

Uniform preconditioners for problems of negative order

Raymond van Venetië, joint work with Rob Stevenson July 3, 2019

Korteweg-de Vries Institute for Mathematics

- Introduction
- Optimal preconditioners for negative order problems
- Numerical results
- Generalizations
- Conclusion

- Boundary Element Method (BEM)
- Single Layer operator (bounded & coercive):

 $A \colon H^{-1/2}(\Omega) \to H^{1/2}(\Omega)$

- Galerkin matrix $oldsymbol{A}_{ au}$ for piecewise constants $V_{ au}$
- Solve $\mathbf{A}_{\tau} x = y$ using Conjugate Gradients
- Condition number $\kappa(\mathbf{A}_{\tau}) = \mathcal{O}(h^{-1})$
- \implies Number of CG iterations grows to ∞ as $h \downarrow 0$

Solution: consider a preconditioned system $\boldsymbol{G}_{T}\boldsymbol{A}_{T}x = \boldsymbol{G}_{T}y$

Problem

How to construct the preconditioner $m{G}_{ au}~(pproxm{A}_{ au}^{-1})$, such that

 $\kappa(\boldsymbol{G}_{\mathcal{T}} \boldsymbol{A}_{\mathcal{T}}) = \mathcal{O}(1)$ for all meshes \mathcal{T}

- Boundary Element Method (BEM)
- Single Layer operator (bounded & coercive):

 $A\colon H^{-1/2}(\Omega)\to H^{1/2}(\Omega)$

- Galerkin matrix $oldsymbol{A}_{ au}$ for piecewise constants $V_{ au}$
- Solve $\mathbf{A}_{\tau} x = y$ using Conjugate Gradients
- Condition number $\kappa(\mathbf{A}_{\tau}) = \mathcal{O}(h^{-1})$
- \implies Number of CG iterations grows to ∞ as $h \downarrow 0$

Solution: consider a preconditioned system $\boldsymbol{G}_{T}\boldsymbol{A}_{T}x = \boldsymbol{G}_{T}y$

Problem

How to construct the preconditioner $m{G}_{ au}~(pproxm{A}_{ au}^{-1})$, such that

 $\kappa(\boldsymbol{G}_{\tau}\boldsymbol{A}_{ au}) = \mathcal{O}(1)$ for all meshes \mathcal{T}

- Boundary Element Method (BEM)
- Single Layer operator (bounded & coercive):

$$A\colon H^{-1/2}(\Omega)\to H^{1/2}(\Omega)$$

- Galerkin matrix ${\pmb A}_{\mathcal T}$ for piecewise constants $V_{\mathcal T}$
- Solve $\mathbf{A}_{\tau} x = y$ using Conjugate Gradients
- Condition number $\kappa(\mathbf{A}_{\tau}) = \mathcal{O}(h^{-1})$
- \implies Number of CG iterations grows to ∞ as $h \downarrow 0$

Solution: consider a preconditioned system $\boldsymbol{G}_{T}\boldsymbol{A}_{T}x = \boldsymbol{G}_{T}y$

Problem

How to construct the preconditioner $m{G}_{ au}~(pproxm{A}_{ au}^{-1})$, such that

 $\kappa(\boldsymbol{G}_{\mathcal{T}} \boldsymbol{A}_{\mathcal{T}}) = \mathcal{O}(1)$ for all meshes \mathcal{T}

- Boundary Element Method (BEM)
- Single Layer operator (bounded & coercive):

$$A \colon H^{-1/2}(\Omega) \to H^{1/2}(\Omega)$$

- Galerkin matrix ${\pmb A}_{\mathcal T}$ for piecewise constants $V_{\mathcal T}$
- Solve $\mathbf{A}_{\tau} x = y$ using Conjugate Gradients
- Condition number $\kappa(\mathbf{A}_{\tau}) = \mathcal{O}(h^{-1})$
- \implies Number of CG iterations grows to ∞ as $h \downarrow 0$

Solution: consider a preconditioned system $G_{T}A_{T}x = G_{T}y$

Problem

How to construct the preconditioner $m{G}_{ au}~(pproxm{A}_{ au}^{-1})$, such that

 $\kappa(\boldsymbol{G}_{\mathcal{T}}\boldsymbol{A}_{\mathcal{T}}) = \mathcal{O}(1)$ for all meshes \mathcal{T}

- Boundary Element Method (BEM)
- Single Layer operator (bounded & coercive):

$$A \colon H^{-1/2}(\Omega) \to H^{1/2}(\Omega)$$

- Galerkin matrix ${\pmb A}_{\mathcal T}$ for piecewise constants $V_{\mathcal T}$
- Solve $\mathbf{A}_{\tau} x = y$ using Conjugate Gradients
- Condition number $\kappa(\mathbf{A}_{\tau}) = \mathcal{O}(h^{-1})$
- \implies Number of CG iterations grows to ∞ as $h \downarrow 0$

Solution: consider a preconditioned system $\boldsymbol{G}_{T}\boldsymbol{A}_{T}x = \boldsymbol{G}_{T}y$

Problem

How to construct the preconditioner ${m G}_{ au}~(pprox {m A}_{ au}^{-1})$, such that

 $\kappa(\boldsymbol{G}_{\tau}\boldsymbol{A}_{\tau}) = \mathcal{O}(1)$ for all meshes \mathcal{T}

Introduction: operator preconditioning

On a continuous level we find

- Single Layer operator $A \colon H^{-1/2} \to H^{1/2}$
- Hypersingular operator $B \colon H^{1/2} \to H^{-1/2}$
- Combined $BA: H^{-1/2} \rightarrow H^{-1/2}$

This suggests that *B* can serve as a preconditioner, **informally**:

- Suppose we have a basis for $H^{-1/2}$
- Inducing a bijection $T \colon \mathbb{R}^{\infty} \to H^{-1/2}$
- Matrix representation is $BA = T^{-1} BA T$
- For $\rho(\cdot)$ the spectral radius:

 $\kappa(\mathbf{BA}) = \rho(\mathbf{BA})\rho((\mathbf{BA})^{-1}) = \rho(\mathbf{BA})\rho((\mathbf{BA})^{-1}) \le \|\mathbf{AB}\|\|(\mathbf{BA})^{-1}\|$

Introduction: operator preconditioning

On a continuous level we find

- Single Layer operator $A \colon H^{-1/2} \to H^{1/2}$
- Hypersingular operator $B \colon H^{1/2} \to H^{-1/2}$
- Combined $BA: H^{-1/2} \rightarrow H^{-1/2}$

This suggests that *B* can serve as a preconditioner, **informally**:

- Suppose we have a basis for $H^{-1/2}$
- Inducing a bijection $T \colon \mathbb{R}^{\infty} \to H^{-1/2}$
- Matrix representation is $BA = T^{-1} BA T$
- For $\rho(\cdot)$ the spectral radius:

 $\kappa(\mathbf{BA}) = \rho(\mathbf{BA})\rho((\mathbf{BA})^{-1}) = \rho(\mathbf{BA})\rho((\mathbf{BA})^{-1}) \le \|\mathbf{AB}\|\|(\mathbf{BA})^{-1}\|$

On a continuous level we find

- Single Layer operator $A \colon H^{-1/2} \to H^{1/2}$
- Hypersingular operator $B \colon H^{1/2} \to H^{-1/2}$
- Combined $BA: H^{-1/2} \rightarrow H^{-1/2}$

