y)\})^{2} \leq \eta_{2} \operatorname{dist}(X, Y) .
\end{array}
$$

Admissibility criteria

Sufficient criteria ensuring a good approximation quality:
[Messner et al., 2012, Bebendorf et al., 2015, Börm and Melenk, 2017]

Admissibility criteria controlling box distances

$$
\begin{array}{r}
\quad \max \{\operatorname{diam}(X), \operatorname{diam}(Y)\} \leq \eta_{2} \operatorname{dist}(X, Y), \\
\kappa(\max \{\operatorname{diam}(X), \operatorname{diam}(Y)\})^{2} \leq \eta_{2} \operatorname{dist}(X, Y) .
\end{array}
$$

Admissibility criterion controlling the direction c

$$
\begin{equation*}
\kappa\left|\frac{m_{X}-m_{Y}}{\left|m_{X}-m_{Y}\right|}-c\right| \leq \frac{\eta_{1}}{\max \{\operatorname{diam}(X), \operatorname{diam}(Y)\}}, \tag{A3}
\end{equation*}
$$

where m_{X} and m_{Y} are the midpoints of the boxes X and Y.

Uniform clustering

Find admissible subblocks of A with uniform clustering strategy.

Uniform clustering

Find admissible subblocks of A with uniform clustering strategy.

Uniform clustering

Find admissible subblocks of A with uniform clustering strategy.

Level 1

Uniformly subdivide X^{0} into 8 boxes (4 boxes in 2D).

Uniform clustering

Find admissible subblocks of A with uniform clustering strategy.

Level 2

Subdivide resulting boxes further ...

Uniform clustering

Find admissible subblocks of A with uniform clustering strategy.

Level 3

Continue with subdivision ...

Stop if box contains few points.

Matrix partitioning

For all levels ℓ find boxes X^{ℓ}, Y^{ℓ} at level ℓ satisfying the admissibility criteria (A1) and (A2):

Matrix partitioning

For all levels ℓ find boxes X^{ℓ}, Y^{ℓ} at level ℓ satisfying the admissibility criteria (A1) and (A2):

Matrix partitioning

For all levels ℓ find boxes X^{ℓ}, Y^{ℓ} at level ℓ satisfying the admissibility criteria (A1) and (A2):

Matrix partitioning

[Rjasanow and Steinbach, 2007]

Choice of directions

Let X^{ℓ} and Y^{ℓ} satisfy (A1) and (A2)

Find direction c such that

$$
\begin{equation*}
\left|\frac{m_{X^{\ell}}-m_{Y^{\ell}}}{\left|m_{X^{\ell}}-m_{Y^{\ell}}\right|}-c\right| \leq \frac{\eta_{1}}{\kappa \max \left\{\operatorname{diam}\left(X^{\ell}\right), \operatorname{diam}\left(Y^{\ell}\right)\right\}} . \tag{A3}
\end{equation*}
$$

Choice of directions

Let X^{ℓ} and Y^{ℓ} satisfy (A1) and (A2)

Find direction c such that

$$
\left|\frac{m_{X^{\ell}}-m_{Y^{\ell}}}{\left|m_{X^{\ell}}-m_{Y^{\ell}}\right|}-c\right| \leq \frac{\eta_{1}}{\kappa \max \left\{\operatorname{diam}\left(X^{\ell}\right), \operatorname{diam}\left(Y^{\ell}\right)\right\}} .
$$

Choice of directions

Let X^{ℓ} and Y^{ℓ} satisfy (A1) and (A2)

Find direction c such that

$$
\begin{equation*}
\left|\frac{m_{X^{\ell}}-m_{Y^{\ell}}}{\left|m_{X^{\ell}}-m_{Y^{\ell}}\right|}-c\right| \leq \frac{\eta_{1}}{\kappa \max \left\{\operatorname{diam}\left(X^{\ell}\right), \operatorname{diam}\left(Y^{\ell}\right)\right\}} \tag{A3}
\end{equation*}
$$

- For efficiency choose c from the same set $\left\{c_{k}^{(\ell)}\right\}$ for all boxes at the same level ℓ.

