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Model problem: the Poisson problem
Given: domain Ω ⊂ Rd and function f ∈ L2(Ω)

Find solution u ∈ H1(Ω) such that

−∆u = f in Ω

u = 0 on ∂Ω

Galerkin discretization: Find solution u ∈ Sp,h(Ω) such that

(∇u,∇v) = (f , v) for all v ∈ Sp,h(Ω)

Matrix-vector formulation: Find solution uh such that

Ah uh = f h
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Single-patch Isogeometric Analysis

Spline based FEM with global geometry function
Univariate splines Sp,k,h(0, 1)

degree p
smoothness k (Sp,k,h(0, 1) = {u|[ih,(i+1)h) ∈ Pp} ∩ Ck(0, 1))
grid size h

Sp,h := Sp,p−1,h are splines of maximum smoothness.
Tensor-product splines on Ω̂ := (0, 1)d

Global geometry function G:
Ω̂→ Ω = G(Ω̂)

Pull-back principle:
Sp,h(Ω) = Sp,h(Ω̂) ◦ G−1 = {u : u ◦ G ∈ Sp,h(Ω̂)}
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Multi-patch Isogeometric Analysis

Spline based FEM with global geometry function
Univariate splines Sp,k,h(0, 1)

degree p
smoothness k (Sp,k,h(0, 1) = {u|[ih,(i+1)h) ∈ Pp} ∩ Ck(0, 1))
grid size h

Sp,h := Sp,p−1,h are splines of maximum smoothness.
Tensor-product splines on Ω̂ := (0, 1)d

Multi-patch domains:
Per-patch geometry functions Gk :

Ω =
⋃K

k=1 Gk(Ω̂)

Pull-back principle:
Sp,h(Ω) = {u : u ◦ Gk ∈ Sp,h(Ω̂) ∀k=1,...,K} ∩ C0(Ω)

Model problem Multigrid Gauss-Seidel SCMS MGS Conclusions

www.ricam.oeaw.ac.at Stefan Takacs, Robust multigrid methods in isogeometric analysis



Johann Radon Institute for Computational and Applied Mathematics

Model problem: the Poisson problem
Given: domain Ω ⊂ Rd and function f ∈ L2(Ω)

Find solution u ∈ H1(Ω) such that

−∆u = f in Ω

u = 0 on ∂Ω

Galerkin discretization: Find solution u ∈ Sp,h(Ω) such that

(∇u,∇v) = (f , v) for all v ∈ Sp,h(Ω)

Matrix-vector formulation: Find solution uh such that

Ah uh = f h

Model problem Multigrid Gauss-Seidel SCMS MGS Conclusions

www.ricam.oeaw.ac.at Stefan Takacs, Robust multigrid methods in isogeometric analysis



Johann Radon Institute for Computational and Applied Mathematics

Why to use IgA?

IgA has approximation power of a high-order method:

inf
uh∈Sp,h

‖u − uh‖L2 . hp+1|u|Hp+1

IgA has problem size of a low-order method:

N := dimSp,h h (n + p)d

Problem size of standard high-order FEM: dim Sp,0,h h (np)d .
Number of non-zero entries of Mh and Ah grows like O(pdN).

Hughes, Cottrell and Bazilevs
Isogeometric analysis: CAD, finite elements, NURBS, exact geometry
and mesh refinement.
CMAME, 2005.
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Linear solvers

How to solve Ah uh = f h ?

Note:
κ(Mh) = O(2pd ), κ(Ah) = O(h−22pd ).
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Multigrid solvers

Robustness in grid size h

Robustness in spline degree p

Robustness in geometry
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Multigrid framework
One step of the multigrid method applied to iterate u(0,0)h = u(0)h
and right-hand-side f h to obtain u(1)h is given by:

Apply ν1 pre-smoothing steps

u(0,m)
h = u(0,m−1)

h + τL−1
h (f h − Ahu(0,m−1)

h )

for m = 1, . . . , ν1.
Apply coarse-grid correction

Compute defect and restrict to coarser grid
Solve problem on coarser grid (grid size H := 2h)
Prolongate and add result

If realized exactly (two-grid method):

u(1)h = u(0,ν)h + PHA−1
H P>H (f h − Ahu(0,ν)h )

Apply ν2 post-smoothing steps
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Multigrid smoothers

Gauss-Seidel
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Gauss-Seidel smoother

Works well in standard (low-order) finite elements

Robust convergence (W-cycle) in grid size h:

Gahalaut, Kraus, and Tomar
Multigrid methods for isogeometric discretization.
CMAME, 2013.