This suggests that *B* can serve as a preconditioner, **informally**:

- Suppose we have a basis for $H^{-1/2}$
- Inducing a bijection $T \colon \mathbb{R}^{\infty} \to H^{-1/2}$
- Matrix representation is $BA = T^{-1} BA T$
- For $\rho(\cdot)$ the spectral radius:

 $\kappa(\mathbf{BA}) = \rho(\mathbf{BA})\rho((\mathbf{BA})^{-1}) = \rho(\mathbf{BA})\rho((\mathbf{BA})^{-1}) \le \|\mathbf{AB}\|\|(\mathbf{BA})^{-1}\|$

Introduction: operator preconditioning

On a continuous level we find

- Single Layer operator $A \colon H^{-1/2} \to H^{1/2}$
- Hypersingular operator $B \colon H^{1/2} \to H^{-1/2}$
- Combined $BA: H^{-1/2} \rightarrow H^{-1/2}$

This suggests that *B* can serve as a preconditioner, **informally**:

- Suppose we have a basis for $H^{-1/2}$
- Inducing a bijection $T \colon \mathbb{R}^{\infty} \to H^{-1/2}$
- Matrix representation is $BA = T^{-1} BA T$
- For $\rho(\cdot)$ the spectral radius:

 $\kappa(BA) = \rho(BA)\rho((BA)^{-1}) = \rho(BA)\rho((BA)^{-1}) \le ||AB|| ||(BA)^{-1}||$

Introduction: operator preconditioning

On a continuous level we find

- Single Layer operator $A \colon H^{-1/2} \to H^{1/2}$
- Hypersingular operator $B \colon H^{1/2} \to H^{-1/2}$
- Combined $BA: H^{-1/2} \rightarrow H^{-1/2}$

This suggests that *B* can serve as a preconditioner, **informally**:

- Suppose we have a basis for $H^{-1/2}$
- Inducing a bijection $T \colon \mathbb{R}^{\infty} \to H^{-1/2}$
- Matrix representation is $BA = T^{-1} BA T$
- For $\rho(\cdot)$ the spectral radius:

 $\kappa(BA) = \rho(BA)\rho((BA)^{-1}) = \rho(BA)\rho((BA)^{-1}) \le ||AB|| ||(BA)^{-1}||$

 \implies **BA** is well-conditioned!

- Piecewise constants $V_{\tau} = \operatorname{span} \Xi_{\tau} \subset H^{-1/2}$, with basis $\xi_T := \mathbb{1}_T$
- Single Layer operator $A_{\tau} \colon V_{\tau} \to V'_{\tau}$, with $\mathbf{A}_{\tau} := (A \Xi_{\tau})(\Xi_{\tau})$
- Family ${\mathbb T}$ of triangulations of Ω

Operator preconditioning (Steinbach & Wendland [SW98], Hiptmair [Hip06]):

- Given a *suitable* 'dual' space $W_{ au} = \operatorname{span} \Psi_{ au} \subset H^{1/2}$
- Boundedly invertible $B_{\tau} \colon W_{\tau} \to W'_{\tau}$ (e.g. Hypersingular)
- $L_2(\Omega)$ -duality pairing $D_{ au}\colon V_{ au} o W'_{ au}$

For matrices $\boldsymbol{B}_{\mathcal{T}} := (B\Psi_{\mathcal{T}})(\Psi_{\mathcal{T}}), \ \boldsymbol{D}_{\mathcal{T}} := \langle \Xi_{\mathcal{T}}, \Psi_{\mathcal{T}} \rangle_{L_2}$

- Piecewise constants $V_{\tau} = \operatorname{span} \Xi_{\tau} \subset H^{-1/2}$, with basis $\xi_T := \mathbb{1}_T$
- Single Layer operator $A_{\tau} \colon V_{\tau} \to V'_{\tau}$, with $\mathbf{A}_{\tau} := (A \Xi_{\tau})(\Xi_{\tau})$
- Family ${\mathbb T}$ of triangulations of Ω

Operator preconditioning (Steinbach & Wendland [SW98], Hiptmair [Hip06]):

- Given a *suitable* 'dual' space $W_{ au} = \operatorname{span} \Psi_{ au} \subset H^{1/2}$
- Boundedly invertible $B_{\tau} \colon W_{\tau} \to W'_{\tau}$ (e.g. Hypersingular)
- $L_2(\Omega)$ -duality pairing $D_{ au}\colon V_{ au} o W'_{ au}$

For matrices $\boldsymbol{B}_{\mathcal{T}} := (B\Psi_{\mathcal{T}})(\Psi_{\mathcal{T}}), \ \boldsymbol{D}_{\mathcal{T}} := \langle \Xi_{\mathcal{T}}, \Psi_{\mathcal{T}} \rangle_{L_2}$

- Piecewise constants $V_{\tau} = \operatorname{span} \Xi_{\tau} \subset H^{-1/2}$, with basis $\xi_T := \mathbb{1}_T$
- Single Layer operator $A_{\tau} \colon V_{\tau} \to V'_{\tau}$, with $\mathbf{A}_{\tau} := (A \Xi_{\tau})(\Xi_{\tau})$
- Family ${\mathbb T}$ of triangulations of Ω

Operator preconditioning (Steinbach & Wendland [SW98], Hiptmair [Hip06]):

- Given a suitable 'dual' space $W_{ au} = \operatorname{span} \Psi_{ au} \subset H^{1/2}$
- Boundedly invertible $B_{\tau} \colon W_{\tau} \to W'_{\tau}$ (e.g. Hypersingular)
- $L_2(\Omega)$ -duality pairing $D_{ au} \colon V_{ au} o W'_{ au}$

For matrices $\boldsymbol{B}_{\mathcal{T}} := (B\Psi_{\mathcal{T}})(\Psi_{\mathcal{T}}), \ \boldsymbol{D}_{\mathcal{T}} := \langle \Xi_{\mathcal{T}}, \Psi_{\mathcal{T}} \rangle_{L_2}$

- Piecewise constants $V_{\tau} = \operatorname{span} \Xi_{\tau} \subset H^{-1/2}$, with basis $\xi_T := \mathbb{1}_T$
- Single Layer operator $A_{\tau} \colon V_{\tau} \to V'_{\tau}$, with $\mathbf{A}_{\tau} := (A \Xi_{\tau})(\Xi_{\tau})$
- Family ${\mathbb T}$ of triangulations of Ω

Operator preconditioning (Steinbach & Wendland [SW98], Hiptmair [Hip06]):

- Given a suitable 'dual' space $W_{ au} = \operatorname{span} \Psi_{ au} \subset H^{1/2}$
- Boundedly invertible $B_{\tau} \colon W_{\tau} \to W'_{\tau}$ (e.g. Hypersingular)
- $L_2(\Omega)$ -duality pairing $D_{ au} \colon V_{ au} o W'_{ au}$

For matrices $m{B}_{ au} := (B\Psi_{ au})(\Psi_{ au}), \ m{D}_{ au} := \langle \Xi_{ au}, \Psi_{ au}
angle_{L_2}$

- Piecewise constants $V_{\tau} = \operatorname{span} \Xi_{\tau} \subset H^{-1/2}$, with basis $\xi_T := \mathbb{1}_T$
- Single Layer operator $A_{\tau} \colon V_{\tau} \to V'_{\tau}$, with $\mathbf{A}_{\tau} := (A \Xi_{\tau})(\Xi_{\tau})$
- Family ${\mathbb T}$ of triangulations of Ω

