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Introduction: preconditioning BEM

• Boundary Element Method (BEM)

• Single Layer operator (bounded & coercive):

A : H−1/2(Ω)→ H1/2(Ω)

• Galerkin matrix AT for piecewise constants VT
• Solve AT x = y using Conjugate Gradients

• Condition number κ(AT ) = O(h−1)

=⇒ Number of CG iterations grows to ∞ as h ↓ 0

Solution: consider a preconditioned system GTAT x = GT y

Problem

How to construct the preconditioner GT (≈ A−1
T ), such that

κ(GTAT ) = O(1) for all meshes T
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Introduction: operator preconditioning

On a continuous level we find

• Single Layer operator A : H−1/2 → H1/2

• Hypersingular operator B : H1/2 → H−1/2

• Combined BA : H−1/2 → H−1/2

This suggests that B can serve as a preconditioner, informally:

• Suppose we have a basis for H−1/2

• Inducing a bijection T : R∞ → H−1/2

• Matrix representation is BA = T−1 BAT

• For ρ(·) the spectral radius:

κ(BA) = ρ(BA)ρ((BA)−1) = ρ(BA)ρ((BA)−1) ≤ ‖AB‖‖(BA)−1‖

=⇒ BA is well-conditioned!
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Operator preconditioning

Discretized we have

• Piecewise constants VT = span ΞT ⊂ H−1/2, with basis ξT := 1T

• Single Layer operator AT : VT → V ′T , with AT := (AΞT )(ΞT )

• Family T of triangulations of Ω

Operator preconditioning (Steinbach & Wendland [SW98], Hiptmair [Hip06]):

• Given a suitable ‘dual’ space WT = span ΨT ⊂ H1/2

• Boundedly invertible BT : WT →W ′T (e.g. Hypersingular)

• L2(Ω)-duality pairing DT : VT →W ′T

For matrices BT := (BΨT )(ΨT ), DT := 〈ΞT ,ΨT 〉L2

Preconditioner: D−1
T BTD−>T
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Operator preconditioning

Reminder: AT := (AΞT )(ΞT ), BT := (BΨT )(ΨT ), DT := 〈ΞT ,ΨT 〉L2

Theorem

If the ‘dual’ spaces WT = span ΨT satisfy

dimWT = dimVT , inf
T∈T

inf
v∈VT

sup
w∈WT

〈v ,w〉L2

‖v‖H−1/2‖w‖H1/2

> 0 (1)

then the preconditioner yields a uniformly bounded condition number:

κ(D−1
T BTD−>T AT ) = O(1) (T ∈ T)

Finding ‘dual’ spaces WT that satisfy (1) is difficult.

Buffa & Christiansen [BC07] constructed WT , however:

• Matrix DT is not diagonal: inverse has to be approximated (costly)

• ΨT constructed as cont. pw. lin. on barycentric refined mesh (costly)

• A graded mesh assumption is necessary to prove inf-sup (1)
5



Operator preconditioning

Reminder: AT := (AΞT )(ΞT ), BT := (BΨT )(ΨT ), DT := 〈ΞT ,ΨT 〉L2

Theorem

If the ‘dual’ spaces WT = span ΨT satisfy

dimWT = dimVT , inf
T∈T

inf
v∈VT

sup
w∈WT

〈v ,w〉L2

‖v‖H−1/2‖w‖H1/2

> 0 (1)

then the preconditioner yields a uniformly bounded condition number:

κ(D−1
T BTD−>T AT ) = O(1) (T ∈ T)

Finding ‘dual’ spaces WT that satisfy (1) is difficult.

Buffa & Christiansen [BC07] constructed WT , however:

• Matrix DT is not diagonal: inverse has to be approximated (costly)

• ΨT constructed as cont. pw. lin. on barycentric refined mesh (costly)

• A graded mesh assumption is necessary to prove inf-sup (1)
5



Operator preconditioning

Reminder: AT := (AΞT )(ΞT ), BT := (BΨT )(ΨT ), DT := 〈ΞT ,ΨT 〉L2

Theorem

If the ‘dual’ spaces WT = span ΨT satisfy

dimWT = dimVT , inf
T∈T

inf
v∈VT

sup
w∈WT

〈v ,w〉L2

‖v‖H−1/2‖w‖H1/2

> 0 (1)

then the preconditioner yields a uniformly bounded condition number:

κ(D−1
T BTD−>T AT ) = O(1) (T ∈ T)

Finding ‘dual’ spaces WT that satisfy (1) is difficult.

Buffa & Christiansen [BC07] constructed WT , however:

• Matrix DT is not diagonal: inverse has to be approximated (costly)

• ΨT constructed as cont. pw. lin. on barycentric refined mesh (costly)

• A graded mesh assumption is necessary to prove inf-sup (1)
5



Operator preconditioning

Reminder: AT := (AΞT )(ΞT ), BT := (BΨT )(ΨT ), DT := 〈ΞT ,ΨT 〉L2

Theorem

If the ‘dual’ spaces WT = span ΨT satisfy

dimWT = dimVT , inf
T∈T

inf
v∈VT

sup
w∈WT

〈v ,w〉L2

‖v‖H−1/2‖w‖H1/2

> 0 (1)

then the preconditioner yields a uniformly bounded condition number:

κ(D−1
T BTD−>T AT ) = O(1) (T ∈ T)

Finding ‘dual’ spaces WT that satisfy (1) is difficult.

