㸚 University of Amsterdam

Operator Preconditioning

Uniform preconditioners for problems of negative order

Raymond van Venetië, joint work with Rob Stevenson
July 3, 2019
Korteweg-de Vries Institute for Mathematics

Contents

- Introduction
- Optimal preconditioners for negative order problems
- Numerical results
- Generalizations
- Conclusion

Introduction: preconditioning BEM

- Boundary Element Method (BEM)
- Single Layer operator (bounded \& coercive)
$A: H^{-1 / 2}(\Omega) \rightarrow H^{1 / 2}(\Omega)$
- Galerkin matrix $\boldsymbol{A}_{\mathcal{T}}$ for piecewise constants V_{T}
- Solve $\boldsymbol{A}_{\tau} x=y$ using Conjugate Gradients
- Condition number $\kappa\left(\boldsymbol{A}_{T}\right)=\mathcal{O}\left(h^{-1}\right)$

Number of CG iterations grows to ∞ as $h \downarrow 0$
Solution: consider a preconditioned' system $G_{T} A_{T} x=G_{T} y$
Problem
How to construct the preconditioner $\boldsymbol{G}_{\mathcal{T}}\left(\approx \boldsymbol{A}_{\mathcal{T}}^{-1}\right)$, such that

$$
\kappa\left(G_{T} A_{T}\right)=\mathcal{O}(1) \quad \text { for all meshes } \mathcal{T}
$$

Introduction: preconditioning BEM

- Boundary Element Method (BEM)
- Single Layer operator (bounded \& coercive):

$$
A: H^{-1 / 2}(\Omega) \rightarrow H^{1 / 2}(\Omega)
$$

- Galerkin matrix $\boldsymbol{A}_{\mathcal{T}}$ for piecewise constants V_{T}
- Solve $\boldsymbol{A}_{\mathcal{T}} x=y$ using Conjugate Gradients
- Condition number $\kappa\left(A_{T}\right)=\mathcal{O}\left(h^{-1}\right)$
\Longrightarrow Number of CG iterations grows to ∞ as $h \downarrow 0$
Solution: consider a preconditioned system $\boldsymbol{G} \boldsymbol{\wedge} \boldsymbol{x}-G_{T} y$
Problem
How to construct the preconditioner $\boldsymbol{G}_{\mathcal{T}}\left(\approx \boldsymbol{A}_{\mathcal{T}}^{-1}\right)$, such that

$$
\kappa\left(G_{T} A_{\tau}\right)=\mathcal{O}(1) \quad \text { for all meshes } \mathcal{T}
$$

Introduction: preconditioning BEM

- Boundary Element Method (BEM)
- Single Layer operator (bounded \& coercive):

$$
A: H^{-1 / 2}(\Omega) \rightarrow H^{1 / 2}(\Omega)
$$

- Galerkin matrix $\boldsymbol{A}_{\mathcal{T}}$ for piecewise constants $V_{\mathcal{T}}$
- Solve $\boldsymbol{A}_{\tau} x=y$ using Conjugate Gradients
- Condition number $\kappa\left(\boldsymbol{A}_{T}\right)=\mathcal{O}\left(h^{-1}\right)$
\Longrightarrow Number of CG iterations grows to ∞ as $h \downarrow 0$
Solution: consider a preconditioned system $G_{T} \wedge_{T} \boldsymbol{x}-G_{T} y$
Problem
How to construct the preconditioner $\boldsymbol{G}_{\mathcal{T}}\left(\approx \boldsymbol{A}_{\mathcal{T}}^{-1}\right)$, such that

$$
k\left(G_{T} A_{T}\right)=O(1) \text { for all meshes } T
$$

Introduction: preconditioning BEM

- Boundary Element Method (BEM)
- Single Layer operator (bounded \& coercive):

$$
A: H^{-1 / 2}(\Omega) \rightarrow H^{1 / 2}(\Omega)
$$

- Galerkin matrix $\boldsymbol{A}_{\mathcal{T}}$ for piecewise constants $V_{\mathcal{T}}$
- Solve $\boldsymbol{A}_{\tau} x=y$ using Conjugate Gradients
- Condition number $\kappa\left(\boldsymbol{A}_{\tau}\right)=\mathcal{O}\left(h^{-1}\right)$
\Longrightarrow Number of CG iterations grows to ∞ as $h \downarrow 0$
Solution: consider a preconditioned system $G_{T} A_{T} x=G_{T} y$
Problem
How to construct the preconditioner $G_{T}\left(\approx A^{-1}\right)$, such that

$$
\kappa\left(\boldsymbol{G}_{\tau} \boldsymbol{A}_{\tau}\right)=\mathcal{O}(1) \quad \text { for all meshes } \mathcal{T}
$$

Introduction: preconditioning BEM

- Boundary Element Method (BEM)
- Single Layer operator (bounded \& coercive):

$$
A: H^{-1 / 2}(\Omega) \rightarrow H^{1 / 2}(\Omega)
$$

- Galerkin matrix $\boldsymbol{A}_{\mathcal{T}}$ for piecewise constants $V_{\mathcal{T}}$
- Solve $\boldsymbol{A}_{\tau} x=y$ using Conjugate Gradients
- Condition number $\kappa\left(\boldsymbol{A}_{\tau}\right)=\mathcal{O}\left(h^{-1}\right)$
\Longrightarrow Number of CG iterations grows to ∞ as $h \downarrow 0$
Solution: consider a preconditioned system $\boldsymbol{G}_{\tau} \boldsymbol{A}_{\tau} x=\boldsymbol{G}_{\tau} y$

Problem

How to construct the preconditioner $\boldsymbol{G}_{\mathcal{T}}\left(\approx \boldsymbol{A}_{\mathcal{T}}^{-1}\right)$, such that

$$
\kappa\left(\boldsymbol{G}_{\tau} \boldsymbol{A}_{\tau}\right)=\mathcal{O}(1) \quad \text { for all meshes } \mathcal{T}
$$

Introduction: operator preconditioning

On a continuous level we find

- Single Layer operator $A: H^{-1 / 2} \rightarrow H^{1 / 2}$
- Hypersingular operator $B: H^{1 / 2} \rightarrow H^{-}$
- Combined

This suggests that B can serve as a preconditioner, informally

- Suppose we have a basis for $H^{-1 / 2}$
- Inducing a bijection $T: \mathbb{R}^{\infty} \rightarrow H^{-1 / 2}$
- Matrix representation is $B A=T^{-1} B A T$
- For $\rho(\cdot)$ the spectral radius:
$\left.h^{(B A)}=\rho^{(B A)} \rho^{((B A)}{ }^{-1}\right)=\rho(B A) \rho\left((B A)^{-1}\right) \leq\|A B\| \|(B A)^{-1} \mid$
$B A$ is well-conditioned!

Introduction: operator preconditioning

On a continuous level we find

- Single Layer operator $A: H^{-1 / 2} \rightarrow H^{1 / 2}$
- Hypersingular operator $B: H^{1 / 2} \rightarrow H^{-1 / 2}$
- Combined $\quad B A: H^{-1 / 2} \rightarrow H^{-1 / 2}$

This suggests that B can serve as a preconditioner, informally:

- Suppose we have a basis for $H^{-1 / 2}$
- Inducing a bijection $T: \mathbb{R}^{\infty} \rightarrow H^{-1 / 2}$
- Matrix representation is $B A=T^{-1} B A T$
- For $\rho(\cdot)$ the spectral radius:
$\left.\left.(B A)=p^{(B A)} p^{((B A)}\right)^{-1}\right)=\rho(B A) p\left((B A)^{-1}\right) \leq\|A B\|(B A)^{-1} \|$
$B A$ is well-conditioned!

Introduction: operator preconditioning

On a continuous level we find

- Single Layer operator $A: H^{-1 / 2} \rightarrow H^{1 / 2}$
- Hypersingular operator $B: H^{1 / 2} \rightarrow H^{-1 / 2}$
- Combined $\quad B A: H^{-1 / 2} \rightarrow H^{-1 / 2}$

This suggests that B can serve as a preconditioner, informally:

- Suppose we have a basis for $H^{-1 / 2}$
- Inducing a bijection $T: \mathbb{R}^{\infty} \rightarrow H^{-1 / 2}$
- Matrix representation is $\boldsymbol{B A}=T^{-1} B A T$
- For $\rho(\cdot)$ the spectral radius:
$\kappa(\boldsymbol{B A})=\rho(\boldsymbol{B A}) \rho\left((\boldsymbol{B A})^{-1}\right)=\rho(B A) \rho\left((B A)^{-1}\right) \leq\|A B\|\left\|(B A)^{-1}\right\|$
$\Longrightarrow B A$ is well-conditioned!