Operator preconditioning (Steinbach & Wendland [SW98], Hiptmair [Hip06]):

- Given a suitable 'dual' space $W_{ au} = \operatorname{span} \Psi_{ au} \subset H^{1/2}$
- Boundedly invertible $B_{\tau} \colon W_{\tau} \to W'_{\tau}$ (e.g. Hypersingular)
- $L_2(\Omega)$ -duality pairing $D_{ au} \colon V_{ au} o W'_{ au}$

For matrices $\boldsymbol{B}_{\mathcal{T}} := (B\Psi_{\mathcal{T}})(\Psi_{\mathcal{T}}), \ \boldsymbol{D}_{\mathcal{T}} := \langle \Xi_{\mathcal{T}}, \Psi_{\mathcal{T}} \rangle_{L_2}$

Reminder: $\mathbf{A}_{\mathcal{T}} := (A\Xi_{\mathcal{T}})(\Xi_{\mathcal{T}}), \ \mathbf{B}_{\mathcal{T}} := (B\Psi_{\mathcal{T}})(\Psi_{\mathcal{T}}), \ \mathbf{D}_{\mathcal{T}} := \langle \Xi_{\mathcal{T}}, \Psi_{\mathcal{T}} \rangle_{L_2}$

Theorem

If the 'dual' spaces $W_{ au} = \operatorname{span} \Psi_{ au}$ satisfy

$$\dim W_{\tau} = \dim V_{\tau}, \quad \inf_{\tau \in \mathbb{T}} \inf_{v \in V_{\tau}} \sup_{w \in W_{\tau}} \frac{\langle v, w \rangle_{L_2}}{\|v\|_{H^{-1/2}} \|w\|_{H^{1/2}}} > 0 \qquad (1)$$

then the preconditioner yields a uniformly bounded condition number:

$$\kappa(\boldsymbol{D}_{\mathcal{T}}^{-1}\boldsymbol{B}_{\mathcal{T}}\boldsymbol{D}_{\mathcal{T}}^{- op}\boldsymbol{A}_{\mathcal{T}})=O(1) \quad (\mathcal{T}\in\mathbb{T})$$

Finding 'dual' spaces W_{τ} that satisfy (1) is *difficult*.

- Matrix D_{τ} is not diagonal: inverse has to be approximated (costly)
- Ψ_{τ} constructed as cont. pw. lin. on *barycentric* refined mesh (costly)
- A graded mesh assumption is necessary to prove inf-sup (1)

Reminder: $\mathbf{A}_{\mathcal{T}} := (A\Xi_{\mathcal{T}})(\Xi_{\mathcal{T}}), \ \mathbf{B}_{\mathcal{T}} := (B\Psi_{\mathcal{T}})(\Psi_{\mathcal{T}}), \ \mathbf{D}_{\mathcal{T}} := \langle \Xi_{\mathcal{T}}, \Psi_{\mathcal{T}} \rangle_{L_2}$

Theorem

If the 'dual' spaces $W_{ au} = \operatorname{span} \Psi_{ au}$ satisfy

$$\dim W_{\tau} = \dim V_{\tau}, \quad \inf_{\tau \in \mathbb{T}} \inf_{v \in V_{\tau}} \sup_{w \in W_{\tau}} \frac{\langle v, w \rangle_{L_2}}{\|v\|_{H^{-1/2}} \|w\|_{H^{1/2}}} > 0 \qquad (1)$$

then the preconditioner yields a uniformly bounded condition number:

$$\kappa(\boldsymbol{D}_{\mathcal{T}}^{-1}\boldsymbol{B}_{\mathcal{T}}\boldsymbol{D}_{\mathcal{T}}^{- op}\boldsymbol{A}_{\mathcal{T}}) = O(1) \quad (\mathcal{T} \in \mathbb{T})$$

Finding 'dual' spaces W_{τ} that satisfy (1) is *difficult*.

- Matrix D_{τ} is not diagonal: inverse has to be approximated (costly)
- Ψ_{τ} constructed as cont. pw. lin. on *barycentric* refined mesh (costly)
- A graded mesh assumption is necessary to prove inf-sup (1)

Reminder: $\mathbf{A}_{\mathcal{T}} := (A\Xi_{\mathcal{T}})(\Xi_{\mathcal{T}}), \ \mathbf{B}_{\mathcal{T}} := (B\Psi_{\mathcal{T}})(\Psi_{\mathcal{T}}), \ \mathbf{D}_{\mathcal{T}} := \langle \Xi_{\mathcal{T}}, \Psi_{\mathcal{T}} \rangle_{L_2}$

Theorem

If the 'dual' spaces $W_{ au} = \operatorname{span} \Psi_{ au}$ satisfy

$$\dim W_{\tau} = \dim V_{\tau}, \quad \inf_{\tau \in \mathbb{T}} \inf_{v \in V_{\tau}} \sup_{w \in W_{\tau}} \frac{\langle v, w \rangle_{L_2}}{\|v\|_{H^{-1/2}} \|w\|_{H^{1/2}}} > 0 \qquad (1)$$

then the preconditioner yields a uniformly bounded condition number:

$$\kappa(\boldsymbol{D}_{\mathcal{T}}^{-1}\boldsymbol{B}_{\mathcal{T}}\boldsymbol{D}_{\mathcal{T}}^{- op}\boldsymbol{A}_{\mathcal{T}})=O(1) \quad (\mathcal{T}\in\mathbb{T})$$

Finding 'dual' spaces W_{τ} that satisfy (1) is *difficult*.

- Matrix D_{τ} is not diagonal: inverse has to be approximated (costly)
- Ψ_{τ} constructed as cont. pw. lin. on *barycentric* refined mesh (costly)
- A graded mesh assumption is necessary to prove inf-sup (1)

Reminder: $\mathbf{A}_{\mathcal{T}} := (A\Xi_{\mathcal{T}})(\Xi_{\mathcal{T}}), \ \mathbf{B}_{\mathcal{T}} := (B\Psi_{\mathcal{T}})(\Psi_{\mathcal{T}}), \ \mathbf{D}_{\mathcal{T}} := \langle \Xi_{\mathcal{T}}, \Psi_{\mathcal{T}} \rangle_{L_2}$

Theorem

If the 'dual' spaces $W_{ au} = \operatorname{span} \Psi_{ au}$ satisfy

$$\dim W_{\tau} = \dim V_{\tau}, \quad \inf_{\tau \in \mathbb{T}} \inf_{v \in V_{\tau}} \sup_{w \in W_{\tau}} \frac{\langle v, w \rangle_{L_2}}{\|v\|_{H^{-1/2}} \|w\|_{H^{1/2}}} > 0 \qquad (1)$$

then the preconditioner yields a uniformly bounded condition number:

$$\kappa(\boldsymbol{D}_{\mathcal{T}}^{-1}\boldsymbol{B}_{\mathcal{T}}\boldsymbol{D}_{\mathcal{T}}^{- op}\boldsymbol{A}_{\mathcal{T}}) = O(1) \quad (\mathcal{T} \in \mathbb{T})$$

Finding 'dual' spaces W_{τ} that satisfy (1) is *difficult*.