Not robust in the spline degree p

Rather robust in geometry
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Unit square
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Iteration counts

`� p 1 2 3 4 5 6 7

3 8 9 25 53 66 >100 >100
4 8 9 24 75 >100 >100 >100
5 8 9 23 73 >100 >100 >100
6 8 9 24 73 >100 >100 >100
7 8 9 24 70 >100 >100 >100

V-cycle, ε = 10−8
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Quarter annulus

G
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Iteration counts

`� p 1 2 3 4 5 6 7

3 12 10 26 48 >100 >100 >100
4 14 11 24 75 >100 >100 >100
5 16 13 23 61 >100 >100 >100
6 18 14 23 63 >100 >100 >100
7 19 15 24 68 >100 >100 >100

V-cycle, ε = 10−8
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Yeti footprint

Model problem Multigrid Gauss-Seidel SCMS MGS Conclusions

www.ricam.oeaw.ac.at Stefan Takacs, Robust multigrid methods in isogeometric analysis



Johann Radon Institute for Computational and Applied Mathematics

Iteration counts

`� p 1 2 3 4 5 6 7

2 12 11 26 82 >100 >100 >100
3 15 13 25 75 >100 >100 >100
4 16 14 25 74 >100 >100 >100
5 18 15 25 74 >100 >100 >100

V-cycle, ε = 10−8
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Computational complexity

The cost for applying the smoother is linear in the number of
non-zeros of Ah, thus each smoothing step costs

O(pdN) flops.

Computational costs for one multigrid cycle are asymptotically
the same.
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Multigrid smoothers

Subspace corrected mass smoother
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Subspace corrected mass smoother

T. and Takacs.
Approximation error estimates and inverse inequalities for
B-splines of maximum smoothness. M3AS, 2016.

The space
V0 := {u ∈ Sp,h(0, 1) : u(i)(0) = u(i)(1) = 0 ∀i=1,3,...,2bp/2c−1}
satisfies both

a robust inverse estimate

|u0|H1(0,1) ≤ 2
√
3h−1‖u0‖L2(0,1) for u0 ∈ V0

a robust approximation error estimate

inf
u0∈V0

‖u − u0‖L2(0,1) ≤
√
2h|u|H1(0,1)
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Subspace corrected mass smoother

Hofreither and T.
Robust Multigrid for Isogeometric Analysis using Subspace
Correction. SINUM. 55 (4). p. 2004 - 2024, 2017.

The L2-orthogonal splitting of V := Sp,h into V0 and its
complement V1 is H1-stable
Tensor-product structure (for unit square):

Ah = K ⊗M + M ⊗ K

h
∑

(α,β)∈{0,1}2

(Πα ⊗ Πβ)(Kα ⊗Mβ + Mα ⊗ Kβ)(Πα ⊗ Πβ)>

Πα is L2-projection V → Vα
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Subspace corrected mass smoother
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The L2-orthogonal splitting of V := Sp,h into V0 and its
complement V1 is H1-stable

Tensor-product structure (for unit square):

A−1
h h

∑
(α,β)∈{0,1}2

(Pα ⊗ Pβ)(Kα ⊗Mβ + Mα ⊗ Kβ)−1(Pα ⊗ Pβ)>

Pα is embedding Vα → V
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Subspace corrected mass smoother

Hofreither and T.
Robust Multigrid for Isogeometric Analysis using Subspace
Correction. SINUM. 55 (4). p. 2004 - 2024, 2017.

The L2-orthogonal splitting of V := Sp,h into V0 and its
complement V1 is H1-stable
Tensor-product structure (for unit square):

A−1
h & (P0 ⊗ P0)(h−2M−1

0 ⊗M−1
0 )(P0 ⊗ P0)>

+ (P1 ⊗ P0)((K1 + h−2M1)−1 ⊗M−1
0 )(P1 ⊗ P0)>

+ (P0 ⊗ P1)(M−1
0 ⊗ (K1 + h−2M1)−1)(P0 ⊗ P1)>

+ (P1 ⊗ P1)(K1 ⊗M1 + M1 ⊗ K1)−1(P1 ⊗ P1)> =: L−1
h

using K0 . h−2M0
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Convergence theory

Can show
Lh h Ah + h−2Mh

Theorem
If sufficiently many smoothing steps are applied (independent of
grid size and spline degree), the W-cycle multigrid solver converges
robustly.