Buffa & Christiansen [BC07] constructed WT , however:

• Matrix DT is not diagonal: inverse has to be approximated (costly)

• ΨT constructed as cont. pw. lin. on barycentric refined mesh (costly)

• A graded mesh assumption is necessary to prove inf-sup (1)
5



Operator preconditioning

Reminder: AT := (AΞT )(ΞT ), BT := (BΨT )(ΨT ), DT := 〈ΞT ,ΨT 〉L2

Theorem

If the ‘dual’ spaces WT = span ΨT satisfy

dimWT = dimVT , inf
T∈T

inf
v∈VT

sup
w∈WT

〈v ,w〉L2

‖v‖H−1/2‖w‖H1/2

> 0 (1)

then the preconditioner yields a uniformly bounded condition number:

κ(D−1
T BTD−>T AT ) = O(1) (T ∈ T)

Finding ‘dual’ spaces WT that satisfy (1) is difficult.

Buffa & Christiansen [BC07] constructed WT , however:

• Matrix DT is not diagonal: inverse has to be approximated (costly)

• ΨT constructed as cont. pw. lin. on barycentric refined mesh (costly)

• A graded mesh assumption is necessary to prove inf-sup (1)
5



Dual mesh approach

Construction ΨT on a barycentric refined mesh [BC07]:

Figure 1: A basis function ψT ∈WT associated with ξT . Picture from [BC07]. 6



Our approach [Sv18] for d = 2

Construct ΨT ⊂ H1/2 such that DT = 〈ΞT ,ΨT 〉L2 diagonal.

ψT :=
∑
v∈NT

d−1
v φν + θT −

∑
T ′∈T

(1

3

∑
ν∈NT∩NT ′

d−1
ν

)
θT ′

ξT

Hat functions φv ∈ H1

Bubbles θT ∈ H1
0 (T ) s.t.

〈θT , ξT ′〉L2 = δTT ′ |T |
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Our approach

With hat functions φv and bubbles θT , we take

ψT :=
∑

v∈NT
d−1
v φν + θT −

∑
T ′∈T

(
1

d+1

∑
ν∈NT∩NT ′

d−1
ν

)
θT ′ .

Two important properties:

• DT = 〈ΞT ,ΨT 〉L2 = diag{|T | : T ∈ T }.
•
∑

T∈T ψT = 1

For T the family of conforming shape-regular triangulations of Ω:

Theorem ([Sv18])

Biorthogonal proj. PT onto WT , with ran(Id− PT ) ⊥ VT is bounded in H1/2

sup
T ∈T
‖PT ‖L(H1/2,H1/2) <∞.

Corollary

The inf-sup condition (1) holds (VT ,WT ) (T ∈ T), without an

additional mesh grading assumption.
8
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Constructing BT : WT → W ′
T

Recall that WT ⊂ ST ⊕BT for

• Continuous piecewise linears ST := span{φv}
• Bubbles BT := span{θT}

Matrix representation BT = (BΨT )(ΨT ) requires explicit θT .

Practical alternative follows from

‖u + v‖2
H1/2 h ‖u‖2

H1/2 + ‖v‖2
H1/2 (u ∈ ST , v ∈ BT ).

Suppose we have bounded & coercive

BS
T : ST → S ′T and BB

T : BT → B′T ,

then a bounded & coercive BT : ST ⊕BT → (ST ⊕BT )′ is given by:

(BT (u + v))(ũ + ṽ) := (BS
T u)(ũ) + (BB

T v)(ṽ).

9
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T u)(ũ) + (BB

T v)(ṽ)
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T u)(ũ) = (Bu)(ũ) (u ∈ ST )
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• The bubbles form a (rescaled) Riesz basis:

‖
∑
T∈T

cT θT‖2
H1/2 h

∑
T∈T

|cT |2|T |

• So a bounded and coercive BB
T is given by

(BB
T

∑
T∈T

cT θT )(
∑
T∈T

dT θT ) := β0

∑
T∈T

|T |1/2cTdT , β0 > 0.

• For ST we take the Hypersingular operator B : H1/2 → H−1/2

(BS
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Implementation preconditioner

Matrix representation is given by

GT := D−1
T (p>T BS

T pT + β0q>T D1/2
T qT )D−1

T ,

where for some B : H1/2 → H−1/2,

DT = diag{|T | : T ∈ T }
BS
T = (BΦT )(ΦT ) for hat functions ΦT

pT ,qT sparse.

Computationally: cost(GT ) = O(#T ) + cost(BS
T ).

11



Numerical results: uniform refinements

Ω = ∂[0, 1]3, Single Layer operator A, Hypersingular operator B.