- Matrix D_{τ} is not diagonal: inverse has to be approximated (costly)
- Ψ_{τ} constructed as cont. pw. lin. on *barycentric* refined mesh (costly)
- A graded mesh assumption is necessary to prove inf-sup (1)

Reminder: $\mathbf{A}_{\mathcal{T}} := (A\Xi_{\mathcal{T}})(\Xi_{\mathcal{T}}), \ \mathbf{B}_{\mathcal{T}} := (B\Psi_{\mathcal{T}})(\Psi_{\mathcal{T}}), \ \mathbf{D}_{\mathcal{T}} := \langle \Xi_{\mathcal{T}}, \Psi_{\mathcal{T}} \rangle_{L_2}$

Theorem

If the 'dual' spaces $W_{ au} = \operatorname{span} \Psi_{ au}$ satisfy

$$\dim W_{\tau} = \dim V_{\tau}, \quad \inf_{\tau \in \mathbb{T}} \inf_{v \in V_{\tau}} \sup_{w \in W_{\tau}} \frac{\langle v, w \rangle_{L_2}}{\|v\|_{H^{-1/2}} \|w\|_{H^{1/2}}} > 0 \qquad (1)$$

then the preconditioner yields a uniformly bounded condition number:

$$\kappa(\boldsymbol{D}_{\mathcal{T}}^{-1}\boldsymbol{B}_{\mathcal{T}}\boldsymbol{D}_{\mathcal{T}}^{- op}\boldsymbol{A}_{\mathcal{T}})=O(1) \quad (\mathcal{T}\in\mathbb{T})$$

Finding 'dual' spaces W_{τ} that satisfy (1) is *difficult*.

- Matrix D_{τ} is not diagonal: inverse has to be approximated (costly)
- Ψ_{τ} constructed as cont. pw. lin. on *barycentric* refined mesh (costly)
- A graded mesh assumption is necessary to prove inf-sup (1)

Dual mesh approach

Construction Ψ_{τ} on a *barycentric* refined mesh [BC07]:

Figure 1: A basis function $\psi_{\mathcal{T}} \in W_{\mathcal{T}}$ associated with $\xi_{\mathcal{T}}$. Picture from [BC07].

Our approach

With hat functions $\phi_{\mathbf{v}}$ and bubbles $\theta_{\mathcal{T}}$, we take

$$\psi_{\mathcal{T}} := \sum_{\mathbf{v} \in N_{\mathcal{T}}} d_{\mathbf{v}}^{-1} \phi_{\nu} + \theta_{\mathcal{T}} - \sum_{\mathcal{T}' \in \mathcal{T}} \left(\frac{1}{d+1} \sum_{\nu \in N_{\mathcal{T}} \cap N_{\mathcal{T}'}} d_{\nu}^{-1} \right) \theta_{\mathcal{T}'}.$$

Two important properties:

- $\boldsymbol{D}_{\tau} = \langle \Xi_{\tau}, \Psi_{\tau} \rangle_{L_2} = \text{diag}\{|T|: T \in \mathcal{T}\}.$
- $\sum_{T \in \mathcal{T}} \psi_T = \mathbb{1}$

For \mathbb{T} the family of conforming *shape-regular* triangulations of Ω :

Theorem ([Sv18])

Biorthogonal proj. P_{T} onto W_{T} , with ran $(Id - P_{T}) \perp V_{T}$ is bounded in $H^{1/2}$

$$\sup_{\mathcal{T}\in\mathbb{T}}\|P_{\mathcal{T}}\|_{\mathcal{L}(H^{1/2},H^{1/2})}<\infty.$$

Corollary

The inf-sup condition (1) holds (V_{τ}, W_{τ}) $(\mathcal{T} \in \mathbb{T})$, without an additional mesh grading assumption.

Our approach

With hat functions $\phi_{\mathbf{v}}$ and bubbles $\theta_{\mathcal{T}}$, we take

$$\psi_{\mathcal{T}} := \sum_{\nu \in N_{\mathcal{T}}} d_{\nu}^{-1} \phi_{\nu} + \theta_{\mathcal{T}} - \sum_{\mathcal{T}' \in \mathcal{T}} \left(\frac{1}{d+1} \sum_{\nu \in N_{\mathcal{T}} \cap N_{\mathcal{T}'}} d_{\nu}^{-1} \right) \theta_{\mathcal{T}'}.$$

Two important properties:

- $\boldsymbol{D}_{\tau} = \langle \Xi_{\tau}, \Psi_{\tau} \rangle_{L_2} = \text{diag}\{|T|: T \in \mathcal{T}\}.$
- $\sum_{T \in \mathcal{T}} \psi_T = \mathbb{1}$

For \mathbb{T} the family of conforming *shape-regular* triangulations of Ω :

Theorem ([Sv18])

Biorthogonal proj. P_{T} onto W_{T} , with ran $(Id - P_{T}) \perp V_{T}$ is bounded in $H^{1/2}$

$$\sup_{\mathcal{T}\in\mathbb{T}}\|P_{\mathcal{T}}\|_{\mathcal{L}(H^{1/2},H^{1/2})}<\infty.$$

Corollary

The inf-sup condition (1) holds (V_{τ}, W_{τ}) $(\mathcal{T} \in \mathbb{T})$, without an additional mesh grading assumption.

Recall that $W_{ au} \subset S_{ au} \oplus \mathscr{B}_{ au}$ for

- Continuous piecewise linears $S_{\tau} := \operatorname{span} \{ \phi_v \}$
- Bubbles $\mathscr{B}_{\mathcal{T}} := \operatorname{span}\{\theta_{\mathcal{T}}\}$

Matrix representation $\boldsymbol{B}_{\tau} = (B\Psi_{\tau})(\Psi_{\tau})$ requires explicit θ_{τ} .

Practical alternative follows from

$$\|u+v\|_{H^{1/2}}^2 \eqsim \|u\|_{H^{1/2}}^2 + \|v\|_{H^{1/2}}^2 \quad (u \in S_{\tau}, v \in \mathscr{B}_{\tau}).$$

Suppose we have bounded & coercive

$$B^S_{ au}\colon S_{ au} o S'_{ au}$$
 and $B^{\mathscr{B}}_{ au}\colon \mathscr{B}_{ au} o \mathscr{B}'_{ au}$

then a bounded & coercive $B_{\tau} \colon S_{\tau} \oplus \mathscr{B}_{\tau} \to (S_{\tau} \oplus \mathscr{B}_{\tau})'$ is given by:

 $(B_{\tau}(u+v))(\tilde{u}+\tilde{v}) := (B_{\tau}^{S}u)(\tilde{u}) + (B_{\tau}^{\mathscr{B}}v)(\tilde{v}).$

Recall that $W_{ au} \subset S_{ au} \oplus \mathscr{B}_{ au}$ for

- Continuous piecewise linears $S_{\tau} := \operatorname{span}\{\phi_{\mathsf{v}}\}$
- Bubbles $\mathscr{B}_{\mathcal{T}} := \operatorname{span}\{\theta_{\mathcal{T}}\}$

Matrix representation $\boldsymbol{B}_{\tau} = (B\Psi_{\tau})(\Psi_{\tau})$ requires explicit θ_{τ} .

