

Robust multigrid methods in isogeometric analysis

Stefan Takacs

Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy of Sciences (ÖAW) Linz, Austria

AANMPDE 2019

Model problem	Multigrid	Gauss-Seidel			
www.ricam.oeaw.ac.at	Stefan Tak	acs, Robust multigrid r	nethods in isogeome	etric analysis	

Outline

1 Model problem

- 2 The multigrid framework
- 3 Gauss-Seidel smoother
- 4 Subspace corrected mass smoother
- 5 Macro-element Gauss-Seidel smoother

6 Conclusions

www.ricam.oeaw.ac.at	Stefan ⁻	Takacs, Robust multigrid r	nethods in isogeom	etric analysis	

Model problem: the Poisson problem

Given: domain $\Omega \subset \mathbb{R}^d$ and function $f \in L^2(\Omega)$

Find solution $u \in H^1(\Omega)$ such that

 $-\Delta u = f \qquad \text{in } \Omega$ $u = 0 \qquad \text{on } \partial \Omega$

Galerkin discretization: Find solution $u \in S_{p,h}(\Omega)$ such that

 $(\nabla u, \nabla v) = (f, v)$ for all $v \in S_{p,h}(\Omega)$

Matrix-vector formulation: Find solution \underline{u}_h such that

$$A_h \underline{u}_h = \underline{f}_h$$

Model problem					
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	alysis	

Model problem: the Poisson problem

Given: domain $\Omega \subset \mathbb{R}^d$ and function $f \in L^2(\Omega)$

Find solution $u \in H^1(\Omega)$ such that

 $-\Delta u = f \qquad \text{in } \Omega$ $u = 0 \qquad \text{on } \partial \Omega$

Galerkin discretization: Find solution $u \in S_{p,h}(\Omega)$ such that

 $(\nabla u, \nabla v) = (f, v)$ for all $v \in S_{p,h}(\Omega)$

Matrix-vector formulation: Find solution \underline{u}_h such that

$$A_h \underline{u}_h = \underline{f}_h$$

Model problem					
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	alysis	

Single-patch Isogeometric Analysis

- Spline based FEM with global geometry function
- Univariate splines $S_{p,k,h}(0,1)$
 - degree *p*
 - smoothness k ($S_{p,k,h}(0,1) = \{u|_{[ih,(i+1)h)} \in \mathbb{P}_p\} \cap C^k(0,1)$) ■ grid size h
- $\blacksquare S_{p,h} := S_{p,p-1,h} \text{ are splines of maximum smoothness.}$
 - I Tensor-product splines on $\widehat{\Omega}:=(0,1)^d$

Global geometry function G: $\widehat{\Omega} \rightarrow \Omega = \mathbf{G}(\widehat{\Omega})$

Pull-back principle: $S_{p,h}(\Omega) = S_{p,h}(\widehat{\Omega}) \circ \mathbf{G}^{-1} = \{ u : u \circ \mathbf{G} \in S_{p,h}(\widehat{\Omega}) \}$

Model problem					
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	alysis	

Single-patch Isogeometric Analysis

- Spline based FEM with global geometry function Univariate splines $S_{p,k,h}(0,1)$ degree p • smoothness k $(S_{p,k,h}(0,1) = \{u|_{[ih,(i+1)h)} \in \mathbb{P}_p\} \cap C^k(0,1))$ grid size h $S_{p,h} := S_{p,p-1,h}$ are splines of maximum smoothness. Tensor-product splines on $\widehat{\Omega} := (0, 1)^d$ Global geometry function G: G $\widehat{\Omega} \to \Omega = \mathbf{G}(\widehat{\Omega})$
 - Pull-back principle: $S_{p,h}(\Omega) = S_{p,h}(\widehat{\Omega}) \circ \mathbf{G}^{-1} = \{ u : u \circ \mathbf{G} \in S_{p,h}(\widehat{\Omega}) \}$

Model problem					
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	alysis	

Multi-patch Isogeometric Analysis

■ Spline based FEM with global geometry function ■ Univariate splines S_{p,k,h}(0, 1)

- degree p
- smoothness k ($S_{p,k,h}(0,1) = \{u|_{[ih,(i+1)h)} \in \mathbb{P}_p\} \cap C^k(0,1)$) ■ grid size h
- $\blacksquare S_{p,h} := S_{p,p-1,h} \text{ are splines of maximum smoothness.}$

Tensor-product splines on $\widehat{\Omega} := (0,1)^d$

Multi-patch domains:

Per-patch geometry functions G_k :

 $\overline{\Omega} = \bigcup_{k=1}^{K} \overline{\mathbf{G}_k(\widehat{\Omega})}$

Pull-back principle:

$S_{\rho,h}(\Omega) = \{ u : u \circ \mathbf{G}_k \in S_{\rho,h}(\widehat{\Omega}) \ \forall_{k=1,\dots,K} \} \cap C^0(\Omega)$

Model problem					
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Model problem: the Poisson problem

Given: domain $\Omega \subset \mathbb{R}^d$ and function $f \in L^2(\Omega)$

Find solution $u \in H^1(\Omega)$ such that

 $-\Delta u = f \qquad \text{in } \Omega$ $u = 0 \qquad \text{on } \partial \Omega$

Galerkin discretization: Find solution $u \in S_{p,h}(\Omega)$ such that

 $(\nabla u, \nabla v) = (f, v)$ for all $v \in S_{p,h}(\Omega)$

Matrix-vector formulation: Find solution \underline{u}_h such that

$$A_h \underline{u}_h = \underline{f}_h$$

Model problem					
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	nalysis	

Why to use IgA?

IgA has approximation power of a high-order method:

$$\inf_{u_h \in S_{p,h}} \|u - u_h\|_{L^2} \lesssim h^{p+1} |u|_{H^{p+1}}$$

IgA has problem size of a low-order method:

$$N:=\dim S_{p,h}\eqsim (n+p)^d$$

Problem size of standard high-order FEM: dim $S_{p,0,h} \approx (np)^d$. Number of non-zero entries of M_h and A_h grows like $\mathcal{O}(p^d N)$.