Introduction: operator preconditioning

On a continuous level we find

- Single Layer operator $A: H^{-1 / 2} \rightarrow H^{1 / 2}$
- Hypersingular operator $B: H^{1 / 2} \rightarrow H^{-1 / 2}$
- Combined $\quad B A: H^{-1 / 2} \rightarrow H^{-1 / 2}$

This suggests that B can serve as a preconditioner, informally:

- Suppose we have a basis for $H^{-1 / 2}$
- Inducing a bijection $T: \mathbb{R}^{\infty} \rightarrow H^{-1 / 2}$
- Matrix representation is $\boldsymbol{B A}=T^{-1} B A T$
- For $\rho(\cdot)$ the spectral radius:

$$
\kappa(\boldsymbol{B A})=\rho(\boldsymbol{B A}) \rho\left((\boldsymbol{B A})^{-1}\right)=\rho(B A) \rho\left((B A)^{-1}\right) \leq\|A B\|\left\|(B A)^{-1}\right\|
$$

$\Longrightarrow B A$ is well-conditioned!

Introduction: operator preconditioning

On a continuous level we find

- Single Layer operator $A: H^{-1 / 2} \rightarrow H^{1 / 2}$
- Hypersingular operator $B: H^{1 / 2} \rightarrow H^{-1 / 2}$
- Combined $\quad B A: H^{-1 / 2} \rightarrow H^{-1 / 2}$

This suggests that B can serve as a preconditioner, informally:

- Suppose we have a basis for $H^{-1 / 2}$
- Inducing a bijection $T: \mathbb{R}^{\infty} \rightarrow H^{-1 / 2}$
- Matrix representation is $\boldsymbol{B A}=T^{-1} B A T$
- For $\rho(\cdot)$ the spectral radius:

$$
\kappa(\boldsymbol{B A})=\rho(\boldsymbol{B A}) \rho\left((\boldsymbol{B A})^{-1}\right)=\rho(B A) \rho\left((B A)^{-1}\right) \leq\|A B\|\left\|(B A)^{-1}\right\|
$$

$\Longrightarrow B A$ is well-conditioned!

Operator preconditioning

Discretized we have

- Piecewise constants $V_{\mathcal{T}}=\operatorname{span} \bar{\Xi}_{\tau} \subset H^{-1 / 2}$, with basis $\xi_{T}:=\mathbb{1}_{T}$
- Single Layer operator $A_{\tau}: V_{\mathcal{T}} \rightarrow V_{\tau}^{\prime}$, with $\boldsymbol{A}_{\tau}:=\left(A \Xi_{\tau}\right)\left(\Xi_{\tau}\right)$
- Family \mathbb{T} of triangulations of Ω

Operator preconditioning (Steinbach \& Wendland [SW98], Hiptmair [Hip06]):

- Given a suitable 'dual' space $W_{T}=\operatorname{span} \psi_{\tau} \subset H^{1 / 2}$
- Boundedly invertible $B_{\tau}: W_{\tau} \rightarrow W_{\tau}^{\prime}$ (e.g. Hypersingular)
- $L_{2}(\Omega)$-duality pairing $D_{\tau}: V_{\tau} \rightarrow W_{\tau}^{\prime}$

For matrices $\boldsymbol{B}_{\tau}:=\left(B \Psi_{\tau}\right)\left(\Psi_{\tau}\right), D_{\tau}:=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$

Operator preconditioning

Discretized we have

- Piecewise constants $V_{\mathcal{T}}=$ span $\bar{\Xi}_{\mathcal{T}} \subset H^{-1 / 2}$, with basis $\xi_{T}:=\mathbb{1}_{T}$
- Single Layer operator $A_{\mathcal{T}}: V_{\mathcal{T}} \rightarrow V_{\tau}^{\prime}$, with $\boldsymbol{A}_{\tau}:=\left(A \Xi_{\tau}\right)\left(\Xi_{\tau}\right)$
- Family \mathbb{T} of triangulations of Ω

Operator preconditioning (Steinbach \& Wendland [SW98], Hiptmair [Hip06]):

- Given a suitable 'dual' space $W_{\tau}=\operatorname{span} \Psi_{\tau} \subset H^{1 / 2}$
- Boundedly invertible $B_{\tau}: W_{\tau} \rightarrow W_{\tau}^{\prime}$ (e.g. Hypersingular)
- $L_{2}(\Omega)$-duality pairing $D_{\tau}: V_{\tau} \rightarrow W_{\tau}^{\prime}$

For matrices $\boldsymbol{B}_{\tau}:=\left(B \Psi_{\tau}\right)\left(\Psi_{\tau}\right), D_{\tau}:=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$

Operator preconditioning

Discretized we have

- Piecewise constants $V_{\mathcal{T}}=$ span $\bar{\Xi}_{\mathcal{T}} \subset H^{-1 / 2}$, with basis $\xi_{T}:=\mathbb{1}_{T}$
- Single Layer operator $A_{\mathcal{T}}: V_{\mathcal{T}} \rightarrow V_{\tau}^{\prime}$, with $\boldsymbol{A}_{\mathcal{T}}:=\left(A \Xi_{\tau}\right)\left(\Xi_{\tau}\right)$
- Family \mathbb{T} of triangulations of Ω

Operator preconditioning (Steinbach \& Wendland [SW98], Hiptmair [Hip06]):

- Given a suitable 'dual' space $W_{\mathcal{T}}=\operatorname{span} \Psi_{\mathcal{T}} \subset H^{1 / 2}$
- Boundedly invertible $B_{\tau}: W_{\tau} \rightarrow W_{\tau}^{\prime}$ (e.g. Hypersingular)
- $L_{2}(\Omega)$-duality pairing $D_{\tau}: V_{\tau} \rightarrow W_{\tau}^{\prime}$

For matrices $B:-($ Bur $\left.)\left(\|_{s}\right), \boldsymbol{D}:=\boldsymbol{A} \psi_{T}\right)_{L_{2}}$

Operator preconditioning

Discretized we have

- Piecewise constants $V_{\mathcal{T}}=\operatorname{span} \bar{\Xi}_{\tau} \subset H^{-1 / 2}$, with basis $\xi_{T}:=\mathbb{1}_{T}$
- Single Layer operator $A_{\mathcal{T}}: V_{\tau} \rightarrow V_{\tau}^{\prime}$, with $\boldsymbol{A}_{\mathcal{T}}:=\left(A \bar{\Xi}_{\tau}\right)\left(\bar{\Xi}_{\tau}\right)$
- Family \mathbb{T} of triangulations of Ω

Operator preconditioning (Steinbach \& Wendland [SW98], Hiptmair [Hip06]):

- Given a suitable 'dual' space $W_{\mathcal{T}}=\operatorname{span} \Psi_{\mathcal{T}} \subset H^{1 / 2}$
- Boundedly invertible $B_{\mathcal{\tau}}: W_{\mathcal{T}} \rightarrow W_{\mathcal{T}}^{\prime}$ (e.g. Hypersingular)
- $L_{2}(\Omega)$-duality pairing $D_{\mathcal{T}}: V_{\mathcal{T}} \rightarrow W_{\mathcal{T}}^{\prime}$

For matrices $\boldsymbol{B}_{\tau}:=\left(B \Psi_{\tau}\right)\left(\Psi_{\tau}\right), \boldsymbol{D}_{\tau}:=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$ Preconditioner: $\quad \boldsymbol{D}_{\tau}^{-1} \boldsymbol{B}_{\tau} \boldsymbol{D}_{\tau}^{-}$

Operator preconditioning

Discretized we have

- Piecewise constants $V_{\mathcal{T}}=\operatorname{span} \bar{\Xi}_{\tau} \subset H^{-1 / 2}$, with basis $\xi_{T}:=\mathbb{1}_{T}$
- Single Layer operator $A_{\mathcal{T}}: V_{\mathcal{T}} \rightarrow V_{\tau}^{\prime}$, with $\boldsymbol{A}_{\mathcal{T}}:=\left(A \Xi_{\tau}\right)\left(\Xi_{\tau}\right)$
- Family \mathbb{T} of triangulations of Ω

Operator preconditioning (Steinbach \& Wendland [SW98], Hiptmair [Hip06]):

- Given a suitable 'dual' space $W_{\mathcal{T}}=\operatorname{span} \Psi_{\mathcal{T}} \subset H^{1 / 2}$
- Boundedly invertible $B_{\mathcal{\tau}}: W_{\mathcal{T}} \rightarrow W_{\mathcal{T}}^{\prime}$ (e.g. Hypersingular)
- $L_{2}(\Omega)$-duality pairing $D_{\mathcal{T}}: V_{\mathcal{T}} \rightarrow W_{\mathcal{T}}^{\prime}$