Practical alternative follows from

$$\|u+v\|^2_{H^{1/2}} \eqsim \|u\|^2_{H^{1/2}} + \|v\|^2_{H^{1/2}} \quad (u \in S_{\tau}, v \in \mathscr{B}_{\tau}).$$

Suppose we have bounded & coercive

$$B^S_ au\colon S_ au o S'_ au$$
 and $B^{\mathscr{B}}_ au\colon \mathscr{B}_ au o \mathscr{B}'_ au$

then a bounded & coercive $B_{\tau} \colon S_{\tau} \oplus \mathscr{B}_{\tau} \to (S_{\tau} \oplus \mathscr{B}_{\tau})'$ is given by:

 $(B_{\tau}(u+v))(\tilde{u}+\tilde{v}) := (B_{\tau}^{S}u)(\tilde{u}) + (B_{\tau}^{\mathscr{B}}v)(\tilde{v}).$

Recall that $W_{ au} \subset S_{ au} \oplus \mathscr{B}_{ au}$ for

- Continuous piecewise linears $S_{\tau} := \operatorname{span}\{\phi_v\}$
- Bubbles $\mathscr{B}_{\mathcal{T}} := \operatorname{span}\{\theta_{\mathcal{T}}\}$

Matrix representation $\boldsymbol{B}_{\tau} = (B\Psi_{\tau})(\Psi_{\tau})$ requires explicit θ_{τ} .

Practical alternative follows from

$$\|u+v\|_{H^{1/2}}^2 = \|u\|_{H^{1/2}}^2 + \|v\|_{H^{1/2}}^2 \quad (u \in S_{\tau}, v \in \mathscr{B}_{\tau}).$$

Suppose we have bounded & coercive

$$B^{\mathcal{S}}_{ au}\colon \mathcal{S}_{ au} o \mathcal{S}'_{ au}$$
 and $B^{\mathscr{B}}_{ au}\colon \mathscr{B}_{ au} o \mathscr{B}'_{ au},$

then a bounded & coercive $B_{\tau} \colon S_{\tau} \oplus \mathscr{B}_{\tau} \to (S_{\tau} \oplus \mathscr{B}_{\tau})'$ is given by:

$$(B_{\tau}(u+v))(\tilde{u}+\tilde{v}) := (B_{\tau}^{S}u)(\tilde{u}) + (B_{\tau}^{\mathscr{B}}v)(\tilde{v}).$$

We construct
$$B_{ au}\colon S_{ au}\oplus \mathscr{B}_{ au} o (S_{ au}\oplus \mathscr{B}_{ au})'$$
 as

$$(B_{\tau}(u+v))(\tilde{u}+\tilde{v}):=(B_{\tau}^{S}u)(\tilde{u})+(B_{\tau}^{\mathscr{B}}v)(\tilde{v})$$

• The bubbles form a (rescaled) Riesz basis:

$$\|\sum_{T\in\mathcal{T}}c_T\theta_T\|_{H^{1/2}}^2 \approx \sum_{T\in\mathcal{T}}|c_T|^2|T|$$

• So a bounded and coercive $B^{\mathscr{B}}_{\tau}$ is given by

$$(B_{\tau}^{\mathscr{B}}\sum_{T\in\mathcal{T}}c_{T} heta_{T})(\sum_{T\in\mathcal{T}}d_{T} heta_{T}):=eta_{0}\sum_{T\in\mathcal{T}}|T|^{1/2}c_{T}d_{T},\quadeta_{0}>0.$$

• For $S_{ au}$ we take the Hypersingular operator $B: H^{1/2}
ightarrow H^{-1/2}$

$$(B^S_{\tau}u)(\widetilde{u}) = (Bu)(\widetilde{u}) \quad (u \in S_{\tau})$$

Constructing $B_{\tau}: W_{\tau} \to W'_{\tau}$

We construct $B_{ au} \colon S_{ au} \oplus \mathscr{B}_{ au} o (S_{ au} \oplus \mathscr{B}_{ au})'$ as

$$(B_{\tau}(u+v))(\tilde{u}+\tilde{v}):=(B_{\tau}^{S}u)(\tilde{u})+(B_{\tau}^{\mathscr{B}}v)(\tilde{v})$$

• The bubbles form a (rescaled) Riesz basis:

$$\|\sum_{T\in\mathcal{T}}c_T\theta_T\|_{H^{1/2}}^2 = \sum_{T\in\mathcal{T}}|c_T|^2|T|$$

• So a bounded and coercive $B_{\tau}^{\mathscr{B}}$ is given by

$$(B_{\tau}^{\mathscr{B}}\sum_{T\in\mathcal{T}}c_{T} heta_{T})(\sum_{T\in\mathcal{T}}d_{T} heta_{T}):=eta_{0}\sum_{T\in\mathcal{T}}|T|^{1/2}c_{T}d_{T},\quadeta_{0}>0.$$

• For $S_{ au}$ we take the Hypersingular operator $B: H^{1/2}
ightarrow H^{-1/2}$

$$(B^S_{\tau}u)(\widetilde{u}) = (Bu)(\widetilde{u}) \quad (u \in S_{\tau})$$

Constructing $B_{\tau}: W_{\tau} \to W'_{\tau}$

We construct $B_{ au} \colon S_{ au} \oplus \mathscr{B}_{ au} o (S_{ au} \oplus \mathscr{B}_{ au})'$ as

$$(B_{\tau}(u+v))(\tilde{u}+\tilde{v}) := (B_{\tau}^{S}u)(\tilde{u}) + (B_{\tau}^{\mathscr{B}}v)(\tilde{v})$$

• The bubbles form a (rescaled) Riesz basis:

$$\|\sum_{T\in\mathcal{T}}c_T\theta_T\|_{H^{1/2}}^2 = \sum_{T\in\mathcal{T}}|c_T|^2|T|$$

• So a bounded and coercive $B_{\tau}^{\mathscr{B}}$ is given by

$$(B_{\tau}^{\mathscr{B}}\sum_{T\in\mathcal{T}}c_{T}\theta_{T})(\sum_{T\in\mathcal{T}}d_{T}\theta_{T}):=\beta_{0}\sum_{T\in\mathcal{T}}|T|^{1/2}c_{T}d_{T}, \quad \beta_{0}>0.$$

• For $S_{ au}$ we take the Hypersingular operator $B: H^{1/2}
ightarrow H^{-1/2}$

$$(B^{S}_{\tau}u)(\tilde{u}) = (Bu)(\tilde{u}) \quad (u \in S_{\tau})$$

Matrix representation is given by

$$\boldsymbol{G}_{\tau} := \boldsymbol{D}_{\tau}^{-1} (\boldsymbol{p}_{\tau}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\tau} + \beta_{0} \boldsymbol{q}_{\tau}^{\top} \boldsymbol{D}_{\tau}^{1/2} \boldsymbol{q}_{\tau}) \boldsymbol{D}_{\tau}^{-1},$$

where for some $B: H^{1/2} \to H^{-1/2}$,

$$\begin{split} \boldsymbol{D}_{\tau} &= \operatorname{diag}\{|T|: T \in \mathcal{T}\}\\ \boldsymbol{B}_{\tau}^{S} &= (B\Phi_{\tau})(\Phi_{\tau}) \quad \text{for hat functions } \Phi_{\tau}\\ \boldsymbol{p}_{\tau}, \boldsymbol{q}_{\tau} \quad \text{sparse.} \end{split}$$

Computationally: $cost(\boldsymbol{G}_{\tau}) = \mathcal{O}(\#\mathcal{T}) + cost(\boldsymbol{B}_{\tau}^{S}).$