🔋 Hughes, Cottrell and Bazilevs

Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

CMAME, 2005.

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric a	nalysis	

Why to use IgA?

IgA has approximation power of a high-order method:

$$\inf_{u_h \in S_{p,h}} \|u - u_h\|_{L^2} \lesssim h^{p+1} |u|_{H^{p+1}}$$

IgA has problem size of a low-order method:

$$N:=\dim S_{p,h}\eqsim (n+p)^d$$

Problem size of standard high-order FEM: dim $S_{p,0,h} \approx (np)^d$. Number of non-zero entries of M_h and A_h grows like $\mathcal{O}(p^d N)$.

🔋 Hughes, Cottrell and Bazilevs

Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

CMAME, 2005.

Model problem					
www.ricam.oeaw.ac.at	Stefan Takad	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Why to use IgA?

IgA has approximation power of a high-order method:

$$\inf_{u_h \in S_{p,h}} \|u - u_h\|_{L^2} \lesssim h^{p+1} |u|_{H^{p+1}}$$

IgA has problem size of a low-order method:

$$N:=\dim S_{p,h}\eqsim (n+p)^d$$

Problem size of standard high-order FEM: dim $S_{p,0,h} = (np)^d$. Number of non-zero entries of M_h and A_h grows like $\mathcal{O}(p^d N)$.

Hughes, Cottrell and Bazilevs

Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement.

CMAME, 2005.

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Takad	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Linear solvers

How to solve $A_h \underline{u}_h = \underline{f}_h$?

Note:

$$\kappa(M_h) = \mathcal{O}(2^{pd}), \qquad \kappa(A_h) = \mathcal{O}(h^{-2}2^{pd})$$

Model problem					
www.ricam.oeaw.ac.at	Stefan T	akacs, Robust multigrid n	nethods in isogeome	etric analysis	

Multigrid solvers

Robustness in grid size *h*

Robustness in spline degree *p*

Robustness in geometry

	Multigrid				
www.ricam.oeaw.ac.at	Stefan Ta	ıkacs, Robust multigrid r	nethods in isogeome	etric analysis	

Multigrid solvers

Robustness in grid size *h*

Robustness in spline degree *p*

Robustness in geometry

	Multigrid				
www.ricam.oeaw.ac.at	Stefan Ta	ıkacs, Robust multigrid r	nethods in isogeom	etric analysis	

Multigrid solvers

Robustness in grid size *h*

Robustness in spline degree *p*

Robustness in geometry

	Multigrid				
www.ricam.oeaw.ac.at	Stefan Ta	kacs, Robust multigrid r	nethods in isogeome	etric analysis	

One step of the multigrid method applied to iterate $\underline{u}_{h}^{(0,0)} = \underline{u}_{h}^{(0)}$ and right-hand-side \underline{f}_{h} to obtain $\underline{u}_{h}^{(1)}$ is given by:

Apply ν_1 pre-smoothing steps

$$\underline{u}_{h}^{(0,m)} = \underline{u}_{h}^{(0,m-1)} + \tau L_{h}^{-1} (\underline{f}_{h} - A_{h} \underline{u}_{h}^{(0,m-1)})$$

for $m = 1, ..., \nu_1$.

Apply coarse-grid correction

Compute defect and restrict to coarser grid

Solve problem on coarser grid (grid size H := 2h)

Prolongate and add result

If realized exactly (two-grid method):

$$\underline{\underline{\mu}}_{h}^{(1)} = \underline{\underline{\mu}}_{h}^{(0,\nu)} + P_{H}A_{H}^{-1}P_{H}^{\top}(\underline{\underline{f}}_{h} - A_{h}\underline{\underline{\mu}}_{h}^{(0,\nu)})$$

	Multigrid				
www.ricam.oeaw.ac.at	Stefan Taka	ics, Robust multigrid met	hods in isogeom	etric analysis	

One step of the multigrid method applied to iterate $\underline{u}_{h}^{(0,0)} = \underline{u}_{h}^{(0)}$ and right-hand-side \underline{f}_{h} to obtain $\underline{u}_{h}^{(1)}$ is given by:

Apply ν_1 pre-smoothing steps

$$\underline{u}_{h}^{(0,m)} = \underline{u}_{h}^{(0,m-1)} + \tau L_{h}^{-1} (\underline{f}_{h} - A_{h} \underline{u}_{h}^{(0,m-1)})$$

for $m = 1, ..., \nu_1$.

- Apply coarse-grid correction
 - Compute defect and restrict to coarser grid
 - Solve problem on coarser grid (grid size H := 2h)
 - Prolongate and add result

If realized exactly (two-grid method):

$$\underline{\underline{\mu}}_{h}^{(1)} = \underline{\underline{\mu}}_{h}^{(0,\nu)} + P_{H}A_{H}^{-1}P_{H}^{\top}(\underline{f}_{h} - A_{h}\underline{\underline{\mu}}_{h}^{(0,\nu)})$$

	Multigrid				
www.ricam.oeaw.ac.at	Stefan Taka	acs, Robust multigrid n	nethods in isogeome	etric analysis	

One step of the multigrid method applied to iterate $\underline{u}_{h}^{(0,0)} = \underline{u}_{h}^{(0)}$ and right-hand-side \underline{f}_{h} to obtain $\underline{u}_{h}^{(1)}$ is given by:

Apply ν_1 pre-smoothing steps

$$\underline{u}_{h}^{(0,m)} = \underline{u}_{h}^{(0,m-1)} + \tau L_{h}^{-1} (\underline{f}_{h} - A_{h} \underline{u}_{h}^{(0,m-1)})$$

for $m = 1, ..., \nu_1$.