For matrices $\boldsymbol{B}_{\mathcal{T}}:=\left(B \Psi_{\tau}\right)\left(\Psi_{\tau}\right), \boldsymbol{D}_{\mathcal{T}}:=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$
Preconditioner: $\quad \boldsymbol{D}_{\mathcal{T}}^{-1} \boldsymbol{B}_{\mathcal{T}} \boldsymbol{D}_{\mathcal{T}}{ }^{-\top}$

Operator preconditioning

Reminder: $\boldsymbol{A}_{\mathcal{T}}:=\left(A \Xi_{\mathcal{T}}\right)\left(\Xi_{\mathcal{T}}\right), \boldsymbol{B}_{\mathcal{T}}:=\left(B \Psi_{\mathcal{T}}\right)\left(\Psi_{\mathcal{T}}\right), \boldsymbol{D}_{\mathcal{T}}:=\left\langle\Xi_{\mathcal{T}}, \Psi_{\mathcal{T}}\right\rangle_{L_{2}}$

Theorem

If the 'dual' spaces $W_{\mathcal{T}}=\operatorname{span} \Psi_{\mathcal{T}}$ satisfy

$$
\begin{equation*}
\operatorname{dim} W_{\mathcal{T}}=\operatorname{dim} V_{\mathcal{T}}, \quad \inf _{\mathcal{T} \in \mathbb{T}} \inf _{v \in V_{\mathcal{T}}} \sup _{w \in W_{\mathcal{T}}} \frac{\langle v, w\rangle_{L_{2}}}{\|v\|_{H^{-1 / 2}}\|w\|_{H^{1 / 2}}}>0 \tag{1}
\end{equation*}
$$

then the preconditioner yields a uniformly bounded condition number:

$$
\kappa\left(\boldsymbol{D}_{\tau}^{-1} \boldsymbol{B}_{\tau} \boldsymbol{D}_{\tau}^{-\top} \boldsymbol{A}_{\tau}\right)=O(1) \quad(\mathcal{T} \in \mathbb{T})
$$

Finding 'dual' spaces W_{τ} that satisfy (1) is difficult.

Buffa \& Christiansen [BCO7] constructed W_{T}, however

- Matrix $\boldsymbol{D}_{\mathcal{T}}$ is not diagonal: inverse has to be approximated (costly)
- U constructed as cont nw lin on harycentric refined mesh (costly)
- A graded mesh assumption is necessary to prove inf-sup (1)

Operator preconditioning

Reminder: $\boldsymbol{A}_{\mathcal{T}}:=\left(A \Xi_{\mathcal{T}}\right)\left(\Xi_{\mathcal{T}}\right), \boldsymbol{B}_{\mathcal{T}}:=\left(B \Psi_{\mathcal{T}}\right)\left(\Psi_{\mathcal{T}}\right), \boldsymbol{D}_{\mathcal{T}}:=\left\langle\Xi_{\mathcal{T}}, \Psi_{\mathcal{T}}\right\rangle_{L_{2}}$

Theorem

If the 'dual' spaces $W_{\mathcal{T}}=\operatorname{span} \Psi_{\mathcal{T}}$ satisfy

$$
\begin{equation*}
\operatorname{dim} W_{\mathcal{T}}=\operatorname{dim} V_{\mathcal{T}}, \quad \inf _{\mathcal{T} \in \mathbb{T}} \inf _{v \in V_{\mathcal{T}}} \sup _{w \in W_{\mathcal{T}}} \frac{\langle v, w\rangle_{L_{2}}}{\|v\|_{H^{-1 / 2}}\|w\|_{H^{1 / 2}}}>0 \tag{1}
\end{equation*}
$$

then the preconditioner yields a uniformly bounded condition number:

$$
\kappa\left(\boldsymbol{D}_{\mathcal{T}}^{-1} \boldsymbol{B}_{\mathcal{T}} \boldsymbol{D}_{\mathcal{T}}^{-\top} \boldsymbol{A}_{\mathcal{T}}\right)=O(1) \quad(\mathcal{T} \in \mathbb{T})
$$

Finding 'dual' spaces $W_{\mathcal{T}}$ that satisfy (1) is difficult.
Buffa \& Christiansen $[\mathrm{BC} 07]$ constructed $W_{\mathcal{T}}$, however:

- Matrix D_{T} is not diagonal: inverse has to be approximated (costly)
- Ψ_{T} constructed as cont. pw. lin. on barycentric refined mesh (costly)
- A graded mesh assumntion is necessary to nrove inf-sun (1)

Operator preconditioning

Reminder: $\boldsymbol{A}_{\mathcal{T}}:=\left(A \Xi_{\mathcal{T}}\right)\left(\Xi_{\mathcal{T}}\right), \boldsymbol{B}_{\mathcal{T}}:=\left(B \Psi_{\mathcal{T}}\right)\left(\Psi_{\mathcal{T}}\right), \boldsymbol{D}_{\mathcal{T}}:=\left\langle\Xi_{\mathcal{T}}, \Psi_{\mathcal{T}}\right\rangle_{L_{2}}$

Theorem

If the 'dual' spaces $W_{\mathcal{T}}=\operatorname{span} \Psi_{\mathcal{T}}$ satisfy

$$
\begin{equation*}
\operatorname{dim} W_{\mathcal{T}}=\operatorname{dim} V_{\mathcal{T}}, \quad \inf _{\mathcal{T} \in \mathbb{T}} \inf _{v \in V_{\mathcal{T}}} \sup _{w \in W_{\mathcal{T}}} \frac{\langle v, w\rangle_{L_{2}}}{\|v\|_{H^{-1 / 2}}\|w\|_{H^{1 / 2}}}>0 \tag{1}
\end{equation*}
$$

then the preconditioner yields a uniformly bounded condition number:

$$
\kappa\left(\boldsymbol{D}_{\mathcal{T}}^{-1} \boldsymbol{B}_{\mathcal{T}} \boldsymbol{D}_{\mathcal{T}}^{-\top} \boldsymbol{A}_{\mathcal{T}}\right)=O(1) \quad(\mathcal{T} \in \mathbb{T})
$$

Finding 'dual' spaces $W_{\mathcal{T}}$ that satisfy (1) is difficult.
Buffa \& Christiansen $[\mathrm{BC} 07]$ constructed $W_{\mathcal{T}}$, however:

- Matrix $\boldsymbol{D}_{\mathcal{T}}$ is not diagonal: inverse has to be approximated (costly)
- Ψ_{τ} constructed as cont. pw. lin. on barycentric refined mesh (costly)
- A graded mesh assumption is necessary to prove inf-sup (1)

Operator preconditioning

Reminder: $\boldsymbol{A}_{\mathcal{T}}:=\left(A \Xi_{\mathcal{T}}\right)\left(\Xi_{\mathcal{T}}\right), \boldsymbol{B}_{\mathcal{T}}:=\left(B \Psi_{\mathcal{T}}\right)\left(\Psi_{\mathcal{T}}\right), \boldsymbol{D}_{\mathcal{T}}:=\left\langle\Xi_{\mathcal{T}}, \Psi_{\mathcal{T}}\right\rangle_{L_{2}}$

Theorem

If the 'dual' spaces $W_{\mathcal{T}}=\operatorname{span} \Psi_{\mathcal{T}}$ satisfy

$$
\begin{equation*}
\operatorname{dim} W_{\mathcal{T}}=\operatorname{dim} V_{\mathcal{T}}, \quad \inf _{\mathcal{T} \in \mathbb{T}} \inf _{v \in V_{\mathcal{T}}} \sup _{w \in W_{\mathcal{T}}} \frac{\langle v, w\rangle_{L_{2}}}{\|v\|_{H^{-1 / 2}}\|w\|_{H^{1 / 2}}}>0 \tag{1}
\end{equation*}
$$

then the preconditioner yields a uniformly bounded condition number:

$$
\kappa\left(\boldsymbol{D}_{\mathcal{T}}^{-1} \boldsymbol{B}_{\mathcal{T}} \boldsymbol{D}_{\mathcal{T}}^{-\top} \boldsymbol{A}_{\mathcal{T}}\right)=O(1) \quad(\mathcal{T} \in \mathbb{T})
$$

Finding 'dual' spaces $W_{\mathcal{T}}$ that satisfy (1) is difficult.
Buffa \& Christiansen $[\mathrm{BC} 07]$ constructed $W_{\mathcal{T}}$, however:

- Matrix $\boldsymbol{D}_{\mathcal{T}}$ is not diagonal: inverse has to be approximated (costly)
- $\Psi_{\mathcal{T}}$ constructed as cont. pw. lin. on barycentric refined mesh (costly)