Numerical results: uniform refinements

 $\Omega = \partial [0, 1]^3$, Single Layer operator A, Hypersingular operator B. Results for a sequence of uniformly refined meshes.

dofs	$\kappa_{\mathcal{S}}(diag(\boldsymbol{A}_{ au})^{-1}\boldsymbol{A}_{ au})$	$\kappa_{S}(\boldsymbol{G}_{T}\boldsymbol{A}_{T})$
12	14.56	2.50
48	29.30	2.63
192	58.25	2.77
768	116.3	2.79
3072	230.0	2.80
12288	444.8	2.86
49152	851.8	2.89
196608	1565.7	2.90

Condition numbers for preconditioned single layer system discretized by piecewise constants V_T . For coercivity of B we have added $\alpha \langle u, 1 \rangle_{L_2} \langle v, 1 \rangle_{L_2}$ for some $\alpha > 0$, here $\alpha = 0.05, \beta_0 = 1.25$. Sequence of locally refined triangulations.

dofs	$h_{ au,min}$	$\kappa_{\mathcal{S}}(diag(\boldsymbol{A}_{\mathcal{T}})^{-1}\boldsymbol{A}_{\mathcal{T}})$	$\kappa_{S}(\boldsymbol{G}_{T}\boldsymbol{A}_{T})$
12	$7.0\cdot 10^{-1}$	14.56	2.61
432	$2.2 \cdot 10^{-2}$	68.66	2.64
912	$6.9 \cdot 10^{-4}$	73.15	2.64
1872	$6.7 \cdot 10^{-7}$	73.70	2.64
2352	$2.1\cdot 10^{-8}$	73.80	2.64
2976	$2.3\cdot10^{-10}$	73.66	2.64

Condition numbers for preconditioned single layer. Matrix $G_{\mathcal{T}}$ is constructed using $\beta_0 = 1.2$. The second column is defined by $h_{\mathcal{T},min} := \min_{\mathcal{T} \in \mathcal{T}} h_{\mathcal{T}}$.

$A: H^{-s}_{0,\gamma}(\Gamma) o H^{s}_{0,\gamma}(\Gamma) \quad s \in [0,1].$

- Using a subspace correction method it generalizes to a preconditioner for *higher order* trial spaces $V_{\tau} = S_{\tau}^{-1,\ell}$
- Also works for *continuous* trial spaces $V_{ au} = S_{ au}^{0,\ell}$
- Use a cheaper operator $B: H^s \to H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

[▶] Lots of time left

[▶] Not so much time left

$$A: H^{-s}_{0,\gamma}(\Gamma) o H^{s}_{0,\gamma}(\Gamma) \quad s \in [0,1].$$

- Using a subspace correction method it generalizes to a preconditioner for *higher order* trial spaces $V_{\tau} = S_{\tau}^{-1,\ell}$
- Also works for *continuous* trial spaces $V_ au = S_ au^{0,\ell}$
- Use a cheaper operator $B: H^s \to H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

[▶] Lots of time left

[▶] Not so much time left

$$A: H^{-s}_{0,\gamma}(\Gamma) o H^{s}_{0,\gamma}(\Gamma) \quad s \in [0,1].$$

- Using a subspace correction method it generalizes to a preconditioner for *higher order* trial spaces $V_{\tau} = S_{\tau}^{-1,\ell}$
- Also works for *continuous* trial spaces $V_{ au} = S_{ au}^{0,\ell}$
- Use a cheaper operator $B: H^s \to H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

[▶] Lots of time left

[▶] Not so much time left

$$A: H^{-s}_{0,\gamma}(\Gamma) \to H^{s}_{0,\gamma}(\Gamma) \quad s \in [0,1].$$

- Using a subspace correction method it generalizes to a preconditioner for *higher order* trial spaces $V_{\tau} = S_{\tau}^{-1,\ell}$
- Also works for *continuous* trial spaces $V_{ au} = S_{ au}^{0,\ell}$
- Use a cheaper operator $B: H^s \to H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Lots of time left

[▶] Not so much time left

$$A: H^{-s}_{0,\gamma}(\Gamma) o H^{s}_{0,\gamma}(\Gamma) \quad s \in [0,1].$$

- Using a subspace correction method it generalizes to a preconditioner for *higher order* trial spaces $V_{\tau} = S_{\tau}^{-1,\ell}$
- Also works for *continuous* trial spaces $V_{ au} = S_{ au}^{0,\ell}$
- Use a cheaper operator $B: H^s \to H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Lots of time left

[▶] Not so much time left

$$A: H^{-s}_{0,\gamma}(\Gamma) o H^{s}_{0,\gamma}(\Gamma) \quad s \in [0,1].$$

- Using a subspace correction method it generalizes to a preconditioner for *higher order* trial spaces $V_{\tau} = S_{\tau}^{-1,\ell}$
- Also works for *continuous* trial spaces $V_{ au} = S_{ au}^{0,\ell}$
- Use a cheaper operator $B: H^s \to H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

Lots of time left

[▶] Not so much time left

$$A: H^{-s}_{0,\gamma}(\Gamma) o H^{s}_{0,\gamma}(\Gamma) \quad s \in [0,1].$$

- Using a subspace correction method it generalizes to a preconditioner for *higher order* trial spaces $V_{\tau} = S_{\tau}^{-1,\ell}$
- Also works for *continuous* trial spaces $V_{ au} = S_{ au}^{0,\ell}$
- Use a cheaper operator $B: H^s \to H^{-s}$ [Sv19a]
- Similar approach (biorthogonality, bubbles) can be used to precondition the positive order operators [Sv19b]

▶ Lots of time left

▶ Not so much time left

What if $V_{\tau} = S_{\tau}^{-1,\ell}$, piecewise polynomials for $\ell > 0$?

Lemma

For Q^0_{τ} the $L_2(\Omega)$ -orthogonal projector onto pw. const. $S^{-1,0}_{\tau}$ we have

•
$$\sup_{\mathcal{T}\in\mathbb{T}} \|Q^0_{\mathcal{T}}|_{V_{\mathcal{T}}}\|_{\mathcal{L}(H^{-1/2},H^{-1/2})} < \infty$$

- $\|\cdot\|_{H^{-1/2}} = \|h_{\tau}^{1/2} \cdot \|_{L_2}$ on $ran\left((\mathrm{Id} Q_{\tau}^0)|_{V_{\tau}}\right)$
- \implies Splitting $V_ au=Q^0_ au V_ au\oplus({
 m Id}-Q^0_ au)V_ au$ stable w.r.t. $H^{-1/2}$ -norm
- $\implies~$ Diagonal operator on $(\mathrm{Id}-{\sf Q}^0_ au)V_ au$ is bounded and coercive
 - $\ensuremath{\mathbb{P}}$ Build a preconditioner using a subspace correction method
 - Apply (previous) $G_{\mathcal{T}}$ on $Q^0_{\mathcal{T}}V_{\mathcal{T}}$
 - Apply simple diagonal scaling on $(\mathrm{Id}-Q^0_{ au})V_{ au}$

What if $V_{\tau} = S_{\tau}^{-1,\ell}$, piecewise polynomials for $\ell > 0$?