Choice of directions

Let X^{ℓ} and Y^{ℓ} satisfy (A1) and (A2)

Find direction c such that

$$
\begin{equation*}
\left|\frac{m_{X^{\ell}}-m_{Y^{\ell}}}{\left|m_{X^{\ell}}-m_{Y^{\ell} \ell}\right|}-c\right| \leq \frac{\eta_{1}}{\kappa \max \left\{\operatorname{diam}\left(X^{\ell}\right), \operatorname{diam}\left(Y^{\ell}\right)\right\}} . \tag{A3}
\end{equation*}
$$

- For efficiency choose c from the same set $\left\{c_{k}^{(\ell)}\right\}$ for all boxes at the same level ℓ.
- $c=0$ is allowed (low-frequency regime).

Choice of directions

Let X^{ℓ} and Y^{ℓ} satisfy (A1) and (A2)

Find direction c such that

$$
\begin{equation*}
\left|\frac{m_{X^{\ell}}-m_{Y^{\ell}}}{\left|m_{X^{\ell}}-m_{Y^{\ell} \mid}\right|}-c\right| \leq \frac{\eta_{1}}{\kappa \max \left\{\operatorname{diam}\left(X^{\ell}\right), \operatorname{diam}\left(Y^{\ell}\right)\right\}} . \tag{A3}
\end{equation*}
$$

- For efficiency choose c from the same set $\left\{c_{k}^{(\ell)}\right\}$ for all boxes at the same level ℓ.
- $c=0$ is allowed (low-frequency regime).
- More directions are needed for larger boxes.

Choice of directions

Let X^{ℓ} and Y^{ℓ} satisfy (A1) and (A2)
Find direction c such that

$$
\begin{equation*}
\left|\frac{m_{X^{\ell}}-m_{Y^{\ell}}}{\left|m_{X^{\ell}}-m_{Y^{\ell}}\right|}-c\right| \leq \frac{\eta_{1}}{\kappa \max \left\{\operatorname{diam}\left(X^{\ell}\right), \operatorname{diam}\left(Y^{\ell}\right)\right\}} . \tag{A3}
\end{equation*}
$$

- For efficiency choose c from the same set $\left\{c_{k}^{(\ell)}\right\}$ for all boxes at the same level ℓ.
- $c=0$ is allowed (low-frequency regime).
- More directions are needed for larger boxes.

Here: Construction combining the approaches of
[Engquist and Ying, 2007, Messner, 2012], such that (A3) holds.

Construction of directions

- Choose the first high frequency level ℓ_{hf} and 6 initial directions.

Construction of directions

- Choose the first high frequency level ℓ_{hf} and 6 initial directions.
- For levels $\ell>\ell_{\mathrm{hf}}$ the direction $c=0$ is used.

Construction of directions

- Choose the first high frequency level ℓ_{hf} and 6 initial directions.
- For levels $\ell>\ell_{\mathrm{hf}}$ the direction $c=0$ is used.
- For levels $\ell<\ell_{\text {hf }}$ choose set $\left\{c_{j}^{(\ell)}\right\}$ of $6 \cdot 4^{\ell_{\mathrm{hf}}-\ell}$ directions:

Construction of directions

- Choose the first high frequency level ℓ_{hf} and 6 initial directions.
- For levels $\ell>\ell_{\mathrm{hf}}$ the direction $c=0$ is used.
- For levels $\ell<\ell_{\mathrm{hf}}$ choose set $\left\{c_{j}^{(\ell)}\right\}$ of $6 \cdot 4^{\ell_{\mathrm{hf}}-\ell}$ directions:

Construction of directions

- Choose the first high frequency level ℓ_{hf} and 6 initial directions.
- For levels $\ell>\ell_{\mathrm{hf}}$ the direction $c=0$ is used.
- For levels $\ell<\ell_{\mathrm{hf}}$ choose set $\left\{c_{j}^{(\ell)}\right\}$ of $6 \cdot 4^{\ell_{\mathrm{hf}}-\ell}$ directions:

Construction of directions

- Choose the first high frequency level ℓ_{hf} and 6 initial directions.
- For levels $\ell>\ell_{\mathrm{hf}}$ the direction $c=0$ is used.
- For levels $\ell<\ell_{\mathrm{hf}}$ choose set $\left\{c_{j}^{(\ell)}\right\}$ of $6 \cdot 4^{\ell_{\mathrm{hf}}-\ell}$ directions:

Construction of directions

- Choose the first high frequency level ℓ_{hf} and 6 initial directions.
- For levels $\ell>\ell_{\mathrm{hf}}$ the direction $c=0$ is used.
- For levels $\ell<\ell_{\mathrm{hf}}$ choose set $\left\{c_{j}^{(\ell)}\right\}$ of $6 \cdot 4^{\ell_{\mathrm{hf}}-\ell}$ directions:

Construction of directions

- Choose the first high frequency level ℓ_{hf} and 6 initial directions.
- For levels $\ell>\ell_{\mathrm{hf}}$ the direction $c=0$ is used.
- For levels $\ell<\ell_{\mathrm{hf}}$ choose set $\left\{c_{j}^{(\ell)}\right\}$ of $6 \cdot 4^{\ell_{\mathrm{hf}}-\ell}$ directions:

Construction of directions

- Choose the first high frequency level ℓ_{hf} and 6 initial directions.
- For levels $\ell>\ell_{\mathrm{hf}}$ the direction $c=0$ is used.
- For levels $\ell<\ell_{\mathrm{hf}}$ choose set $\left\{c_{j}^{(\ell)}\right\}$ of $6 \cdot 4^{\ell_{\mathrm{hf}}-\ell}$ directions:

(A3) holds for η_{1} depending linearly on $\kappa q_{\ell_{\mathrm{hf}}}$ Here: $q_{\ell_{\mathrm{hf}}}$ diameter of boxes at level ℓ_{hf}.

Fast directional matrix-vector multiplication

Basic idea:
Matrix partitioning (via clustering of the domain)
Approximation of admissible subblocks ($A_{X Y} \approx L_{X, c} A_{c, X, Y} L_{Y, c}^{*}$)

Fast directional matrix-vector multiplication

Basic idea:
Matrix partitioning (via clustering of the domain)
Approximation of admissible subblocks $\left(A_{X Y} \approx L_{X, c} A_{c, X, Y} L_{Y, c}^{*}\right)$
For higher efficiency:

- Nested approximation of matrices $L_{X, c}$ for large boxes X. (Directional \mathcal{H}^{2}-matrix)

Fast directional matrix-vector multiplication

Basic idea:
Matrix partitioning (via clustering of the domain)
Approximation of admissible subblocks $\left(A_{X Y} \approx L_{X, c} A_{c, X, Y} L_{Y, c}^{*}\right)$
For higher efficiency:

- Nested approximation of matrices $L_{X, c}$ for large boxes X. (Directional \mathcal{H}^{2}-matrix)

Complexity of order $N \log (N)$ under reasonable assumptions on the set of points $\left\{x_{j}\right\}_{j=1}^{N}$ and the wavenumber κ.
[Messner et al., 2012, Börm, 2017]

Outline

1. Motivation

2. Fast Directional Matrix-Vector Multiplications

3. Numerical Examples - Parameter Study
4. Conclusion

Choice of parameters

Effective runtime and accuracy depend on the choice of η_{2}

Admissibility criteria controlling box distances

$$
\begin{aligned}
\max \{\operatorname{diam}(X), \operatorname{diam}(Y)\} & \leq \eta_{2} \operatorname{dist}(X, Y) \\
\kappa(\max \{\operatorname{diam}(X), \operatorname{diam}(Y)\})^{2} & \leq \eta_{2} \operatorname{dist}(X, Y)
\end{aligned}
$$

Choice of parameters

Effective runtime and accuracy depend on the choice of η_{2} and $\ell_{\text {hf }}$ (first high frequency level).

Admissibility criterion controlling the box direction

$$
\begin{equation*}
\kappa\left|\frac{m_{X}-m_{Y}}{\left|m_{X}-m_{Y}\right|}-c\right| \leq \frac{\eta_{1}}{\max \{\operatorname{diam}(X), \operatorname{diam}(Y)\}}, \tag{A3}
\end{equation*}
$$

where η_{1} depends on $\kappa q_{\ell_{\mathrm{hf}}}$

Choice of parameters

Effective runtime and accuracy depend on the choice of η_{2} and $\ell_{\text {hf }}$ (first high frequency level).