Operator preconditioning

Reminder: $\boldsymbol{A}_{\mathcal{T}}:=\left(A \Xi_{\mathcal{T}}\right)\left(\Xi_{\mathcal{T}}\right), \boldsymbol{B}_{\mathcal{T}}:=\left(B \Psi_{\mathcal{T}}\right)\left(\Psi_{\mathcal{T}}\right), \boldsymbol{D}_{\mathcal{T}}:=\left\langle\Xi_{\mathcal{T}}, \Psi_{\mathcal{T}}\right\rangle_{L_{2}}$

Theorem

If the 'dual' spaces $W_{\mathcal{T}}=\operatorname{span} \Psi_{\mathcal{T}}$ satisfy

$$
\begin{equation*}
\operatorname{dim} W_{\mathcal{T}}=\operatorname{dim} V_{\mathcal{T}}, \quad \inf _{\mathcal{T} \in \mathbb{T}} \inf _{v \in V_{\mathcal{T}}} \sup _{w \in W_{\mathcal{T}}} \frac{\langle v, w\rangle_{L_{2}}}{\|v\|_{H^{-1 / 2}}\|w\|_{H^{1 / 2}}}>0 \tag{1}
\end{equation*}
$$

then the preconditioner yields a uniformly bounded condition number:

$$
\kappa\left(\boldsymbol{D}_{\mathcal{T}}^{-1} \boldsymbol{B}_{\mathcal{T}} \boldsymbol{D}_{\mathcal{T}}^{-\top} \boldsymbol{A}_{\mathcal{T}}\right)=O(1) \quad(\mathcal{T} \in \mathbb{T})
$$

Finding 'dual' spaces $W_{\mathcal{T}}$ that satisfy (1) is difficult.
Buffa \& Christiansen $[\mathrm{BC} 07]$ constructed $W_{\mathcal{T}}$, however:

- Matrix $\boldsymbol{D}_{\mathcal{T}}$ is not diagonal: inverse has to be approximated (costly)
- $\Psi_{\mathcal{T}}$ constructed as cont. pw. lin. on barycentric refined mesh (costly)
- A graded mesh assumption is necessary to prove inf-sup (1)

Dual mesh approach

Construction Ψ_{τ} on a barycentric refined mesh $[\mathrm{BC} 07]$:

Figure 1: A basis function $\psi_{T} \in W_{\mathcal{T}}$ associated with ξ_{T}. Picture from [BC07].

Our approach [Sv18] for $d=2$

Construct $\Psi_{\mathcal{T}} \subset H^{1 / 2}$ such that $D_{\mathcal{T}}=\left\langle\bar{\Xi}_{\mathcal{T}}, \Psi_{\mathcal{T}}\right\rangle_{L_{2}}$ diagonal.

Our approach [Sv18] for $d=2$

Construct $\Psi_{\mathcal{\tau}} \subset H^{1 / 2}$ such that $\boldsymbol{D}_{\mathcal{T}}=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$ diagonal.

$$
\psi_{T}:=\sum_{v \in N_{T}} d_{v}^{-1} \phi_{\nu}
$$

Hat functions $\phi_{v} \in H^{1}$
Bubbles $\theta_{T} \in H_{0}^{1}(T)$ s.t $\left\langle\theta_{T}, \xi_{T^{\prime}}\right\rangle_{L_{2}}=\delta_{T T^{\prime}}|T|$

Our approach [Sv18] for $d=2$

Construct $\Psi_{\mathcal{\tau}} \subset H^{1 / 2}$ such that $\boldsymbol{D}_{\tau}=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$ diagonal.

$$
\psi_{T}:=\sum_{v \in N_{T}} d_{v}^{-1} \phi_{\nu}+\theta_{T}-\sum_{T^{\prime} \in \mathcal{T}}\left(\frac{1}{3} \sum_{\nu \in N_{T} \cap N_{T^{\prime}}} d_{\nu}^{-1}\right) \theta_{T^{\prime}}
$$

Hat functions $\phi_{v} \in H^{1}$

Bubbles $\theta_{T} \in H_{0}^{1}(T)$ s.t. $\left\langle\theta_{T}, \xi_{T^{\prime}}\right\rangle_{L_{2}}=\delta_{T T^{\prime}}|T|$

Our approach [Sv18] for $d=2$

Construct $\Psi_{\mathcal{\tau}} \subset H^{1 / 2}$ such that $\boldsymbol{D}_{\tau}=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$ diagonal.

$$
\psi_{T}:=\sum_{v \in N_{T}} d_{v}^{-1} \phi_{\nu}+\theta_{T}-\sum_{T^{\prime} \in \mathcal{T}}\left(\frac{1}{3} \sum_{\nu \in N_{T} \cap N_{T^{\prime}}} d_{\nu}^{-1}\right) \theta_{T^{\prime}}
$$

Hat functions $\phi_{v} \in H^{1}$
Bubbles $\theta_{T} \in H_{0}^{1}(T)$ s.t.
$\left\langle\theta_{T}, \xi_{T^{\prime}}\right\rangle_{L_{2}}=\delta_{T T^{\prime}}|T|$

Our approach [Sv18] for $d=2$

Construct $\Psi_{\mathcal{\tau}} \subset H^{1 / 2}$ such that $\boldsymbol{D}_{\tau}=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$ diagonal.

$$
\psi_{T}:=\sum_{v \in N_{T}} d_{v}^{-1} \phi_{\nu}+\theta_{T}-\sum_{T^{\prime} \in \mathcal{T}}\left(\frac{1}{3} \sum_{\nu \in N_{T} \cap N_{T^{\prime}}} d_{\nu}^{-1}\right) \theta_{T^{\prime}}
$$

Hat functions $\phi_{v} \in H^{1}$
Bubbles $\theta_{T} \in H_{0}^{1}(T)$ s.t.
$\left\langle\theta_{T}, \xi_{T^{\prime}}\right\rangle_{L_{2}}=\delta_{T T^{\prime}}|T|$

Our approach [Sv18] for $d=2$

Construct $\Psi_{\mathcal{\tau}} \subset H^{1 / 2}$ such that $\boldsymbol{D}_{\tau}=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$ diagonal.

$$
\psi_{T}:=\sum_{v \in N_{T}} d_{v}^{-1} \phi_{\nu}+\theta_{T}-\sum_{T^{\prime} \in \mathcal{T}}\left(\frac{1}{3} \sum_{\nu \in N_{T} \cap N_{T^{\prime}}} d_{\nu}^{-1}\right) \theta_{T^{\prime}}
$$

Hat functions $\phi_{v} \in H^{1}$
Bubbles $\theta_{T} \in H_{0}^{1}(T)$ s.t.
$\left\langle\theta_{T}, \xi_{T^{\prime}}\right\rangle_{L_{2}}=\delta_{T T^{\prime}}|T|$

Our approach [Sv18] for $d=2$

Construct $\Psi_{\mathcal{T}} \subset H^{1 / 2}$ such that $\boldsymbol{D}_{\tau}=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}$ diagonal.

$$
\psi_{T}:=\sum_{v \in N_{T}} d_{v}^{-1} \phi_{\nu}+\theta_{T}-\sum_{T^{\prime} \in \mathcal{T}}\left(\frac{1}{3} \sum_{\nu \in N_{T} \cap N_{T^{\prime}}} d_{\nu}^{-1}\right) \theta_{T^{\prime}}
$$

Hat functions $\phi_{v} \in H^{1}$
Bubbles $\theta_{T} \in H_{0}^{1}(T)$ s.t.
$\left\langle\theta_{T}, \xi_{T^{\prime}}\right\rangle_{L_{2}}=\delta_{T T^{\prime}}|T|$

Our approach

With hat functions ϕ_{V} and bubbles θ_{T}, we take

$$
\psi_{T}:=\sum_{v \in N_{T}} d_{v}^{-1} \phi_{\nu}+\theta_{T}-\sum_{T^{\prime} \in \mathcal{T}}\left(\frac{1}{d+1} \sum_{\nu \in N_{T} \cap N_{T^{\prime}}} d_{\nu}^{-1}\right) \theta_{T^{\prime}} .
$$

Two important properties:

- $\boldsymbol{D}_{\mathcal{T}}=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}=\operatorname{diag}\{|T|: T \in \mathcal{T}\}$.
- $\sum_{T \in \mathcal{T}} \psi_{T}=\mathbb{1}$

For \mathbb{T} the family of conforming shape-regular triangulations of Ω :

Theorem ([Sv18])

Biorthogonal proj. $P_{\mathcal{T}}$ onto $W_{\mathcal{T}}$, with $\operatorname{ran}\left(\operatorname{Id}-P_{\mathcal{T}}\right) \perp V_{\mathcal{T}}$ is bounded in $\mathrm{H}^{1 / 2}$

$$
\sup _{\mathcal{T} \in \mathbb{T}}\left\|P_{\mathcal{T}}\right\|_{\mathcal{L}\left(H^{1 / 2}, H^{1 / 2}\right)}<\infty .
$$

Corollary
The inf-sup condition (1) holds (V_{T}, W_{T}) (T $\in \mathbb{I}$), without an
additional mesh grading assumption.