Lemma

For Q^0_{τ} the $L_2(\Omega)$ -orthogonal projector onto pw. const. $S^{-1,0}_{\tau}$ we have

•
$$\sup_{\mathcal{T}\in\mathbb{T}} \|Q^0_{\mathcal{T}}|_{V_{\mathcal{T}}}\|_{\mathcal{L}(H^{-1/2},H^{-1/2})} < \infty$$

•
$$\|\cdot\|_{H^{-1/2}} = \|h_{\tau}^{1/2} \cdot \|_{L_2}$$
 on $ran\left((\mathrm{Id} - Q_{\tau}^0)|_{V_{\tau}}\right)$

\implies Splitting $V_{ au} = Q^0_{ au} V_{ au} \oplus (\mathrm{Id} - Q^0_{ au}) V_{ au}$ stable w.r.t. $H^{-1/2}$ -norm

- $\implies~$ Diagonal operator on $(\mathrm{Id}-{\sf Q}_{ au}^0)V_{ au}$ is bounded and coercive
 - P Build a preconditioner using a subspace correction method
 - Apply (previous) $G_{\mathcal{T}}$ on $Q^0_{\mathcal{T}}V_{\mathcal{T}}$
 - Apply simple diagonal scaling on $(\mathrm{Id}-Q^0_{ au})V_{ au}$

What if $V_{\tau} = S_{\tau}^{-1,\ell}$, piecewise polynomials for $\ell > 0$?

Lemma

For Q^0_{τ} the $L_2(\Omega)$ -orthogonal projector onto pw. const. $S^{-1,0}_{\tau}$ we have

- $\sup_{\mathcal{T}\in\mathbb{T}} \|Q^0_{\mathcal{T}}|_{V_{\mathcal{T}}}\|_{\mathcal{L}(H^{-1/2},H^{-1/2})} < \infty$
- $\|\cdot\|_{H^{-1/2}} = \|h_{\tau}^{1/2} \cdot \|_{L_2}$ on $ran((\mathrm{Id} Q_{\tau}^0)|_{V_{\tau}})$
- \implies Splitting $V_{ au} = Q^0_{ au} V_{ au} \oplus (\mathrm{Id} Q^0_{ au}) V_{ au}$ stable w.r.t. $H^{-1/2}$ -norm
- \implies Diagonal operator on $(\mathrm{Id}-Q^0_{ au})V_{ au}$ is bounded and coercive
 - ${f \Im}$ Build a preconditioner using a subspace correction method
 - Apply (previous) $G_{\mathcal{T}}$ on $Q^0_{\mathcal{T}}V_{\mathcal{T}}$
 - Apply simple diagonal scaling on $(\mathrm{Id}-Q^0_{ au})V_{ au}$

What if $V_{\tau} = S_{\tau}^{-1,\ell}$, piecewise polynomials for $\ell > 0$?

Lemma

For Q^0_{τ} the $L_2(\Omega)$ -orthogonal projector onto pw. const. $S^{-1,0}_{\tau}$ we have

•
$$\sup_{\mathcal{T}\in\mathbb{T}} \|Q^0_{\mathcal{T}}|_{\mathcal{V}_{\mathcal{T}}}\|_{\mathcal{L}(H^{-1/2},H^{-1/2})} < \infty$$

•
$$\|\cdot\|_{H^{-1/2}} = \|h_{\tau}^{1/2} \cdot\|_{L_2}$$
 on $ran\left((\mathrm{Id} - Q_{\tau}^0)|_{V_{\tau}}\right)$

- \implies Splitting $V_{ au} = Q^0_{ au} V_{ au} \oplus (\mathrm{Id} Q^0_{ au}) V_{ au}$ stable w.r.t. $H^{-1/2}$ -norm
- \implies Diagonal operator on $(\mathrm{Id}-Q^0_{ au})V_{ au}$ is bounded and coercive
 - $\$ Build a preconditioner using a subspace correction method
 - Apply (previous) $G_{\mathcal{T}}$ on $Q^0_{\mathcal{T}}V_{\mathcal{T}}$
 - Apply simple diagonal scaling on $(\mathrm{Id}-Q^0_{\mathcal{T}})V_{\mathcal{T}}$

Consider sequence $\{\mathcal{T}_k\}$ of uniform refined meshes, and $V_{\mathcal{T}} = S_{\mathcal{T}}^{-1,2}$ the space of discontinuous piecewise quadratics.

dofs	$\kappa_{\mathcal{S}}(diag(\boldsymbol{A}_{ au})^{-1}\boldsymbol{A}_{ au})$	$\kappa_{S}(\boldsymbol{G}_{T}\boldsymbol{A}_{T})$
72	167.16	9.58
288	309.12	10.4
1152	616.03	11.1
4608	1211.3	11.3
18432	2337.2	11.4

Spectral condition numbers of the preconditioned single layer system, using uniform refinements, discretized by discontinuous piecewise quadratics $S_{T}^{-1,2}$. The matrix G_{T} is constructed using the adapted hypersingular operator, with $\alpha = 0.05$, and $\beta_0 = \beta_1 = 1.25$.

Uniform preconditioners for positive order operators

In [Sv19b] we used a similar approach for positive order preconditioning:

- Continuous piecewise linears $S_{\mathcal{T}}$ wrt \mathcal{T}
- Hypersingular $B_{ au} \colon S_{ au} o S'_{ au}$
- Precondition with Single Layer A

Preconditioner is given by

$$\boldsymbol{G}_{\tau} := \boldsymbol{D}_{\tau}^{-1} (\boldsymbol{p}_{\tau}^{\top} \boldsymbol{A}_{\tau}^{U} \boldsymbol{p}_{\tau} + \beta_0 \boldsymbol{D}_{\tau}^{3/2}) \boldsymbol{D}_{\tau}^{-1},$$

where taking

$$\begin{split} U &= \operatorname{span} \Sigma_{\tau} \quad pw. \ cons. \ \operatorname{or} \ cont. \ pw. \ lin.\\ \boldsymbol{A}_{\tau}^{U} &= (A\Sigma_{\tau})(\Sigma_{\tau})\\ \boldsymbol{D}_{\tau} &= \operatorname{diag}\{|\operatorname{supp} \phi_{v}| \colon \phi_{v} \in S_{\tau}\}\\ \boldsymbol{p}_{\tau} &= \operatorname{sparse.} \end{split}$$

Computationally: $cost(\boldsymbol{G}_{\tau}) = \mathcal{O}(\#\mathcal{T}) + cost(\boldsymbol{A}_{\tau}^{U}).$

Uniform preconditioners for positive order operators

In [Sv19b] we used a similar approach for positive order preconditioning:

- Continuous piecewise linears $S_{\mathcal{T}}$ wrt \mathcal{T}
- Hypersingular $B_{ au} \colon S_{ au} o S'_{ au}$
- Precondition with Single Layer A

Preconditioner is given by

$$\boldsymbol{G}_{\tau} := \boldsymbol{D}_{\tau}^{-1} (\boldsymbol{p}_{\tau}^{\top} \boldsymbol{A}_{\tau}^{U} \boldsymbol{p}_{\tau} + \beta_0 \boldsymbol{D}_{\tau}^{3/2}) \boldsymbol{D}_{\tau}^{-1},$$

where taking

$$\begin{split} U &= \operatorname{span} \Sigma_{\tau} \quad pw. \ cons. \ \operatorname{or} \ cont. \ pw. \ lin\\ \boldsymbol{A}_{\tau}^{U} &= (A\Sigma_{\tau})(\Sigma_{\tau})\\ \boldsymbol{D}_{\tau} &= \operatorname{diag}\{|\operatorname{supp} \phi_{v}| \colon \phi_{v} \in S_{\tau}\}\\ \boldsymbol{p}_{\tau} \quad \operatorname{sparse.} \end{split}$$

Computationally: $cost(\boldsymbol{G}_{\tau}) = \mathcal{O}(\#\mathcal{T}) + cost(\boldsymbol{A}_{\tau}^U).$

Numerical results: positive order

 $\Omega = \partial [0,1]^3$, B Hypersingular operator, Single Layer operator A. Results for a sequence of uniformly refined meshes.