- Apply coarse-grid correction
 - Compute defect and restrict to coarser grid
 - Solve problem on coarser grid (grid size H := 2h)
 - Prolongate and add result

If realized exactly (two-grid method):

$$\underline{u}_{h}^{(1)} = \underline{u}_{h}^{(0,\nu)} + P_{H}A_{H}^{-1}P_{H}^{\top}(\underline{f}_{h} - A_{h}\underline{u}_{h}^{(0,\nu)})$$

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

One step of the multigrid method applied to iterate $\underline{u}_{h}^{(0,0)} = \underline{u}_{h}^{(0)}$ and right-hand-side \underline{f}_{h} to obtain $\underline{u}_{h}^{(1)}$ is given by:

Apply ν_1 pre-smoothing steps

$$\underline{u}_{h}^{(0,m)} = \underline{u}_{h}^{(0,m-1)} + \tau L_{h}^{-1} (\underline{f}_{h} - A_{h} \underline{u}_{h}^{(0,m-1)})$$

for $m = 1, ..., \nu_1$.

- Apply coarse-grid correction
 - Compute defect and restrict to coarser grid
 - Solve problem on coarser grid (grid size H := 2h)
 - Prolongate and add result

If realized exactly (two-grid method):

$$\underline{u}_{h}^{(1)} = \underline{u}_{h}^{(0,\nu)} + P_{H}A_{H}^{-1}P_{H}^{\top}(\underline{f}_{h} - A_{h}\underline{u}_{h}^{(0,\nu)})$$

	Multigrid				
www.ricam.oeaw.ac.at	Stefan T	akacs, Robust multigrid r	nethods in isogeome	tric analysis	

Johann Radon Institute for Computational and Applied Mathematics

Multigrid smoothers

Gauss-Seidel

 Model problem
 Multigrid
 Gauss-Seidel
 SCMS
 MGS
 Conclusions

 www.ricam.oeaw.ac.at
 Stefan Takacs, Robust multigrid methods in isogeometric analysis

Works well in standard (low-order) finite elements

Robust convergence (W-cycle) in grid size *h*:

Gahalaut, Kraus, and Tomar Multigrid methods for isogeometric discretization. *CMAME*, 2013.

Not robust in the spline degree *p*

Rather robust in geometry

		Gauss-Seidel			
www.ricam.oeaw.ac.at	Stefan Ta	akacs, Robust multigrid n	nethods in isogeom	etric analysis	

Works well in standard (low-order) finite elements

Robust convergence (W-cycle) in grid size *h*:

Gahalaut, Kraus, and Tomar Multigrid methods for isogeometric discretization. *CMAME*, 2013.

Not robust in the spline degree *p*

Rather robust in geometry

		Gauss-Seidel			
www.ricam.oeaw.ac.at	Stefan Ta	kacs, Robust multigrid n	nethods in isogeom	etric analysis	

Works well in standard (low-order) finite elements

Robust convergence (W-cycle) in grid size *h*:

Gahalaut, Kraus, and Tomar Multigrid methods for isogeometric discretization. *CMAME*, 2013.

Not robust in the spline degree p

		Gauss-Seidel			
www.ricam.oeaw.ac.at	Stefan Takad	s, Robust multigrid metho	ds in isogeometric ar	alysis	

Works well in standard (low-order) finite elements

Robust convergence (W-cycle) in grid size *h*:

- Gahalaut, Kraus, and Tomar Multigrid methods for isogeometric discretization. *CMAME*, 2013.
- Not robust in the spline degree *p*
- Rather robust in geometry

Unit square

		Gauss-Seidel			
www.ricam.oeaw.ac.at	Stefan ⁻	Takacs, Robust multigrid m	ethods in isogeom	etric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
3	8	9	25	53	66	>100	>100
4	8	9	24	75	>100	>100	>100
5	8	9	23	73	>100	>100	>100
6	8	9	24	73	>100	>100	>100
7	8	9	24	70	>100	>100	>100

V-cycle, $\epsilon = 10^{-8}$

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Tak	acs, Robust multigrid n	nethods in isogeome	tric analysis	

Johann Radon Institute for Computational and Applied Mathematics

Quarter annulus

		Gauss-Seidel			
www.ricam.oeaw.ac.at	Stefan Taka	acs, Robust multigrid meth	ods in isogeometric a	nalysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
3	12	10	26	48	>100	>100	>100
4	14	11	24	75	>100	>100	>100
5	16	13	23	61	>100	>100	>100
6	18	14	23	63	>100	>100	>100
7	19	15	24	68	>100	>100	>100

V-cycle, $\epsilon = 10^{-8}$

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Tak	acs, Robust multigrid n	nethods in isogeome	tric analysis	

Johann Radon Institute for Computational and Applied Mathematics

Yeti footprint

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Ta	kacs, Robust multigrid r	nethods in isogeome	etric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
2	12	11	26	82	>100	>100	>100
3	15	13	25	75	>100	>100	>100
4	16	14	25	74	>100	>100	>100
5	18	15	25	74	>100	>100	>100

V-cycle, $\epsilon = 10^{-8}$

		Gauss-Seidel			
www.ricam.oeaw.ac.at	Stefan T	Takacs, Robust multigrid n	nethods in isogeom	etric analysis	

Computational complexity

The cost for applying the smoother is linear in the number of non-zeros of A_h, thus each smoothing step costs

 $\mathcal{O}(p^d N)$ flops.

Computational costs for one multigrid cycle are asymptotically the same.

		Gauss-Seidel			
www.ricam.oeaw.ac.at	Stefan	Takacs, Robust multigrid m	ethods in isogeom	etric analysis	

Multigrid smoothers

Subspace corrected mass smoother

 Model problem
 Multigrid
 Gauss-Seidel
 SCMS
 MGS
 Conclusions

 www.ricam.oeaw.ac.at
 Stefan Takacs, Robust multigrid methods in isogeometric analysis
 Stefan Takacs
 Stefan Takacs

📔 T. and Takacs.