Our approach

With hat functions ϕ_{V} and bubbles θ_{T}, we take

$$
\psi_{T}:=\sum_{v \in N_{T}} d_{v}^{-1} \phi_{\nu}+\theta_{T}-\sum_{T^{\prime} \in \mathcal{T}}\left(\frac{1}{d+1} \sum_{\nu \in N_{T} \cap N_{T^{\prime}}} d_{\nu}^{-1}\right) \theta_{T^{\prime}} .
$$

Two important properties:

- $\boldsymbol{D}_{\mathcal{T}}=\left\langle\bar{\Xi}_{\tau}, \Psi_{\tau}\right\rangle_{L_{2}}=\operatorname{diag}\{|T|: T \in \mathcal{T}\}$.
- $\sum_{T \in \mathcal{T}} \psi_{T}=\mathbb{1}$

For \mathbb{T} the family of conforming shape-regular triangulations of Ω :

Theorem ([Sv18])

Biorthogonal proj. $P_{\mathcal{T}}$ onto $W_{\mathcal{T}}$, with $\operatorname{ran}\left(\operatorname{Id}-P_{\mathcal{T}}\right) \perp V_{\mathcal{T}}$ is bounded in $\mathrm{H}^{1 / 2}$

$$
\sup _{\mathcal{T} \in \mathbb{T}}\left\|P_{\mathcal{T}}\right\|_{\mathcal{L}\left(H^{1 / 2}, H^{1 / 2}\right)}<\infty
$$

Corollary

The inf-sup condition (1) holds $\left(V_{\mathcal{T}}, W_{\mathcal{T}}\right) \quad(\mathcal{T} \in \mathbb{T})$, without an additional mesh grading assumption.

Constructing $B_{\mathcal{T}}: W_{\mathcal{T}} \rightarrow W_{\tau}^{\prime}$

Recall that $W_{\mathcal{T}} \subset S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}}$ for

- Continuous piecewise linears $S_{\mathcal{T}}:=\operatorname{span}\left\{\phi_{V}\right\}$
- Bubbles $\mathscr{B}_{\mathcal{T}}:=\operatorname{span}\left\{\theta_{T}\right\}$

Matrix representation $\boldsymbol{B}_{\tau}=\left(B \Psi_{\tau}\right)\left(\Psi_{\tau}\right)$ requires explicit θ_{T}.

Practical alternative follows from

Suppose we have bounded \& coercive

then a bounded \& coercive $B_{\tau}: S_{\mathcal{T}} \oplus \mathscr{B}_{\tau} \rightarrow\left(S_{\mathcal{T}} \oplus \mathscr{B}_{\tau}\right)^{\prime}$ is given by: $\left(B_{T}(u+v)\right)(\ddot{u}+\ddot{v}):=\left(B_{T}^{s} u\right)(\ddot{u})+\left(B_{T}^{\infty} v\right)(\ddot{v})$

Constructing $B_{\mathcal{T}}: W_{\mathcal{T}} \rightarrow W_{\tau}^{\prime}$

Recall that $W_{\mathcal{T}} \subset S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}}$ for

- Continuous piecewise linears $S_{\mathcal{T}}:=\operatorname{span}\left\{\phi_{V}\right\}$
- Bubbles $\mathscr{B}_{\mathcal{T}}:=\operatorname{span}\left\{\theta_{T}\right\}$

Matrix representation $\boldsymbol{B}_{\tau}=\left(B \Psi_{\tau}\right)\left(\Psi_{\tau}\right)$ requires explicit θ_{T}.
Practical alternative follows from

$$
\|u+v\|_{H^{1 / 2}}^{2} \approx\|u\|_{H^{1 / 2}}^{2}+\|v\|_{H^{1 / 2}}^{2} \quad\left(u \in S_{\mathcal{T}}, v \in \mathscr{B}_{\mathcal{T}}\right) .
$$

Suppose we have bounded \& coercive

then a bounded \& coercive $B_{\mathcal{T}}: S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}} \rightarrow\left(S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}}\right)^{\prime}$ is given by: $\left(B_{T}(u+v)\right)(\tilde{u}+\tilde{v}):\left(B_{T}^{S} u\right)(u)+\left(B_{T}^{R} v\right)(\tilde{v})$.

Constructing $B_{\tau}: W_{\tau} \rightarrow W_{\tau}^{\prime}$

Recall that $W_{\mathcal{T}} \subset S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}}$ for

- Continuous piecewise linears $S_{T}:=\operatorname{span}\left\{\phi_{V}\right\}$
- Bubbles $\mathscr{B}_{\mathcal{T}}:=\operatorname{span}\left\{\theta_{T}\right\}$

Matrix representation $\boldsymbol{B}_{\mathcal{T}}=\left(B \Psi_{\tau}\right)\left(\Psi_{\tau}\right)$ requires explicit θ_{T}.
Practical alternative follows from

$$
\|u+v\|_{H^{1 / 2}}^{2} \bar{\sim}\|u\|_{H^{1 / 2}}^{2}+\|v\|_{H^{1 / 2}}^{2} \quad\left(u \in S_{\mathcal{T}}, v \in \mathscr{B}_{\mathcal{T}}\right)
$$

Suppose we have bounded \& coercive

$$
B_{\tau}^{S}: S_{\mathcal{T}} \rightarrow S_{\mathcal{T}}^{\prime} \quad \text { and } \quad B_{\mathcal{T}}^{\mathscr{B}}: \mathscr{B}_{\mathcal{T}} \rightarrow \mathscr{B}_{\tau}^{\prime},
$$

then a bounded \& coercive $B_{\mathcal{T}}: S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}} \rightarrow\left(S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}}\right)^{\prime}$ is given by:

$$
\left(B_{\mathcal{T}}(u+v)\right)(\tilde{u}+\tilde{v}):=\left(B_{\mathcal{T}}^{S} u\right)(\tilde{u})+\left(B_{\mathcal{T}}^{\mathscr{B}} v\right)(\tilde{v}) .
$$

Constructing $B_{\mathcal{T}}: W_{\mathcal{T}} \rightarrow W_{\tau}^{\prime}$

We construct $B_{\mathcal{T}}: S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}} \rightarrow\left(S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}}\right)^{\prime}$ as

$$
\left(B_{\mathcal{T}}(u+v)\right)(\tilde{u}+\tilde{v}):=\left(B_{\tau}^{S} u\right)(\tilde{u})+\left(B_{\mathcal{T}}^{\mathscr{B}} v\right)(\tilde{v})
$$

- The bubbles form a (rescaled) Riesz basis:

- So a bounded and coercive $B_{\mathcal{T}}^{\mathscr{B}}$ is given by

- For $S_{\mathcal{T}}$ we take the Hypersingular operator $B: H^{1 / 2} \rightarrow H^{-1 / 2}$

$$
\left(B_{T}^{S} u\right)(\tilde{u})=(B u)(\tilde{u}) \quad\left(u \in S_{T}\right)
$$

Constructing $B_{\tau}: W_{\tau} \rightarrow W_{\tau}^{\prime}$

We construct $B_{\mathcal{T}}: S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}} \rightarrow\left(S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}}\right)^{\prime}$ as

$$
\left(B_{\tau}(u+v)\right)(\tilde{u}+\tilde{v}):=\left(B_{\tau}^{S} u\right)(\tilde{u})+\left(B_{\tau}^{\mathscr{B}} v\right)(\tilde{v})
$$

- The bubbles form a (rescaled) Riesz basis:

$$
\left\|\sum_{T \in \mathcal{T}} c_{T} \theta_{T}\right\|_{H^{1 / 2}}^{2} \approx \sum_{T \in \mathcal{T}}\left|c_{T}\right|^{2}|T|
$$

- So a bounded and coercive $B_{\mathcal{T}}^{\mathscr{B}}$ is given by

$$
\left(B_{\mathcal{T}}^{\mathscr{B}} \sum_{T \in \mathcal{T}} c_{T} \theta_{T}\right)\left(\sum_{T \in \mathcal{T}} d_{T} \theta_{T}\right):=\beta_{0} \sum_{T \in \mathcal{T}}|T|^{1 / 2} c_{T} d_{T}, \quad \beta_{0}>0 .
$$