$\kappa_{\mathcal{S}}(\boldsymbol{B}_{\mathcal{T}})$	$\kappa_{S}(\boldsymbol{G}_{T}\boldsymbol{B}_{T})$
115.6	2.27
168.7	2.24
231.3	2.27
336.9	2.25
461.7	2.28
671.9	2.28
751.6	2.30
	115.6 168.7 231.3 336.9 461.7 671.9

Condition numbers for preconditioned Hypersingular system discretized by continuous piecewise linears $S_{\mathcal{T}}^{0,1}$. Single Layer operator is discretized on piecewise constants $V_{\mathcal{T}}$. For coercivity of *B* we have added $\alpha \langle u, 1 \rangle_{L_2(\Omega)} \langle v, 1 \rangle_{L_2(\Omega)}$, here $\alpha = 0.05$, $\beta_1 = 0.34$. Results are gathered using compressed hierarchical matrices.

• Uniform preconditioners for operators $A \colon H^{-s} \to H^s$

• Requires bounded & coercive operator $B \colon H^s \to H^{-s}$

• Implementation of preconditioner is

$$\boldsymbol{G}_{\tau} := \boldsymbol{D}_{\tau}^{-1} (\boldsymbol{p}_{\tau}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\tau} + \beta_{0} \boldsymbol{q}_{\tau}^{\top} \boldsymbol{D}_{\tau}^{1-s} \boldsymbol{q}_{\tau}) \boldsymbol{D}_{\tau}^{-1}$$

- Computationally $cost(\boldsymbol{G}_{\mathcal{T}}) = \mathcal{O}(\#\mathcal{T}) + cost(\boldsymbol{B}_{\mathcal{T}}^{S})$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

- Uniform preconditioners for operators $A \colon H^{-s} \to H^s$
- Requires bounded & coercive operator $B \colon H^s \to H^{-s}$

• Implementation of preconditioner is

$$oldsymbol{G}_{ au} := oldsymbol{D}_{ au}^{-1} (oldsymbol{p}_{ au}^{ op} oldsymbol{B}_{ au}^S oldsymbol{p}_{ au} + eta_0 oldsymbol{q}_{ au}^{ op} oldsymbol{D}_{ au}^{1-s} oldsymbol{q}_{ au}) oldsymbol{D}_{ au}^{-1}$$

- Computationally $cost(\boldsymbol{G}_{\mathcal{T}}) = \mathcal{O}(\#\mathcal{T}) + cost(\boldsymbol{B}_{\mathcal{T}}^{S})$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

- Uniform preconditioners for operators $A \colon H^{-s} \to H^s$
- Requires bounded & coercive operator $B \colon H^s \to H^{-s}$
- Implementation of preconditioner is

$$\boldsymbol{G}_{\tau} := \boldsymbol{D}_{\tau}^{-1} (\boldsymbol{p}_{\tau}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\tau} + \beta_{0} \boldsymbol{q}_{\tau}^{\top} \boldsymbol{D}_{\tau}^{1-s} \boldsymbol{q}_{\tau}) \boldsymbol{D}_{\tau}^{-1}$$

- Computationally $cost(\boldsymbol{G}_{\tau}) = \mathcal{O}(\#\mathcal{T}) + cost(\boldsymbol{B}_{\tau}^{S})$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

- Uniform preconditioners for operators $A \colon H^{-s} \to H^s$
- Requires bounded & coercive operator $B \colon H^s \to H^{-s}$
- Implementation of preconditioner is

$$\boldsymbol{G}_{\tau} := \boldsymbol{D}_{\tau}^{-1} (\boldsymbol{p}_{\tau}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\tau} + \beta_{0} \boldsymbol{q}_{\tau}^{\top} \boldsymbol{D}_{\tau}^{1-s} \boldsymbol{q}_{\tau}) \boldsymbol{D}_{\tau}^{-1}$$

- Computationally $cost(\boldsymbol{G}_{\tau}) = \mathcal{O}(\#\mathcal{T}) + cost(\boldsymbol{B}_{\tau}^{S})$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

- Uniform preconditioners for operators $A \colon H^{-s} \to H^s$
- Requires bounded & coercive operator $B \colon H^s \to H^{-s}$
- Implementation of preconditioner is

$$\boldsymbol{G}_{\tau} := \boldsymbol{D}_{\tau}^{-1} (\boldsymbol{p}_{\tau}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\tau} + \beta_{0} \boldsymbol{q}_{\tau}^{\top} \boldsymbol{D}_{\tau}^{1-s} \boldsymbol{q}_{\tau}) \boldsymbol{D}_{\tau}^{-1}$$

- Computationally $cost(\boldsymbol{G}_{\tau}) = \mathcal{O}(\#\mathcal{T}) + cost(\boldsymbol{B}_{\tau}^{S})$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

- Uniform preconditioners for operators $A \colon H^{-s} \to H^s$
- Requires bounded & coercive operator $B \colon H^s \to H^{-s}$
- Implementation of preconditioner is

$$\boldsymbol{G}_{\tau} := \boldsymbol{D}_{\tau}^{-1} (\boldsymbol{p}_{\tau}^{\top} \boldsymbol{B}_{\tau}^{S} \boldsymbol{p}_{\tau} + \beta_{0} \boldsymbol{q}_{\tau}^{\top} \boldsymbol{D}_{\tau}^{1-s} \boldsymbol{q}_{\tau}) \boldsymbol{D}_{\tau}^{-1}$$

- Computationally $cost(\boldsymbol{G}_{\tau}) = \mathcal{O}(\#\mathcal{T}) + cost(\boldsymbol{B}_{\tau}^{S})$
- Generalizes to manifolds, and higher order (continuous) trial spaces
- Similar construction possible for preconditioning B using A

References i

- [BC07] A. Buffa and S.H. Christiansen, A dual finite element complex on the barycentric refinement, Math. Comp. 76 (2007), no. 260, 1743–1769. MR 2336266
- [Hip06] R. Hiptmair, Operator preconditioning, Comput. Math. Appl. 52 (2006), no. 5, 699–706. MR 2275559
- [Sv18] R. Stevenson and R. van Venetië, Optimal preconditioning for problems of negative order, 2018, Accepted for publication in Math. Comp.
- [Sv19a] _____, Optimal preconditioners of linear complexity for problems of negative order discretized on locally refined meshes, 2019, In preparation.
- [Sv19b] _____, Uniform preconditioners for problems of positive order, 2019, Submitted.
- [SW98] O. Steinbach and W. L. Wendland, The construction of some efficient preconditioners in the boundary element method, Adv. Comput. Math. 9 (1998), no. 1-2, 191–216, Numerical treatment of boundary integral equations. MR 1662766