Approximation error estimates and inverse inequalities for B-splines of maximum smoothness. M^3AS , 2016.

The space

 $V_0 := \{ u \in S_{p,h}(0,1) : u^{(i)}(0) = u^{(i)}(1) = 0 \ \forall_{i=1,3,\dots,2\lfloor p/2 \rfloor - 1} \}$ satisfies both

a robust inverse estimate

 $\|u_0\|_{H^1(0,1)} \le 2\sqrt{3}h^{-1}\|u_0\|_{L_2(0,1)}$ for $u_0 \in V_0$

a robust approximation error estimate

$$\inf_{u_0\in V_0} \|u-u_0\|_{L_2(0,1)} \leq \sqrt{2}h|u|_{H^1(0,1)}$$

			SCMS		
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	nalysis	

Hofreither and T.

Robust Multigrid for Isogeometric Analysis using Subspace Correction. *SINUM*. 55 (4). p. 2004 - 2024, 2017.

The L_2 -orthogonal splitting of $V := S_{p,h}$ into V_0 and its complement V_1 is H^1 -stable

Tensor-product structure (for unit square):

$$egin{aligned} &A_h = K \otimes M + M \otimes K \ & \eqsim \sum_{(lpha,eta) \in \{0,1\}^2} (\Pi_lpha \otimes \Pi_eta) (K_lpha \otimes M_eta + M_lpha \otimes K_eta) (\Pi_lpha \otimes \Pi_eta)^ op \end{aligned}$$

 Π_{lpha} is L₂-projection $V o V_{lpha}$

			SCMS		
www.ricam.oeaw.ac.at	Stefan	Takacs, Robust multigrid n	nethods in isogeome	tric analysis	

Hofreither and T.

Robust Multigrid for Isogeometric Analysis using Subspace Correction. *SINUM*. 55 (4). p. 2004 - 2024, 2017.

The L_2 -orthogonal splitting of $V := S_{p,h}$ into V_0 and its complement V_1 is H^1 -stable

Tensor-product structure (for unit square):

 $A_h^{-1} = \sum_{(\alpha,\beta) \in \{0,1\}^2} (P_\alpha \otimes P_\beta) (K_\alpha \otimes M_\beta + M_\alpha \otimes K_\beta)^{-1} (P_\alpha \otimes P_\beta)^\top$

 P_{lpha} is embedding $V_{lpha}
ightarrow V$

			SCMS		
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ds in isogeometric a	nalysis	

Hofreither and T.

Robust Multigrid for Isogeometric Analysis using Subspace Correction. SINUM. 55 (4). p. 2004 - 2024, 2017. The L_2 -orthogonal splitting of $V := S_{p,h}$ into V_0 and its complement V_1 is H^1 -stable Tensor-product structure (for unit square):

$$\begin{split} A_h^{-1} \gtrsim (P_0 \otimes P_0) (h^{-2} M_0^{-1} \otimes M_0^{-1}) (P_0 \otimes P_0)^\top \\ &+ (P_1 \otimes P_0) ((K_1 + h^{-2} M_1)^{-1} \otimes M_0^{-1}) (P_1 \otimes P_0)^\top \\ &+ (P_0 \otimes P_1) (M_0^{-1} \otimes (K_1 + h^{-2} M_1)^{-1}) (P_0 \otimes P_1)^\top \\ &+ (P_1 \otimes P_1) (K_1 \otimes M_1 + M_1 \otimes K_1)^{-1} (P_1 \otimes P_1)^\top =: L_h^{-1} \end{split}$$

using $K_0 \lesssim h^{-2} M_0$

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeomet	tric analysis	

Convergence theory

Can show

$$L_h = A_h + h^{-2} M_h$$

Theorem

If sufficiently many smoothing steps are applied (independent of grid size and spline degree), the W-cycle multigrid solver converges robustly.

Hofreither and T.

Robust Multigrid for Isogeometric Analysis using Subspace Correction. *SINUM*. *55 (4). p. 2004 - 2024*, 2017.

			SCMS		
www.ricam.oeaw.ac.at	Stefan Tak	acs, Robust multigrid met	hods in isogeom	etric analysis	

Computational complexity

The setup of the smoother costs

$$\mathcal{O}(pN+p^{3d})$$
 flops

and for applying the smoother costs

$$\mathcal{O}(pN+p^{2d})$$
 flops

per smoothing step.

- The computation of the residual costs $\mathcal{O}(\operatorname{nnz} A_h) = \mathcal{O}(p^d N)$ flops.
 - The overall cost for one multigrid cycle is

$$\mathcal{O}(p^d N + p^{2d} \log N)$$
 flops.

			SCMS		
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Unit square

			SCMS		
www.ricam.oeaw.ac.at	Stefan T	Takacs, Robust multigrid n	nethods in isogeome	tric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
3	23	19	16	12	10	8	6
4	26	26	23	20	19	16	14
5	26	29	28	26	25	23	22
6	27	30	29	28	27	26	26
7	27	31	30	28	28	27	27

V-cycle, 2 + 2 smoothing steps, $\epsilon = 10^{-8}$

			SCMS		
www.ricam.oeaw.ac.at	Stefan Tal	acs, Robust multigrid ،	methods in isogeome	tric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
3	14	12	10	8	7	7	6
4	15	15	14	13	12	11	10
5	16	16	16	15	14	14	13
6	16	17	16	16	15	15	15
7	16	17	17	16	16	16	15

V-cycle, PCG, $\epsilon = 10^{-8}$

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Takad	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Johann Radon Institute for Computational and Applied Mathematics

Quarter annulus

			SCMS		
www.ricam.oeaw.ac.at	Stefan Tak	acs, Robust multigrid i	methods in isogeome	tric analysis	

Quarter annulus

Remember pull-back principle:

Substitution rule yields

$$A_h = \widehat{A}_h,$$

which is **robust** in grid size h and spline degree p, but **heavily depending** on geometry function G.