- For $S_{\mathcal{T}}$ we take the Hypersingular operator $B: H^{1 / 2} \rightarrow H^{-1 / 2}$

$$
\left(B_{T}^{S} U\right)(\tilde{u})=(B u)(\tilde{u}) \quad\left(u \in S_{T}\right)
$$

Constructing $B_{\tau}: W_{\tau} \rightarrow W_{\tau}^{\prime}$

We construct $B_{\mathcal{T}}: S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}} \rightarrow\left(S_{\mathcal{T}} \oplus \mathscr{B}_{\mathcal{T}}\right)^{\prime}$ as

$$
\left(B_{\tau}(u+v)\right)(\tilde{u}+\tilde{v}):=\left(B_{\tau}^{S} u\right)(\tilde{u})+\left(B_{\tau}^{\mathscr{B}} v\right)(\tilde{v})
$$

- The bubbles form a (rescaled) Riesz basis:

$$
\left\|\sum_{T \in \mathcal{T}} c_{T} \theta_{T}\right\|_{H^{1 / 2}}^{2} \approx \sum_{T \in \mathcal{T}}\left|c_{T}\right|^{2}|T|
$$

- So a bounded and coercive $B_{\mathcal{T}}^{\mathscr{B}}$ is given by

$$
\left(B_{\mathcal{T}}^{\mathscr{B}} \sum_{T \in \mathcal{T}} c_{T} \theta_{T}\right)\left(\sum_{T \in \mathcal{T}} d_{T} \theta_{T}\right):=\beta_{0} \sum_{T \in \mathcal{T}}|T|^{1 / 2} c_{T} d_{T}, \quad \beta_{0}>0 .
$$

- For $S_{\mathcal{T}}$ we take the Hypersingular operator $B: H^{1 / 2} \rightarrow H^{-1 / 2}$

$$
\left(B_{\tau}^{S} u\right)(\tilde{u})=(B u)(\tilde{u}) \quad\left(u \in S_{\tau}\right)
$$

Implementation preconditioner

Matrix representation is given by

$$
\boldsymbol{G}_{\tau}:=\boldsymbol{D}_{\mathcal{T}}^{-1}\left(\boldsymbol{p}_{\tau}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\tau}+\beta_{0} \boldsymbol{q}_{\mathcal{T}}^{\top} \boldsymbol{D}_{\tau}^{1 / 2} \boldsymbol{q}_{\tau}\right) \boldsymbol{D}_{\mathcal{T}}^{-1}
$$

where for some $B: H^{1 / 2} \rightarrow H^{-1 / 2}$,

$$
\begin{aligned}
& \boldsymbol{D}_{\tau}=\operatorname{diag}\{|T|: T \in \mathcal{T}\} \\
& \boldsymbol{B}_{\tau}^{S}=\left(B \Phi_{\mathcal{T}}\right)\left(\Phi_{\mathcal{T}}\right) \quad \text { for hat functions } \Phi_{\mathcal{T}} \\
& \boldsymbol{p}_{\tau}, \boldsymbol{q}_{\mathcal{T}} \quad \text { sparse } .
\end{aligned}
$$

Computationally: $\operatorname{cost}\left(\boldsymbol{G}_{\mathcal{T}}\right)=\mathcal{O}(\# \mathcal{T})+\operatorname{cost}\left(\boldsymbol{B}_{\tau}^{S}\right)$.

Numerical results: uniform refinements

$\Omega=\partial[0,1]^{3}$, Single Layer operator A, Hypersingular operator B.
Results for a sequence of uniformly refined meshes.

dofs	$\kappa_{S}\left(\operatorname{diag}\left(\boldsymbol{A}_{\tau}\right)^{-1} \boldsymbol{A}_{\tau}\right)$	$\kappa_{S}\left(\boldsymbol{G}_{\tau} \boldsymbol{A}_{\tau}\right)$
12	14.56	2.50
48	29.30	2.63
192	58.25	2.77
768	116.3	2.79
3072	230.0	2.80
12288	444.8	2.86
49152	851.8	2.89
196608	1565.7	2.90

Condition numbers for preconditioned single layer system discretized by piecewise constants $V_{\mathcal{T}}$. For coercivity of B we have added $\alpha\langle u, \mathbb{1}\rangle_{L_{2}}\langle v, \mathbb{1}\rangle_{L_{2}}$ for some $\alpha>0$, here $\alpha=0.05, \beta_{0}=1.25$.

Numerical results: local refinements

Sequence of locally refined triangulations.

dofs	$h_{\tau, \text { min }}$	$\kappa S\left(\operatorname{diag}\left(\boldsymbol{A}_{\tau}\right)^{-1} \boldsymbol{A}_{\tau}\right)$	$\kappa_{S}\left(\boldsymbol{G}_{\tau} \boldsymbol{A}_{\tau}\right)$
12	$7.0 \cdot 10^{-1}$	14.56	2.61
432	$2.2 \cdot 10^{-2}$	68.66	2.64
912	$6.9 \cdot 10^{-4}$	73.15	2.64
1872	$6.7 \cdot 10^{-7}$	73.70	2.64
2352	$2.1 \cdot 10^{-8}$	73.80	2.64
2976	$2.3 \cdot 10^{-10}$	73.66	2.64

Condition numbers for preconditioned single layer. Matrix $\boldsymbol{G}_{\mathcal{T}}$ is constructed using $\beta_{0}=1.2$. The second column is defined by $h_{\mathcal{T}, \min }:=\min _{T \in \mathcal{T}} h_{T}$.

Generalizations

- Results hold for manifolds Γ, with or without boundary $\partial \Gamma$, and

$$
A: H_{0, \gamma}^{-s}(\Gamma) \rightarrow H_{0, \gamma}^{s}(\Gamma) \quad s \in[0,1] .
$$

- Using a subspace correction method it generalizes to a preconditioner for higher order trial spaces $V_{\tau}=S_{\tau}^{-1, \ell}$
- Also works for continuous trial spaces $V_{T}=S_{T}^{0,}$
- Use a cheaper operator $B: H^{s} \rightarrow H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Generalizations

- Results hold for manifolds Γ, with or without boundary $\partial \Gamma$, and

$$
A: H_{0, \gamma}^{-s}(\Gamma) \rightarrow H_{0, \gamma}^{s}(\Gamma) \quad s \in[0,1] .
$$

- Using a subspace correction method it generalizes to a preconditioner for higher order trial spaces $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$
- Also works for continuous trial spaces
- Use a cheaper operator $B: H^{s} \rightarrow H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Generalizations

- Results hold for manifolds Γ, with or without boundary $\partial \Gamma$, and

$$
A: H_{0, \gamma}^{-s}(\Gamma) \rightarrow H_{0, \gamma}^{s}(\Gamma) \quad s \in[0,1] .
$$

- Using a subspace correction method it generalizes to a preconditioner for higher order trial spaces $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$
- Also works for continuous trial spaces $V_{\mathcal{T}}=S_{T}^{0, \ell}$
- Use a cheaper operator $B: H^{5} \rightarrow H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Generalizations

- Results hold for manifolds Γ, with or without boundary $\partial \Gamma$, and

$$
A: H_{0, \gamma}^{-s}(\Gamma) \rightarrow H_{0, \gamma}^{s}(\Gamma) \quad s \in[0,1] .
$$

- Using a subspace correction method it generalizes to a preconditioner for higher order trial spaces $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$
- Also works for continuous trial spaces $V_{\mathcal{T}}=S_{T}^{0, \ell}$
- Use a cheaper operator $B: H^{s} \rightarrow H^{-s}[S v 19 a]$
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Generalizations

- Results hold for manifolds Γ, with or without boundary $\partial \Gamma$, and

$$
A: H_{0, \gamma}^{-s}(\Gamma) \rightarrow H_{0, \gamma}^{s}(\Gamma) \quad s \in[0,1] .
$$

- Using a subspace correction method it generalizes to a preconditioner for higher order trial spaces $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$
- Also works for continuous trial spaces $V_{\tau}=S_{T}^{0, \ell}$
- Use a cheaper operator $B: H^{s} \rightarrow H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Generalizations

- Results hold for manifolds Γ, with or without boundary $\partial \Gamma$, and

$$
A: H_{0, \gamma}^{-s}(\Gamma) \rightarrow H_{0, \gamma}^{s}(\Gamma) \quad s \in[0,1] .
$$

- Using a subspace correction method it generalizes to a preconditioner for higher order trial spaces $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$
- Also works for continuous trial spaces $V_{\tau}=S_{T}^{0, \ell}$
- Use a cheaper operator $B: H^{s} \rightarrow H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Generalizations

- Results hold for manifolds Γ, with or without boundary $\partial \Gamma$, and

$$
A: H_{0, \gamma}^{-s}(\Gamma) \rightarrow H_{0, \gamma}^{s}(\Gamma) \quad s \in[0,1] .
$$

- Using a subspace correction method it generalizes to a preconditioner for higher order trial spaces $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$
- Also works for continuous trial spaces $V_{T}=S_{T}^{0, \ell}$
- Use a cheaper operator $B: H^{s} \rightarrow H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Higher order trial spaces

What if $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$, piecewise polynomials for $\ell>0$?

