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Introduction: preconditioning BEM

e Boundary Element Method (BEM)
Single Layer operator (bounded & coercive):

A: HY2(Q) — HY2(Q)

e Galerkin matrix A, for piecewise constants V-
e Solve A-x = y using Conjugate Gradients
e Condition number x(A;) = O(h™1)
—> Number of CG iterations grows to co as h | 0
Solution: consider a preconditioned system G-A,x = G,y
Problem

How to construct the preconditioner G, (=~ A7!), such that

k(GrA;) = O(1) for all meshes T
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Introduction: operator preconditioning

On a continuous level we find

e Single Layer operator A: H~1/2 — H1/2
e Hypersingular operator B: HY/? — H~1/2
e Combined BA: H71/2 — H~1/2
This suggests that B can serve as a preconditioner, informally:
e Suppose we have a basis for H=1/2
e Inducing a bijection T: R® — H~1/2
e Matrix representation is BA= T ' BAT
e For p(-) the spectral radius:

K(BA) = p(BA)p((BA)™") = p(BA)p((BA)™) < ||ABII[|(BA)Y||

— BA is well-conditioned!
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Operator preconditioning

Discretized we have

e Piecewise constants V, = span=, C H~1/2 with basis {7 := 11
e Single Layer operator A: V; — V., with A, := (A=,)(=,)
e Family T of triangulations of Q

Operator preconditioning (Steinbach & Wendland [SW98], Hiptmair [Hip06]):

e Given a suitable ‘dual’ space W, = span V., C H/2
e Boundedly invertible B;-: W, — W/ (e.g. Hypersingular)
o [,(Q)-duality pairing Dy: Vo — W,

For matrices B := (BV)(V,), Dy == (=, V),

Preconditioner: D 'B,D; T
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Operator preconditioning

Reminder: Ay := (A=7)(Z7), By := (BV7)(V7), Dr := =7,V 7)1,
Theorem

If the ‘dual’ spaces W, = span V- satisfy

dim W, =dim V-, inf inf sup <V7 W>L2

WL .o (1)
TeTveVr wewy [[VIg-12l|wllp2

then the preconditioner yields a uniformly bounded condition number:

“(D;IBTD;TAT) =0(1) (TeT)

Finding ‘dual’ spaces W that satisfy (1) is difficult.

Buffa & Christiansen [BCO7] constructed W, however:

e Matrix D+ is not diagonal: inverse has to be approximated (costly)
e W constructed as cont. pw. lin. on barycentric refined mesh (costly)
e A graded mesh assumption is necessary to prove inf-sup (1)






Our approach [Sv18] for d =2

Construct V.- € HY/? such that D, = (=, V), diagonal.

&r




Our approach [Sv18] for d =2

Construct V.- € HY/? such that D, = (=, V), diagonal.

7/)7' = Z d;lgbu

veNT

Hat functions ¢, € H*

N




Our approach [Sv18] for d =2

Construct V.- € HY/? such that D, = (=, V), diagonal.

Pr = 01 — Z (% Z d;l)QT/

T eT veNTNNy

Bubbles 67 € H}(T) s.t.
01,61 ), =017 | T|




Our approach [Sv18] for d =2

Construct V.- € HY/? such that D, = (=, V), diagonal.

br= Y d 03 G Y e

veNT TeT veNTNNx/

Hat functions ¢, € H*

Bubbles 67 € H}(T) s.t.
O1,671), =017 | T|




Our approach [Sv18] for d =2

Construct V.- € HY/? such that D, = (=, V), diagonal.

Yri= ) d7Mg+07— ) (% > dNor

veNr T eT veNTNNy

Hat functions ¢, € H*

Bubbles 67 € HY(T) s.t.
O1,671), =017 | T|




Our approach [Sv18] for d =2

Construct V.- € HY/? such that D, = (=, V), diagonal.

Yri= ) d7Mg+07— ) (% > dNor

veNr T eT veNTNNy

Hat functions ¢, € H*

Bubbles 67 € HY(T) s.t.
O1,671), =017 | T|




Our approach [Sv18] for d =2

Construct V.- € HY/? such that D, = (=, V), diagonal.