			SCMS		
www.ricam.oeaw.ac.at	Stefan Ta	akacs, Robust multigrid n	nethods in isogeome	tric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
3	21	18	16	15	18	23	32
4	26	26	23	22	24	47	47
5	29	30	28	27	30	47	47
6	31	32	31	30	36	47	47
7	32	34	33	32	41	47	47

V-cycle, PCG, $\epsilon = 10^{-8}$

			SCMS		
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Convergence theory

Theorem

If sufficiently many smoothing steps are applied (independent of grid size and spline degree **but depending on the geometry function**), the W-cycle multigrid solver converges robustly.

Hofreither and T.

Robust Multigrid for Isogeometric Analysis using Subspace Correction. *SINUM*. 55 (4). p. 2004 - 2024, 2017.

Johann Radon Institute for Computational and Applied Mathematics

Yeti footprint

			SCMS		
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ds in isogeometric a	nalysis	

Decomposition of the degrees of freedom

			SCMS		
www.ricam.oeaw.ac.at	Stefan Tak	acs, Robust multigrid i	methods in isogeomet	ric analysis	

Decomposition of the degrees of freedom

			SCMS		
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Extension to multi-patch case

On the patch-interior, have tensor-product structure: subspace corrected mass smoother

The problems on edges, vertices are small: can use a direct solver

			SCMS		
www.ricam.oeaw.ac.at	Stefan Ta	kacs, Robust multigrid r	nethods in isogeome	tric analysis	

Extension to multi-patch case

On the patch-interior, have tensor-product structure: subspace corrected mass smoother

The problems on edges, vertices are small: can use a direct solver

 Model problem
 Multigrid
 Gauss-Seidel
 SCMS
 MGS
 Conclusions

 www.ricam.oeaw.ac.at
 Stefan Takacs, Robust multigrid methods in isogeometric analysis
 Stefan Takacs, Robust multigrid methods in isogeometric analysis
 Stefan Takacs, Robust multigrid methods in isogeometric analysis

Extension to multi-patch case

On the patch-interior, have tensor-product structure: subspace corrected mass smoother

The problems on edges, vertices are small: can use a direct solver

Additive Schwarz type combination

			SCMS		
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ds in isogeometric a	nalysis	

Convergence theory

The splitting between the subspaces is almost stable:

$$A_h + h^{-2}M_h \lesssim \sum_T P_T(A_T + h^{-2}M_T)P_T^\top \lesssim \mathbf{p}(A_h + h^{-2}M_h)$$

Theorem

If $\mathcal{O}(p)$ smoothing steps are applied (independent of grid size **but depending on the geometry function**), the W-cycle multigrid solver converges robustly.

Robust approximation error estimates and multigrid solvers for isogeometric multi-patch discretizations. M^3AS , 2018.

			SCMS		
www.ricam.oeaw.ac.at	Stefan T	akacs, Robust multigrid n	nethods in isogeome	tric analysis	

Computational complexity

Applying the smoother costs

$$\mathcal{O}(pN+p^{2d})$$
 flops

per smoothing step.

The computation of the residual is $\mathcal{O}(\operatorname{nnz} A_h) = \mathcal{O}(p^d N)$ flops.

The overall cost for one multigrid cycle is

 $\mathcal{O}(p^d N + p^{2d} \log N)$ flops

or, if $\mathcal{O}(p)$ smoothing steps are applied,

 $\mathcal{O}(p^{d+1}N + p^{2d+1}\log N)$ flops.

			SCMS		
www.ricam.oeaw.ac.at	Stefan Ta	kacs, Robust multigrid r	nethods in isogeome	tric analysis	

Johann Radon Institute for Computational and Applied Mathematics

Yeti footprint

			SCMS		
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ds in isogeometric a	nalysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
2	30	31	29	27	25	24	22
3	36	36	35	34	32	31	30
4	38	39	38	37	35	35	33
5	40	42	40	39	38	37	36

V-cycle, PCG, $\epsilon = 10^{-8}$

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Takad	s, Robust multigrid metho	ods in isogeometric a	nalysis	

Multigrid smoothers

Macro-element Gauss-Seidel

 Model problem
 Multigrid
 Gauss-Seidel
 SCMS
 MGS
 Conclusions

 www.ricam.oeaw.ac.at
 Stefan Takacs, Robust multigrid methods in isogeometric analysis
 Stefan Takacs
 Stefan Takacs

Gauss-Seidel:

$$\underline{\underline{u}}_{h}^{(new)} = \underline{\underline{u}}_{h} - P_{i}A_{i}^{-1}P_{i}^{\top}(A_{h}\underline{\underline{u}}_{h} - \underline{\underline{f}}_{h}),$$

where $A_{i} := P_{i}^{\top}AP_{i}$ and $P_{i} = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{N-1-i})^{\top}.$

Macro-element Gauss-Seidel: Include p - 1 neighbors in each direction

Beirão da Veiga, Cho, Pavarino, and Scacchi Overlapping Schwarz methods for Isogeometric Analysis. *SINUM*, 2012.

				MGS	
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	alysis	

Gauss-Seidel:

$$\underline{\underline{u}}_{h}^{(new)} = \underline{\underline{u}}_{h} - P_{i}A_{i}^{-1}P_{i}^{\top}(A_{h}\underline{\underline{u}}_{h} - \underline{\underline{f}}_{h}),$$

where $A_{i} := P_{i}^{\top}AP_{i}$ and $P_{i} = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{N-1-i})^{\top}.$

Macro-element Gauss-Seidel: Include p - 1 neighbors in each direction

Beirão da Veiga, Cho, Pavarino, and Scacchi Overlapping Schwarz methods for Isogeometric Analysis. *SINUM*, 2012.