Lemma

For $Q_{\mathcal{T}}^{0}$ the $L_{2}(\Omega)$-orthogonal projector onto pw. const. $S_{\mathcal{T}}^{-1,0}$ we have

- $\sup _{\mathcal{T} \in \mathbb{T}}\left\|Q_{\mathcal{T}}^{0} \mid V_{\mathcal{T}}\right\|_{\mathcal{L}\left(H^{-1 / 2}, H^{-1 / 2}\right)}<\infty$
- $\|\cdot\|_{H^{-1 / 2}} \approx\left\|h_{\mathcal{T}}^{1 / 2} \cdot\right\|_{L_{2}} \quad$ on $\operatorname{ran}\left(\left.\left(\operatorname{Id}-Q_{\tau}^{0}\right)\right|_{V_{\mathcal{T}}}\right)$

\longrightarrow
 Splitting $V_{T}=Q_{T}^{0} V_{T} \oplus\left(I d-Q_{T}^{0}\right) V_{T}$ stable w.r.t. $H^{-1 / 2}$-norm Diagonal operator on $\left(\mathrm{Id}-Q_{\tau}^{0}\right) V_{\tau}$ is bounded and coercive
 8 Build a preconditioner using a subspace correction method
 - Apply (previous) G_{T} on $Q_{T}^{0} V_{T}$
 - Apply simple diagonal scaling on $\left(\mathrm{Id}-Q_{T}^{0}\right) V_{T}$

Higher order trial spaces

What if $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$, piecewise polynomials for $\ell>0$?

Lemma

For $Q_{\mathcal{T}}^{0}$ the $L_{2}(\Omega)$-orthogonal projector onto pw. const. $S_{\mathcal{T}}^{-1,0}$ we have

- $\sup _{\mathcal{T} \in \mathbb{T}}\left\|Q_{\mathcal{T}}^{0} \mid V_{\mathcal{T}}\right\|_{\mathcal{L}\left(H^{-1 / 2}, \mathcal{H}^{-1 / 2}\right)}<\infty$
- $\|\cdot\|_{H^{-1 / 2}} \approx\left\|h_{\tau}^{1 / 2} \cdot\right\|_{L_{2}} \quad$ on $\operatorname{ran}\left(\left.\left(\operatorname{Id}-Q_{\tau}^{0}\right)\right|_{V_{\mathcal{T}}}\right)$
\Longrightarrow Splitting $V_{\mathcal{T}}=Q_{\mathcal{T}}^{0} V_{\mathcal{T}} \oplus\left(\operatorname{Id}-Q_{\mathcal{T}}^{0}\right) V_{\mathcal{T}}$ stable w.r.t. $H^{-1 / 2}$-norm Diagonal operator on $\left(\mathrm{Id}-Q_{\tau}^{0}\right) V_{\tau}$ is bounded and coercive
8 Build a preconditioner using a subspace correction method
- Apply (previous) G_{T} on $Q_{T}^{0} V_{T}$
- Apply simple diagonal scaling on $\left(\mathrm{Id}-Q_{T}^{0}\right) V_{T}$

Higher order trial spaces

What if $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$, piecewise polynomials for $\ell>0$?

Lemma

For $Q_{\mathcal{T}}^{0}$ the $L_{2}(\Omega)$-orthogonal projector onto pw. const. $S_{\mathcal{T}}^{-1,0}$ we have

- $\sup _{\mathcal{T} \in \mathbb{T}}\left\|Q_{\mathcal{T}}^{0} \mid V_{\mathcal{T}}\right\|_{\mathcal{L}\left(H^{-1 / 2}, \mathcal{H}^{-1 / 2}\right)}<\infty$
- $\|\cdot\|_{H^{-1 / 2}} \approx\left\|h_{\tau}^{1 / 2} \cdot\right\|_{L_{2}} \quad$ on $\quad \operatorname{ran}\left(\left.\left(\operatorname{Id}-Q_{\tau}^{0}\right)\right|_{V_{\mathcal{T}}}\right)$
\Longrightarrow Splitting $V_{\mathcal{T}}=Q_{\mathcal{T}}^{0} V_{\mathcal{T}} \oplus\left(\operatorname{Id}-Q_{\mathcal{T}}^{0}\right) V_{\mathcal{T}}$ stable w.r.t. $H^{-1 / 2}$-norm
\Longrightarrow Diagonal operator on $\left(\operatorname{Id}-Q_{\tau}^{0}\right) V_{\mathcal{T}}$ is bounded and coercive
8 Build a preconditioner using a subspace correction method
- Apply (previous) G_{T} on $Q_{T}^{0} V_{T}$
- Apply simple diagonal scaling on $\left(-Q_{T}^{0}\right) V_{T}$

Higher order trial spaces

What if $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1, \ell}$, piecewise polynomials for $\ell>0$?

Lemma

For $Q_{\mathcal{T}}^{0}$ the $L_{2}(\Omega)$-orthogonal projector onto pw. const. $S_{\tau}^{-1,0}$ we have

- $\sup _{\mathcal{T} \in \mathbb{T}}\left\|Q_{\mathcal{T}}^{0} \mid V_{\mathcal{T}}\right\|_{\mathcal{L}\left(H^{-1 / 2}, \mathcal{H}^{-1 / 2}\right)}<\infty$
- $\|\cdot\|_{H^{-1 / 2}} \approx\left\|h_{\tau}^{1 / 2} \cdot\right\|_{L_{2}} \quad$ on $\quad \operatorname{ran}\left(\left.\left(\operatorname{Id}-Q_{\tau}^{0}\right)\right|_{V_{\mathcal{T}}}\right)$
\Longrightarrow Splitting $V_{\mathcal{T}}=Q_{\mathcal{T}}^{0} V_{\mathcal{T}} \oplus\left(\operatorname{Id}-Q_{\mathcal{T}}^{0}\right) V_{\mathcal{T}}$ stable w.r.t. $H^{-1 / 2}$-norm
\Longrightarrow Diagonal operator on $\left(\operatorname{Id}-Q_{\tau}^{0}\right) V_{\mathcal{T}}$ is bounded and coercive
8 Build a preconditioner using a subspace correction method
- Apply (previous) $G_{\mathcal{T}}$ on $Q_{\mathcal{T}}^{0} V_{\mathcal{T}}$
- Apply simple diagonal scaling on $\left(\operatorname{Id}-Q_{\mathcal{T}}^{0}\right) V_{\mathcal{T}}$

Numerical results: piecewise quadratics

Consider sequence $\left\{\mathcal{T}_{k}\right\}$ of uniform refined meshes, and $V_{\mathcal{T}}=S_{\mathcal{T}}^{-1,2}$ the space of discontinuous piecewise quadratics.

dofs	$\kappa S\left(\operatorname{diag}\left(\boldsymbol{A}_{\tau}\right)^{-1} \boldsymbol{A}_{\tau}\right)$	$\kappa_{S}\left(\boldsymbol{G}_{\tau} \boldsymbol{A}_{\tau}\right)$
72	167.16	9.58
288	309.12	10.4
1152	616.03	11.1
4608	1211.3	11.3
18432	2337.2	11.4

Spectral condition numbers of the preconditioned single layer system, using uniform refinements, discretized by discontinuous piecewise quadratics $S_{\mathcal{T}}^{-1,2}$. The matrix $\boldsymbol{G}_{\mathcal{T}}$ is constructed using the adapted hypersingular operator, with $\alpha=0.05$, and $\beta_{0}=\beta_{1}=1.25$.