Results for a sequence of uniformly refined meshes.

dofs κS(diag(AT )−1AT ) κS(GTAT )

12 14.56 2.50

48 29.30 2.63

192 58.25 2.77

768 116.3 2.79

3072 230.0 2.80

12288 444.8 2.86

49152 851.8 2.89

196608 1565.7 2.90

Condition numbers for preconditioned single layer system discretized by piecewise constants VT .

For coercivity of B we have added α〈u, 1〉L2
〈v , 1〉L2

for some α > 0, here α = 0.05, β0 = 1.25.
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Numerical results: local refinements

Sequence of locally refined triangulations.

dofs hT ,min κS(diag(AT )−1AT ) κS(GTAT )

12 7.0 · 10−1 14.56 2.61

432 2.2 · 10−2 68.66 2.64

912 6.9 · 10−4 73.15 2.64

1872 6.7 · 10−7 73.70 2.64

2352 2.1 · 10−8 73.80 2.64

2976 2.3 · 10−10 73.66 2.64

Condition numbers for preconditioned single layer. Matrix GT is constructed using β0 = 1.2. The

second column is defined by hT ,min := minT∈T hT .
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Generalizations

• Results hold for manifolds Γ, with or without boundary ∂Γ, and

A : H−s0,γ(Γ)→ Hs
0,γ(Γ) s ∈ [0, 1].

• Using a subspace correction method it generalizes to a

preconditioner for higher order trial spaces VT = S−1,`
T

• Also works for continuous trial spaces VT = S0,`
T

• Use a cheaper operator B : Hs → H−s [Sv19a]

• Similar approach (biorthogonality, bubbles) can be used to

precondition the positive order operators [Sv19b]

Lots of time left

Not so much time left
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Higher order trial spaces

What if VT = S−1,`
T , piecewise polynomials for ` > 0?

Lemma

For Q0
T the L2(Ω)-orthogonal projector onto pw. const. S−1,0

T we have

• supT ∈T ‖Q0
T |VT ‖L(H−1/2,H−1/2) <∞

• ‖ · ‖H−1/2 h ‖h1/2
T · ‖L2 on ran

(
(Id− Q0

T )|VT
)

=⇒ Splitting VT = Q0
TVT ⊕ (Id− Q0

T )VT stable w.r.t. H−1/2-norm

=⇒ Diagonal operator on (Id− Q0
T )VT is bounded and coercive

­ Build a preconditioner using a subspace correction method

• Apply (previous) GT on Q0
T VT

• Apply simple diagonal scaling on (Id− Q0
T )VT
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Numerical results: piecewise quadratics

Consider sequence {T k} of uniform refined meshes, and VT = S−1,2
T the

space of discontinuous piecewise quadratics.

dofs κS(diag(AT )−1AT ) κS(GTAT )

72 167.16 9.58

288 309.12 10.4

1152 616.03 11.1

4608 1211.3 11.3

18432 2337.2 11.4

Spectral condition numbers of the preconditioned single layer system, using uniform refinements,

discretized by discontinuous piecewise quadratics S−1,2
T . The matrix GT is constructed using the

adapted hypersingular operator, with α = 0.05, and β0 = β1 = 1.25.
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Uniform preconditioners for positive order operators

In [Sv19b] we used a similar approach for positive order preconditioning:

• Continuous piecewise linears ST wrt T
• Hypersingular BT : ST → S ′T
• Precondition with Single Layer A

Preconditioner is given by

GT := D−1
T (p>T AU

T pT + β0D
3/2
T )D−1

T ,

where taking

U = span ΣT pw. cons. or cont. pw. lin.

AU
T = (AΣT )(ΣT )

DT = diag{| suppφv | : φv ∈ ST }
pT sparse.

Computationally: cost(GT ) = O(#T ) + cost(AU
T ).
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Numerical results: positive order

Ω = ∂[0, 1]3, B Hypersingular operator, Single Layer operator A.

Results for a sequence of uniformly refined meshes.

dofs κS(BT ) κS(GTBT )

12290 115.6 2.27

24578 168.7 2.24

49154 231.3 2.27

98306 336.9 2.25

196610 461.7 2.28

393218 671.9 2.28

786434 751.6 2.30

Condition numbers for preconditioned Hypersingular system discretized by continuous piecewise

linears S0,1
T . Single Layer operator is discretized on piecewise constants VT . For coercivity of B we

have added α〈u, 1〉L2(Ω)〈v , 1〉L2(Ω), here α = 0.05, β1 = 0.34. Results are gathered using

compressed hierarchical matrices.
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Conclusions

• Uniform preconditioners for operators A : H−s → Hs

• Requires bounded & coercive operator B : Hs → H−s

• Implementation of preconditioner is

GT := D−1
T (p>T BS

T pT + β0q>T D1−s
T qT )D−1

T

• Computationally cost(GT ) = O(#T ) + cost(BS
T )

• Generalizes to manifolds, and higher order (continuous) trial spaces

• Similar construction possible for preconditioning B using A
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