				MGS	
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Gauss-Seidel:

$$\underline{\underline{u}}_{h}^{(new)} = \underline{\underline{u}}_{h} - P_{i}A_{i}^{-1}P_{i}^{\top}(A_{h}\underline{\underline{u}}_{h} - \underline{\underline{f}}_{h}),$$

where $A_{i} := P_{i}^{\top}AP_{i}$ and $P_{i} = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{N-1-i})^{\top}.$

Macro-element Gauss-Seidel: Include p - 1 neighbors in each direction

Beirão da Veiga, Cho, Pavarino, and Scacchi Overlapping Schwarz methods for Isogeometric Analysis. *SINUM*, 2012.

				MGS	
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	alysis	

				MGS	
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Unit square

Model problem	Multigrid		SCMS	MGS	
www.ricam.oeaw.ac.at	Stefan T	Fakacs, Robust multigrid r	nethods in isogeom	etric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
3	8	3	3	3	2	2	1
4	8	4	3	3	2	2	2
5	8	4	3	3	3	2	2
6	8	4	3	3	3	3	2
7	8	4	4	3	3	3	3

V-cycle,
$$\epsilon = 10^{-8}$$

				MGS	
www.ricam.oeaw.ac.at	Stefan T	akacs, Robust multigrid n	nethods in isogeome	etric analysis	

Johann Radon Institute for Computational and Applied Mathematics

Quarter annulus

				MGS	
www.ricam.oeaw.ac.at	Stefan Ta	akacs, Robust multigrid r	nethods in isogeome	etric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
3	12	4	3	2	2	2	1
4	14	5	3	3	3	2	2
5	16	5	4	3	3	3	3
6	18	5	4	3	3	3	3
7	19	5	4	3	3	3	3

V-cycle,
$$\epsilon = 10^{-8}$$

				MGS	
www.ricam.oeaw.ac.at	Stefan Tak	acs, Robust multigrid	methods in isogeome	tric analysis	

Johann Radon Institute for Computational and Applied Mathematics

Yeti footprint

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Taka	acs, Robust multigrid me	thods in isogeom	etric analysis	

Decomposition of the degrees of freedom

 Model problem
 Multigrid
 Gauss-Seidel
 SCMS
 MGS
 Conclusions

 www.ricam.oeaw.ac.at
 Stefan Takacs, Robust multigrid methods in isogeometric analysis
 Stefan Takacs, Robust multigrid methods in isogeometric analysis
 Stefan Takacs, Robust multigrid methods in isogeometric analysis

Decomposition of the degrees of freedom

				MGS	
www.ricam.oeaw.ac.at	Stefan Ta	akacs, Robust multigrid 1	methods in isogeome	etric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
2	12	9	10	11	11	11	11
3	16	10	12	13	15	18	17
4	16	11	14	16	18	21	20

V-cycle, $\epsilon = 10^{-8}$

				MGS	
www.ricam.oeaw.ac.at	Stefan T	akacs, Robust multigrid r	nethods in isogeom	etric analysis	

So far, no complete convergence analysis (showing robustness)

				MGS	
www.ricam.oeaw.ac.at	Stefan Tal	kacs, Robust multigrid ı	nethods in isogeome	tric analysis	

So far, no complete convergence analysis (showing robustness)

Robust convergence in grid size h, cf.

Gahalaut, Kraus, and Tomar Multigrid methods for isogeometric discretization. *CMAME*, 2013.

				MGS		
www.ricam.oeaw.ac.at	Stefan Takacs, Robust multigrid methods in isogeometric analysis					

Computational complexity

Setup of patch-local solver costs $\mathcal{O}(p^{3d})$ flops

Application of patch-local solver costs $\mathcal{O}(p^{2d})$ flops

Update of residual costs $\mathcal{O}(p^{2d})$ flops

Total costs: $\mathcal{O}(p^{3d}N)$ (application: $\mathcal{O}(p^{2d}N)$)

Can we improve?

				MGS	
www.ricam.oeaw.ac.at	Stefan Takacs, Robust multigrid methods in isogeometric analysis				

Computational complexity

Each macro-element has $(2p-1)^d$ degrees of freedom

Setup of patch-local solver costs $\mathcal{O}(p^{3d})$ flops

Application of patch-local solver costs $\mathcal{O}(p^{2d})$ flops

Update of residual costs $\mathcal{O}(p^{2d})$ flops

Total costs: $\mathcal{O}(p^{3d}N)$ (application: $\mathcal{O}(p^{2d}N)$)

Can we improve?

				MGS		
www.ricam.oeaw.ac.at	Stefan Takacs, Robust multigrid methods in isogeometric analysis					

- Each macro-element has $(2p-1)^d$ degrees of freedom
- Setup of patch-local solver costs $\mathcal{O}(p^{3d})$ flops
- Application of patch-local solver costs $\mathcal{O}(p^{2d})$ flops
- Update of residual costs $\mathcal{O}(p^{2d})$ flops
- Total costs: $\mathcal{O}(p^{3d}N)$ (application: $\mathcal{O}(p^{2d}N)$)

Can we improve?

				MGS	
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ds in isogeometric a	nalysis	

- Each macro-element has $(2p-1)^d$ degrees of freedom
- Setup of patch-local solver costs $\mathcal{O}(p^{3d})$ flops
- Application of patch-local solver costs $\mathcal{O}(p^{2d})$ flops
- Update of residual costs $\mathcal{O}(p^{2d})$ flops
- Total costs: $\mathcal{O}(p^{3d}N)$ (application: $\mathcal{O}(p^{2d}N)$)

```
Can we improve?
```

				MGS	
www.ricam.oeaw.ac.at	Stefan Takad	cs, Robust multigrid metho	ds in isogeometric ai	nalysis	

- Each macro-element has $(2p-1)^d$ degrees of freedom
- Setup of patch-local solver costs $\mathcal{O}(p^{3d})$ flops
- Application of patch-local solver costs $\mathcal{O}(p^{2d})$ flops
- Update of residual costs $\mathcal{O}(p^{2d})$ flops
- Total costs: $\mathcal{O}(p^{3d}N)$ (application: $\mathcal{O}(p^{2d}N)$)

Can we improve?