Uniform preconditioners for positive order operators

In [Sv19b] we used a similar approach for positive order preconditioning:

- Continuous piecewise linears $S_{\mathcal{T}}$ wrt \mathcal{T}
- Hypersingular $B_{\mathcal{\tau}}: S_{\mathcal{T}} \rightarrow S_{\tau}^{\prime}$
- Precondition with Single Layer A

Preconditioner is given by
where taking
$U=\operatorname{span} \Sigma_{\mathcal{T}} \quad$ pw. cons. or cont. pw. lin.
$\Delta^{U}-(\Delta \Sigma)(\Sigma)$
$D_{T}=\operatorname{diag}\left\{\left|\operatorname{supp} \phi_{V}\right|: \phi_{V} \in S_{\tau}\right\}$
\boldsymbol{p}_{τ} sparse.
Computationally: $\operatorname{cost}\left(\boldsymbol{G}_{T}\right)=\mathbb{O}(\# T)+\operatorname{cost}\left(A_{T}^{U}\right)$

Uniform preconditioners for positive order operators

In [Sv19b] we used a similar approach for positive order preconditioning:

- Continuous piecewise linears $S_{\mathcal{T}}$ wrt \mathcal{T}
- Hypersingular $B_{\mathcal{T}}: S_{\mathcal{T}} \rightarrow S_{\mathcal{T}}^{\prime}$
- Precondition with Single Layer A

Preconditioner is given by

$$
\boldsymbol{G}_{\tau}:=\boldsymbol{D}_{\tau}^{-1}\left(\boldsymbol{p}_{\tau}^{\top} \boldsymbol{A}_{\tau}^{U} \boldsymbol{p}_{\tau}+\beta_{0} \boldsymbol{D}_{\tau}^{3 / 2}\right) \boldsymbol{D}_{\tau}^{-1}
$$

where taking

$$
\begin{aligned}
& U=\operatorname{span} \Sigma_{\tau} \quad \text { pw. cons. or cont. pw. lin. } \\
& \boldsymbol{A}_{\tau}^{U}=\left(A \Sigma_{\tau}\right)\left(\Sigma_{\tau}\right) \\
& \boldsymbol{D}_{\tau}=\operatorname{diag}\left\{\left|\operatorname{supp} \phi_{v}\right|: \phi_{v} \in S_{\tau}\right\} \\
& \boldsymbol{p}_{\tau} \quad \text { sparse. }
\end{aligned}
$$

Computationally: $\operatorname{cost}\left(\boldsymbol{G}_{\mathcal{T}}\right)=\mathcal{O}(\# \mathcal{T})+\operatorname{cost}\left(\boldsymbol{A}_{\tau}^{U}\right)$.

Numerical results: positive order

$\Omega=\partial[0,1]^{3}, B$ Hypersingular operator, Single Layer operator A.
Results for a sequence of uniformly refined meshes.

dofs	$\kappa_{S}\left(\boldsymbol{B}_{\tau}\right)$	$\kappa_{S}\left(\boldsymbol{G}_{\tau} \boldsymbol{B}_{\tau}\right)$
12290	115.6	2.27
24578	168.7	2.24
49154	231.3	2.27
98306	336.9	2.25
196610	461.7	2.28
393218	671.9	2.28
786434	751.6	2.30

Condition numbers for preconditioned Hypersingular system discretized by continuous piecewise linears $S_{\mathcal{T}}^{0,1}$. Single Layer operator is discretized on piecewise constants $V_{\mathcal{T}}$. For coercivity of B we have added $\alpha\langle u, \mathbb{1}\rangle_{L_{2}(\Omega)}\langle v, \mathbb{1}\rangle_{L_{2}(\Omega)}$, here $\alpha=0.05, \beta_{1}=0.34$. Results are gathered using compressed hierarchical matrices.

Conclusions

- Uniform preconditioners for operators $A: H^{-s} \rightarrow H^{s}$
- Requires bounded \& coercive operator $B: H^{5} \rightarrow H^{-s}$
- Implementation of preconditioner is

$$
G_{T}:=D_{T}^{-1}\left(p_{T}^{\top} B_{T}^{\varsigma} p_{T}+\beta_{0} q_{T}^{\top} D_{T}^{1-s} q_{T}\right) D_{T}^{-1}
$$

- Computationally $\operatorname{cost}\left(\boldsymbol{G}_{\tau}\right)=\mathcal{O}(\# \mathcal{T})+\operatorname{cost}\left(\boldsymbol{B}_{\tau}^{S}\right)$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

Conclusions

- Uniform preconditioners for operators $A: H^{-s} \rightarrow H^{s}$
- Requires bounded \& coercive operator $B: H^{s} \rightarrow H^{-s}$
- Implementation of preconditioner is

- Computationally $\operatorname{cost}\left(\boldsymbol{G}_{\tau}\right)=\mathcal{O}(\# \mathcal{T})+\operatorname{cost}\left(\boldsymbol{B}_{\tau}^{S}\right)$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

Conclusions

- Uniform preconditioners for operators $A: H^{-s} \rightarrow H^{s}$
- Requires bounded \& coercive operator $B: H^{s} \rightarrow H^{-s}$
- Implementation of preconditioner is

$$
\boldsymbol{G}_{\tau}:=\boldsymbol{D}_{\mathcal{T}}^{-1}\left(\boldsymbol{p}_{\mathcal{T}}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\mathcal{}}+\beta_{0} \boldsymbol{q}_{\mathcal{T}}^{\top} \boldsymbol{D}_{\mathcal{T}}^{1-s} \boldsymbol{q}_{\tau}\right) \boldsymbol{D}_{\mathcal{T}}^{-1}
$$

- Computationally $\operatorname{cost}\left(G_{T}\right)=\mathcal{O}(\# \mathcal{T})+\operatorname{cost}\left(B_{\tau}^{S}\right)$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

Conclusions

- Uniform preconditioners for operators $A: H^{-s} \rightarrow H^{s}$
- Requires bounded \& coercive operator $B: H^{s} \rightarrow H^{-s}$
- Implementation of preconditioner is

$$
\boldsymbol{G}_{\tau}:=\boldsymbol{D}_{\mathcal{T}}^{-1}\left(\boldsymbol{p}_{\mathcal{T}}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\mathcal{T}}+\beta_{0} \boldsymbol{q}_{\mathcal{T}}^{\top} \boldsymbol{D}_{\mathcal{T}}^{1-s} \boldsymbol{q}_{\mathcal{T}}\right) \boldsymbol{D}_{\mathcal{T}}^{-1}
$$

- Computationally $\operatorname{cost}\left(\boldsymbol{G}_{\tau}\right)=\mathcal{O}(\# \mathcal{T})+\operatorname{cost}\left(\boldsymbol{B}_{\tau}^{\mathcal{S}}\right)$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

Conclusions

- Uniform preconditioners for operators $A: H^{-s} \rightarrow H^{s}$
- Requires bounded \& coercive operator $B: H^{s} \rightarrow H^{-s}$
- Implementation of preconditioner is

$$
\boldsymbol{G}_{\tau}:=\boldsymbol{D}_{\mathcal{T}}^{-1}\left(\boldsymbol{p}_{\tau}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\tau}+\beta_{0} \boldsymbol{q}_{\mathcal{T}}^{\top} \boldsymbol{D}_{\tau}^{1-s} \boldsymbol{q}_{\tau}\right) \boldsymbol{D}_{\mathcal{T}}^{-1}
$$

- Computationally $\operatorname{cost}\left(\boldsymbol{G}_{\tau}\right)=\mathcal{O}(\# \mathcal{T})+\operatorname{cost}\left(\boldsymbol{B}_{\tau}^{S}\right)$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

Conclusions

- Uniform preconditioners for operators $A: H^{-s} \rightarrow H^{s}$
- Requires bounded \& coercive operator $B: H^{s} \rightarrow H^{-s}$
- Implementation of preconditioner is

$$
\boldsymbol{G}_{\tau}:=\boldsymbol{D}_{\mathcal{T}}^{-1}\left(\boldsymbol{p}_{\mathcal{T}}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\tau}+\beta_{0} \boldsymbol{q}_{\mathcal{T}}^{\top} \boldsymbol{D}_{\mathcal{T}}^{1-s} \boldsymbol{q}_{\tau}\right) \boldsymbol{D}_{\mathcal{T}}^{-1}
$$

- Computationally $\operatorname{cost}\left(\boldsymbol{G}_{\tau}\right)=\mathcal{O}(\# \mathcal{T})+\operatorname{cost}\left(\boldsymbol{B}_{\tau}^{S}\right)$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

References

[BC07] A. Buffa and S.H. Christiansen, A dual finite element complex on the barycentric refinement, Math. Comp. 76 (2007), no. 260, 1743-1769. MR 2336266
[Hip06] R. Hiptmair, Operator preconditioning, Comput. Math. Appl. 52 (2006), no. 5, 699-706. MR 2275559
[Sv18] R. Stevenson and R. van Venetië, Optimal preconditioning for problems of negative order, 2018, Accepted for publication in Math. Comp.
[Sv19a] , Optimal preconditioners of linear complexity for problems of negative order discretized on locally refined meshes, 2019, In preparation.
[Sv19b] , Uniform preconditioners for problems of positive order, 2019, Submitted.
[SW98] O. Steinbach and W. L. Wendland, The construction of some efficient preconditioners in the boundary element method, Adv. Comput. Math. 9 (1998), no. 1-2, 191-216, Numerical treatment of boundary integral equations. MR 1662766