Yri= ) d7Mg+07— ) (% > dNor

veNr T eT veNTNNy

Hat functions ¢, € H*

Bubbles 67 € HY(T) s.t.
O1,671), =017 | T|




Our approach

With hat functions ¢, and bubbles 6+, we take
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Y1 = ZveNr dv_1¢” + 071 — ZT’GT (%ﬂ ZueNmNT, du_l)eT"
Two important properties:
e D= (=, V), =diag{|T|: TeT}
L4 ZTeT yr=1
For T the family of conforming shape-regular triangulations of :
Theorem ([Sv18])
Biorthogonal proj. P+ onto Wy, with ran(Id — P7) L Vi is bounded in H/2

sup ||Prl p/2,m1/2) < 00.
TET

Corollary
The inf-sup condition (1) holds (V-, W;) (T € T), without an
additional mesh grading assumption.
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Constructing B, : W, — W,

Recall that W, C S & % for

e Continuous piecewise linears S := span{¢,}
e Bubbles #Z, := span{0r}

Matrix representation B = (BW)(V ;) requires explicit 6.

Practical alternative follows from
lu+ vIZee = ul2ue + IVIGs (u€ Srv € 7).
Suppose we have bounded & coercive
B2 S, —S, and BZ: %, — B,
then a bounded & coercive Br: S @ B, — (S @ HB;) is given by:

(Br(u+ v))(@ + 7) := (BEu)(@) + (BZv)(V).
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Constructing B, : W, — W,

We construct Br: S & B+ — (S ® B1) as

(Br(u+v))(@ + ) = (BEu)(@) + (BZv)(7)

e The bubbles form a (rescaled) Riesz basis:

1> erfrllfne = ) lerfIT]

TeT TeT

e So a bounded and coercive B is given by

(BY Z CTHT)(Z dr07) = Bo Z | T|Y?crdr, fo>0.

TeT TeT TET

e For S, we take the Hypersingular operator B : H/2 — H~1/2
(BSu)(@) = (Bu)(@) (ue€Sy)

10



Implementation preconditioner

Matrix representation is given by
2 _
GT = D ( BSPT—'_BOqT T/ qT)DTl7
where for some B : HY/2 — H=1/2

D, =diag{|T|: T €T}
BS (B®,)(P,) for hat functions &,

Pr,qr sparse.

Computationally: cost(G;) = O(#T) + cost(Bs).

11



Numerical results: uniform refinements

Q = 9]0, 1]3, Single Layer operator A, Hypersingular operator B.
Results for a sequence of uniformly refined meshes.

dofs rs(diag(A;)"*A;) ks(G,A;)

12 14.56 2.50

48 29.30 2.63

192 58.25 2,77
768 116.3 2.79
3072 230.0 2.80
12288 444.8 2.86
49152 851.8 2.89
196608 1565.7 2.90

Condition numbers for preconditioned single layer system discretized by piecewise constants V.
For coercivity of B we have added a(u, 1)1, (v, 1), for some a > 0, here @ = 0.05, o = 1.25.

12



Numerical results: local refinements

Sequence of locally refined triangulations.

dofs he min ks(diag(A;)"1A;)  ks(GrA;)

12 7.0-1071 14.56 2.61
432 22-.1072 63.66 2.64
912 6.9-107* 73.15 2.64

1872 6.7-1077 73.70 2.64
2352 2.1-107% 73.80 2.64
2976 2.3-1071° 73.66 2.64

Condition numbers for preconditioned single layer. Matrix G is constructed using Sy = 1.2. The
second column is defined by h7 min := mintct hr.
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Generalizations

e Results hold for manifolds I', with or without boundary OI', and
A: HO_;(F) — Hgy,y(r) s € [0,1].

e Using a subspace correction method it generalizes to a
preconditioner for higher order trial spaces V- = ST_M

e Also works for continuous trial spaces V., = 52’5
e Use a cheaper operator B : H* — H~*° [Sv19a]

e Similar approach (biorthogonality, bubbles) can be used to
precondition the positive order operators [Sv19b]

» Lots of time left
» Not so much time left
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Higher order trial spaces