				MGS	
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ds in isogeometric a	nalysis	

Macro-element Gauss-Seidel smoother

				MGS	
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

Johann Radon Institute for Computational and Applied Mathematics

Macro-element Gauss-Seidel smoother

				MGS	
www.ricam.oeaw.ac.at	Stefan T	akacs, Robust multigrid r	nethods in isogeome	etric analysis	

Each macro-element has $(\alpha + 2\beta)^d$ degrees of freedom

				MGS	
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	nalysis	

Each macro-element has $(\alpha + 2\beta)^d$ degrees of freedom Setup of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{3d})$ flops Application of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{2d})$ flops

				MGS	
www.ricam.oeaw.ac.at	Stefan Takac	s, Robust multigrid metho	ds in isogeometric ar	alysis	

- Each macro-element has $(\alpha + 2\beta)^d$ degrees of freedom
- Setup of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{3d})$ flops
- Application of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{2d})$ flops
- Update of residual costs $\mathcal{O}((\alpha + 2\beta)^d p^d)$ flops
 - I Number of macro-elements is $pprox {\sf N}/lpha^d$
 - $\begin{array}{lll} \text{Total costs:} & \mathcal{O}((1 + \alpha^{-1}\beta)^d ((\alpha + \beta)^{2d} + p^d)N) \\ \text{For } \beta \approx p: & \mathcal{O}((1 + \alpha^{-1}p)^d (\alpha + p)^{2d}N) \\ \text{For } \alpha, \beta \approx p: & \mathcal{O}(p^{2d}N) & (\text{application: } \mathcal{O}(p^dN)) \end{array}$

				MGS	
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ds in isogeometric a	nalysis	

- Each macro-element has $(\alpha + 2\beta)^d$ degrees of freedom
- Setup of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{3d})$ flops
- Application of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{2d})$ flops
- Update of residual costs $\mathcal{O}((\alpha + 2\beta)^d p^d)$ flops
- Number of macro-elements is $= N/\alpha^d$

Total costs: $\mathcal{O}((1 + \alpha^{-1}\beta)^d((\alpha + \beta)^{2d} + p^d)N)$ For $\beta \approx p$: $\mathcal{O}((1 + \alpha^{-1}p)^d(\alpha + p)^{2d}N)$ For $\alpha, \beta \approx p$: $\mathcal{O}(p^{2d}N)$ (application: $\mathcal{O}(p^dN))$

				MGS	
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

- Each macro-element has $(\alpha + 2\beta)^d$ degrees of freedom
- Setup of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{3d})$ flops
- Application of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{2d})$ flops
- Update of residual costs $\mathcal{O}((\alpha + 2\beta)^d p^d)$ flops
- Number of macro-elements is $= N/\alpha^d$
 - Total costs: $\mathcal{O}((1 + \alpha^{-1}\beta)^d((\alpha + \beta)^{2d} + p^d)N)$ For $\beta \equiv p$: $\mathcal{O}((1 + \alpha^{-1}p)^d(\alpha + p)^{2d}N)$ For $\alpha, \beta \equiv p$: $\mathcal{O}(p^{2d}N)$ (application: $\mathcal{O}(p^dN)$)

				MGS	
www.ricam.oeaw.ac.at	Stefan Taka	cs, Robust multigrid metho	ods in isogeometric a	nalysis	

- Each macro-element has $(\alpha + 2\beta)^d$ degrees of freedom
- Setup of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{3d})$ flops
- Application of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{2d})$ flops
- Update of residual costs $\mathcal{O}((\alpha + 2\beta)^d p^d)$ flops
- Number of macro-elements is $= N/\alpha^d$

Total costs: For $\beta \approx p$: For $\alpha, \beta \approx p$:

$$\begin{array}{l} \mathcal{O}((1+\alpha^{-1}\beta)^d((\alpha+\beta)^{2d}+p^d)N) \\ \mathcal{O}((1+\alpha^{-1}p)^d(\alpha+p)^{2d}N) \\ \mathcal{O}(p^{2d}N) \qquad (\text{application: } \mathcal{O}(p^dN)) \end{array}$$

				MGS	
www.ricam.oeaw.ac.at	Stefan Ta	akacs, Robust multigrid m	ethods in isogeome	etric analysis	

- Each macro-element has $(\alpha + 2\beta)^d$ degrees of freedom
 - Setup of patch-local solver costs $\mathcal{O}((lpha+2eta)^{3d})$ flops
- Application of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{2d})$ flops
- Update of residual costs $\mathcal{O}((\alpha + 2\beta)^d p^d)$ flops
 - Number of macro-elements is $\sim N/lpha^d$

Total costs:	$\mathcal{O}((1+\alpha^{-1}\beta)^d((\alpha+\beta)^{2d}+p^d)N)$
For $\beta \equiv p$:	$\mathcal{O}((1+lpha^{-1}p)^d(lpha+p)^{2d}N)$
For $\alpha, \beta \eqsim p$:	$\mathcal{O}(p^{2d}N)$ (application: $\mathcal{O}(p^dN)$)

				MGS	
www.ricam.oeaw.ac.at	Stefan Ta	akacs, Robust multigrid n	nethods in isogeom	etric analysis	

- Each macro-element has $(\alpha + 2\beta)^d$ degrees of freedom
- Setup of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{3d})$ flops
- Application of patch-local solver costs $\mathcal{O}((\alpha + 2\beta)^{2d})$ flops
- Update of residual costs $\mathcal{O}((\alpha + 2\beta)^d p^d)$ flops
- Number of macro-elements is $= N/\alpha^d$

Total costs: $\mathcal{O}((1 + \alpha^{-1}\beta)^d((\alpha + \beta)^{2d} + p^d)N)$ For $\beta \equiv p$: $\mathcal{O}((1 + \alpha^{-1}p)^d(\alpha + p)^{2d}N)$ For $\alpha, \beta \equiv p$: $\mathcal{O}(p^{2d}N)$ (application: $\mathcal{O}(p^dN)$)