Small $\eta_{2} \rightarrow$ low approximation errors but high runtimes.

Choice of parameters

Effective runtime and accuracy depend on the choice of η_{2} and $\ell_{\text {hf }}$ (first high frequency level).

Small $\eta_{2} \rightarrow$ low approximation errors but high runtimes.
Small $\ell_{\mathrm{hf}} \rightarrow$ low runtimes but high approximation errors

Choice of parameters

Effective runtime and accuracy depend on the choice of η_{2} and $\ell_{\text {hf }}$ (first high frequency level).

Small $\eta_{2} \rightarrow$ low approximation errors but high runtimes.
Small $\ell_{\text {hf }} \rightarrow$ low runtimes but high approximation errors
Suitable choice of parameters is determined in parameter study

Test setting

Place $N=829176$ points $\left\{x_{j}\right\}_{j=1}^{N}$ on surface of cube $[-1,1]^{3}$.

Test setting

Place $N=829176$ points $\left\{x_{j}\right\}_{j=1}^{N}$ on surface of cube $[-1,1]^{3}$.
For $\kappa=25.12$ consider the matrix

$$
A[j, k]= \begin{cases}\frac{\exp \left(i k\left|x_{j}-x_{k}\right|\right)}{4 \pi\left|x_{j}-x_{k}\right|}, & j \neq k, \\ 0, & j=k\end{cases}
$$

Test setting

Place $N=829176$ points $\left\{x_{j}\right\}_{j=1}^{N}$ on surface of cube $[-1,1]^{3}$.
For $\kappa=25.12$ consider the matrix

$$
A[j, k]= \begin{cases}\frac{\exp \left(i k\left|x_{j}-x_{k}\right|\right)}{4 \pi\left|x_{j}-x_{k}\right|}, & j \neq k, \\ 0, & j=k,\end{cases}
$$

Choose vector $v \in \mathbb{C}^{N}$ (randomly) and compute $g=A v$:

- directly ($g_{\text {exct }}$)
- approximately ($g_{\text {aprx }}$) with the fast directional matrix-vector multiplication.

The Choice of η_{2}

Execution times for varying η_{2} (first high frequency level $\ell_{\text {hf }}=4$, interpolation degree $m=3$)

η_{2}	1	4	5	10
total time [s]	1487.33	262.37	110.38	104.86
nearfield evaluation [s]	1426.76	244.22	95.72	95.54
farfield evaluation [s]	23.38	6.80	5.49	3.14

The Choice of η_{2}

Execution times for varying η_{2} (first high frequency level $\ell_{\text {hf }}=4$, interpolation degree $m=3$)

η_{2}	1	4	5	10
total time [s]	1487.33	262.37	110.38	104.86
nearfield evaluation [s]	1426.76	244.22	95.72	95.54
farfield evaluation [s]	23.38	6.80	5.49	3.14

The Choice of η_{2}

Execution times for varying η_{2} (first high frequency level $\ell_{\text {hf }}=4$, interpolation degree $m=3$)

η_{2}	1	4	5	10
total time [s]	1487.33	262.37	110.38	104.86
nearfield evaluation [s]	1426.76	244.22	95.72	95.54
farfield evaluation [s]	23.38	6.80	5.49	3.14

Minimizing the nearfield evaluations crucial.

The Choice of η_{2}

Execution times for varying η_{2} (first high frequency level $\ell_{\text {hf }}=4$, interpolation degree $m=3$)

η_{2}	1	4	5	10
total time [s]	1487.33	262.37	110.38	104.86
nearfield evaluation [s]	1426.76	244.22	95.72	95.54
farfield evaluation [s]	23.38	6.80	5.49	3.14

Minimizing the nearfield evaluations crucial.
The choice $\eta_{2} \geq \sqrt{3} \max \left\{1, \kappa q_{\ell_{\mathrm{hf}}+1}\right\}$ minimizes the nearfield evaluations for levels $>\ell_{\mathrm{hf}}$.
($q_{\ell_{\mathrm{hf}}+1}$ diameter of boxes at level $\ell_{\mathrm{hf}}+1$)