What if V- = S;I’E, piecewise polynomials for ¢ > 07
Lemma

For Q% the L,(Q)-orthogonal projector onto pw. const. S, 10 e have
T g )J

© ST ||Q§J‘|VT”£(H*1/2,H*1/2) <0

o [|-lly-r2 = [1H5* |, on ran ((Id — Q2)|v,)
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Higher order trial spaces

What if V- = S;I’E, piecewise polynomials for ¢ > 07
Lemma

For Q% the Ly(S2)-orthogonal projector onto pw. const. Sy 1% we have

o suprer | QY vy ll cp1/2,1-172) < 00

1/2
o [|-lly-r2 = [1H5* |, on ran ((Id — Q2)|v,)

= Splitting V- = Q2V, @ (Id — Q%) V- stable w.r.t. H=/2-norm

= Diagonal operator on (Id — Q%) V- is bounded and coercive
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Higher order trial spaces

What if V- = S;I’E, piecewise polynomials for ¢ > 07

Lemma

For Q% the L,(Q)-orthogonal projector onto pw. const. S, 10 e have
T g )J

© ST ||Q§J‘|VT”£(H*1/2,H*1/2) <0

1/2
o [|-lly-r2 = [1H5* |, on ran ((Id — Q2)|v,)

= Splitting V = Qg V-o (Id — Qg) V, stable w.r.t. H=1/2-norm
= Diagonal operator on (Id — Q%) V- is bounded and coercive
@ Build a preconditioner using a subspace correction method

o Apply (previous) Gr on Q% V-
o Apply simple diagonal scaling on (Id — Q%) V-

15



Numerical results: piecewise quadratics

Consider sequence {7 «} of uniform refined meshes, and V- = S712 the
space of discontinuous piecewise quadratics.

dofs rs(diag(A;)"tA;) ks(G,A;)

72 167.16 9.58
288 309.12 10.4
1152 616.03 11.1
4608 1211.3 11.3
18432 2337.2 11.4

Spectral condition numbers of the preconditioned single layer system, using uniform refinements,
discretized by discontinuous piecewise quadratics 5;1’2. The matrix G is constructed using the

adapted hypersingular operator, with o = 0.05, and 5y = 31 = 1.25.

16



Uniform preconditioners for positive order operators

In [Sv19b] we used a similar approach for positive order preconditioning:

e Continuous piecewise linears S wrt T
e Hypersingular B, : S — S,
e Precondition with Single Layer A
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Uniform preconditioners for positive order operators

In [Sv19b] we used a similar approach for positive order preconditioning:

e Continuous piecewise linears S wrt T
e Hypersingular B, : S — S,
e Precondition with Single Layer A
Preconditioner is given by
G, .= D;Y(p] AYp, + DY *)D;,
where taking

U =spanX pw. cons. or cont. pw. lin.

AY = (AT )(Z,)
D; = diag{|supp ¢.|: ¢ € S+}
P+ sparse.

Computationally: cost(G,) = O(#T) + cost(AY).
17



Numerical results: positive order

Q = 9]0, 1]3, B Hypersingular operator, Single Layer operator A.
Results for a sequence of uniformly refined meshes.

dofs Hs(BT) Ifs(GTBT)

12290 115.6 2.27
24578 168.7 2.24
49154 231.3 2.27
98306 336.9 2.25
196610 461.7 2.28
393218 671.9 2.28
786434 751.6 2.30

Condition numbers for preconditioned Hypersingular system discretized by continuous piecewise
linears SQF’IA Single Layer operator is discretized on piecewise constants V7. For coercivity of B we
have added a(u, 1)1,(q){(v,1)1,(q), here & = 0.05, 81 = 0.34. Results are gathered using
compressed hierarchical matrices.
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Conclusions

Uniform preconditioners for operators A: H™° — H*

Requires bounded & coercive operator B: H* — H™*

Implementation of preconditioner is
Gr = D;l(PI BiPT + Boq;r Di_qu)D;l

Computationally cost(G;) = O(#T) + cost(B3)

Generalizes to manifolds, and higher order (continuous) trial spaces

Similar construction possible for preconditioning B using A
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