				MGS	
www.ricam.oeaw.ac.at	Stefan Takad	s, Robust multigrid metho	ds in isogeometric ai	nalysis	

Johann Radon Institute for Computational and Applied Mathematics

Macro-element Gauss-Seidel

$\alpha := p, \qquad \beta := p - 1$

Model problem
Multigrid
Gauss-Seidel
SCMS
MGS
Conclusions

www.ricam.oeaw.ac.at
Stefan Takacs, Robust multigrid methods in isogeometric analysis
Stefan Takacs

Unit square

Model problem	Multigrid		SCMS	MGS	
www.ricam.oeaw.ac.at	Stefan T	Fakacs, Robust multigrid r	nethods in isogeom	etric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
3	8	4	3	3	2	2	1
4	8	4	3	3	3	3	2
5	8	4	3	3	3	3	3
6	8	4	3	3	3	3	3
7	8	4	4	3	3	3	3

V-cycle,
$$\epsilon = 10^{-8}$$

				MGS	
www.ricam.oeaw.ac.at	Stefan T	akacs, Robust multigrid n	nethods in isogeome	etric analysis	

Johann Radon Institute for Computational and Applied Mathematics

Quarter annulus

				MGS	
www.ricam.oeaw.ac.at	Stefan Ta	akacs, Robust multigrid r	nethods in isogeome	etric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
3	12	4	3	3	2	2	1
4	14	5	4	3	3	3	2
5	16	5	4	3	3	3	3
6	18	5	4	3	3	3	3
7	19	5	4	3	3	3	3

V-cycle,
$$\epsilon = 10^{-8}$$

				MGS	
www.ricam.oeaw.ac.at	Stefan Ta	ikacs, Robust multigrid r	nethods in isogeome	tric analysis	

Johann Radon Institute for Computational and Applied Mathematics

Yeti footprint

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Taka	acs, Robust multigrid me	thods in isogeom	etric analysis	

Iteration counts

$\ell \diagdown p$	1	2	3	4	5	6	7
2	12	9	10	11	11	11	11
3	16	10	12	13	15	18	17
4	16	11	14	16	18	21	20

V-cycle, $\epsilon = 10^{-8}$

				MGS	
www.ricam.oeaw.ac.at	Stefan T	akacs, Robust multigrid r	nethods in isogeom	etric analysis	

Multigrid solvers can be fast in the IgA context.

Thay are robust in the grid size.

They can be provable robust in the spline degree (but maybe those are not the fastest ones).

Simple Gauss-Seidel like constructions allow to solve for non-trivial problems more easily, although they might not have optimal complexity.

					Conclusions
www.ricam.oeaw.ac.at	Stefan Ta	akacs, Robust multigrid r	nethods in isogeome	tric analysis	

Multigrid solvers can be fast in the IgA context.

Thay are robust in the grid size.

They can be provable robust in the spline degree (but maybe those are not the fastest ones).

Simple Gauss-Seidel like constructions allow to solve for non-trivial problems more easily, although they might not have optimal complexity.

Model problem
Multigrid
Gauss-Seidel
SCMS
MGS
Conclusions

www.ricam.oeaw.ac.at
Stefan Takacs, Robust multigrid methods in isogeometric analysis
Stefan Takacs

- Multigrid solvers can be fast in the IgA context.
 - Thay are robust in the grid size.
- They can be provable robust in the spline degree (but maybe those are not the fastest ones).
- Simple Gauss-Seidel like constructions allow to solve for non-trivial problems more easily, although they might not have optimal complexity.

					Conclusions
www.ricam.oeaw.ac.at	Stefan Takacs, Robust multigrid methods in isogeometric analysis				

Multigrid solvers can be fast in the IgA context.

Thay are robust in the grid size.

They can be provable robust in the spline degree (but maybe those are not the fastest ones).

Simple Gauss-Seidel like constructions allow to solve for non-trivial problems more easily, although they might not have optimal complexity.

					Conclusions
www.ricam.oeaw.ac.at	Stefan Takacs, Robust multigrid methods in isogeometric analysis				

Multigrid solvers can be fast in the IgA context.

Thay are robust in the grid size.

They can be provable robust in the spline degree (but maybe those are not the fastest ones).

Simple Gauss-Seidel like constructions allow to solve for non-trivial problems more easily, although they might not have optimal complexity.

Thanks for your attention!

Model problem	Multigrid	Gauss-Seidel	SCMS	MGS	Conclusions
www.ricam.oeaw.ac.at	Stefan Takacs, Robust multigrid methods in isogeometric analysis				

References

T. and Takacs.

Approximation error estimates and inverse inequalities for B-splines of maximum smoothness. M^3AS , 2016.

Hofreither and T.

Robust multigrid for isogeometric analysis using subspace correction. *SINUM*, 2017.

Т.

Τ.

Robust multigrid methods for isogeometric discretizations of the Stokes equation. In Bjorstad et al (eds.): Domain Decomposition Methods in Science and Engineering XXIV, 2019.

Robust approximation error estimates and multigrid solvers for isogeometric multi-patch discretizations. M^3AS , 2018

Hofer and T.

A parallel multigrid solver for multi-patch Isogeometric Analysis. To appear in Apel, Langer, Meyer, Steinbach (eds.): Advanced Finite Element Methods with Applications, 2018.

_	

A quasi-robust discretization error estimate for discontinuous Galerkin Isogeometric Analysis. *Submitted*, 2019.

Τ.

Fast multigrid solvers for conforming and non-conforming multi-patch lsogeometric Analysis. *Submitted*, 2019.

Bressan and T.

Sum-factorization techniques in Isogeometric Analysis. CMAME, 2019 (to appear).

					Conclusions
www.ricam.oeaw.ac.at	Stefan Tak	acs, Robust multigrid n	nethods in isogeome	etric analysis	