The choice of η_{2}

Relative errors $\left\|g_{\text {aprx }}-g_{\text {exct }}\right\|_{2} /\left\|g_{\text {exct }}\right\|_{2}$ for varying $\eta_{2}\left(\ell_{\text {hf }}=4\right)$

The choice of the first high frequency level ℓ_{hf}

Farfield computation times and relative errors for varying ℓ_{hf}, $\eta_{2}=5$ and appropriate interpolation degrees m

The choice of the first high frequency level ℓ_{hf}

This result can be expressed in terms of the characteristic length $\kappa q_{\ell_{\mathrm{hf}}+1}$ for general problems:

The choice of the first high frequency level ℓ_{hf}

This result can be expressed in terms of the characteristic length $\kappa q_{\ell_{\mathrm{hf}}+1}$ for general problems:

Require that the boxes at the low frequency level $\ell_{\mathrm{hf}}+1$ have a certain diameter, i.e.

$$
\kappa q_{\ell_{\mathrm{hf}}+1} \in(C, 2 C]
$$

The choice of the first high frequency level ℓ_{hf}

This result can be expressed in terms of the characteristic length $\kappa q_{\ell_{\mathrm{hf}}+1}$ for general problems:

Require that the boxes at the low frequency level $\ell_{\mathrm{hf}}+1$ have a certain diameter, i.e.

$$
\kappa q_{\ell_{\mathrm{hf}}+1} \in(C, 2 C]
$$

The choice $C=1.36$ was determined in the parameter study.

Outline

1. Motivation

2. Fast Directional Matrix-Vector Multiplications

3. Numerical Examples - Parameter Study

4. Conclusion

Conclusion and outlook

Presented Results:

- Overview (and analysis) of a fast directional matrix-vector multiplication
- Parameter study for the choice of parameters η_{2} and ℓ_{hf} \Rightarrow Parameter selection strategy

Conclusion and outlook

Presented Results:

- Overview (and analysis) of a fast directional matrix-vector multiplication
- Parameter study for the choice of parameters η_{2} and $\ell_{\text {hf }}$ \Rightarrow Parameter selection strategy

Outlook:

- Further validation of the parameter selection strategy is required
[W (2019), A directional approximation of the Helmholtz kernel and its application to fast matrix-vector multiplications. MA thesis. TU Graz.]

Thank you for your attention!

[Bebendorf et al., 2015] Bebendorf, M., Kuske, C., and Venn, R. (2015). Wideband nested cross approximation for Helmholtz problems.
Numer. Math., 130(1):1-34.
[Börm, 2017] Börm, S. (2017).
Directional \mathcal{H}^{2}-matrix compression for high-frequency problems.
Numer. Linear. Algebra. Appl., 24(6):e2112.
[Börm and Börst, 2018] Börm, S. and Börst, C. (2018).
Hybrid matrix compression for high-frequency problems.
Preprint, arXiv:1809.04384.
[Börm and Melenk, 2017] Börm, S. and Melenk, J. M. (2017).
Approximation of the high-frequency Helmholtz kernel by nested directional interpolation: error analysis.
Numer. Math., 137(1):1-34.
[Brandt, 1991] Brandt, A. (1991).
Multilevel computations of integral transforms and particle interactions with oscillatory kernels.
Comput. Phys. Commun., 65(1):24-38.
[Engquist and Ying, 2007] Engquist, B. and Ying, L. (2007).
Fast directional multilevel algorithms for oscillatory kernels.
SIAM J. Sci. Comput, 29(4):1710-1737.
[Messner, 2012] Messner, M. (2012).
Fast Boundary Element Methods in Acoustics.
Number 13 in Monographic Series TU Graz / Computation in Engineering and Science. Verlag der Technischen Universität Graz.
[Messner et al., 2012] Messner, M., Schanz, M., and Darve, E. (2012).
Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation.
J. Comput. Phys., 231(4):1175-1196.

Raphael Watschinger and Günther Of, Institute of Applied Mathematics

AANMPDE12, July 32019