Hofreither and T.
Robust Multigrid for Isogeometric Analysis using Subspace
Correction. SINUM. 55 (4). p. 2004 - 2024, 2017.
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Computational complexity

The setup of the smoother costs

O(pN + p3d ) flops

and for applying the smoother costs

O(pN + p2d ) flops

per smoothing step.
The computation of the residual costs O(nnz Ah) h O(pdN)
flops.
The overall cost for one multigrid cycle is

O(pdN + p2d logN) flops.
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Unit square
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Iteration counts

`� p 1 2 3 4 5 6 7

3 23 19 16 12 10 8 6
4 26 26 23 20 19 16 14
5 26 29 28 26 25 23 22
6 27 30 29 28 27 26 26
7 27 31 30 28 28 27 27

V-cycle, 2 + 2 smoothing steps, ε = 10−8
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Iteration counts

`� p 1 2 3 4 5 6 7

3 14 12 10 8 7 7 6
4 15 15 14 13 12 11 10
5 16 16 16 15 14 14 13
6 16 17 16 16 15 15 15
7 16 17 17 16 16 16 15

V-cycle, PCG, ε = 10−8
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Quarter annulus

G
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Quarter annulus

Remember pull-back principle:

G

Substitution rule yields

Ah h Âh,

which is robust in grid size h and spline degree p, but heavily
depending on geometry function G .
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Iteration counts

`� p 1 2 3 4 5 6 7

3 21 18 16 15 18 23 32
4 26 26 23 22 24 47 47
5 29 30 28 27 30 47 47
6 31 32 31 30 36 47 47
7 32 34 33 32 41 47 47

V-cycle, PCG, ε = 10−8
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Convergence theory

Theorem
If sufficiently many smoothing steps are applied (independent of
grid size and spline degree but depending on the geometry
function), the W-cycle multigrid solver converges robustly.

Hofreither and T.
Robust Multigrid for Isogeometric Analysis using Subspace
Correction. SINUM. 55 (4). p. 2004 - 2024, 2017.
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Yeti footprint
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Decomposition of the degrees of freedom
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Extension to multi-patch case

On the patch-interior, have tensor-product structure:
subspace corrected mass smoother

The problems on edges, vertices are small: can use a direct
solver

Additive Schwarz type combination
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Convergence theory

The splitting between the subspaces is almost stable:

Ah + h−2Mh .
∑
T

PT (AT + h−2MT )P>T . p(Ah + h−2Mh)

Theorem
If O(p) smoothing steps are applied (independent of grid size but
depending on the geometry function), the W-cycle multigrid
solver converges robustly.

T.
Robust approximation error estimates and multigrid solvers for
isogeometric multi-patch discretizations. M3AS, 2018.

Model problem Multigrid Gauss-Seidel SCMS MGS Conclusions

www.ricam.oeaw.ac.at Stefan Takacs, Robust multigrid methods in isogeometric analysis



Johann Radon Institute for Computational and Applied Mathematics

Computational complexity

Applying the smoother costs

O(pN + p2d ) flops

per smoothing step.
The computation of the residual is O(nnz Ah) h O(pdN)
flops.
The overall cost for one multigrid cycle is

O(pdN + p2d logN) flops

or, if O(p) smoothing steps are applied,

O(pd+1N + p2d+1 logN) flops.
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Yeti footprint
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Iteration counts

`� p 1 2 3 4 5 6 7

2 30 31 29 27 25 24 22
3 36 36 35 34 32 31 30
4 38 39 38 37 35 35 33
5 40 42 40 39 38 37 36

V-cycle, PCG, ε = 10−8
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Multigrid smoothers

Macro-element Gauss-Seidel
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Macro-element Gauss-Seidel smoother

Gauss-Seidel:

u(new)
h = uh − PiA−1

i P>i (Ahuh − f h),

where Ai := P>i APi and Pi = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
N−1−i

)>.

Macro-element Gauss-Seidel: Include p − 1 neighbors in each
direction

Beirão da Veiga, Cho, Pavarino, and Scacchi
Overlapping Schwarz methods for Isogeometric Analysis.
SINUM, 2012.
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Macro-element Gauss-Seidel smoother
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Unit square
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Iteration counts

`� p 1 2 3 4 5 6 7

3 8 3 3 3 2 2 1
4 8 4 3 3 2 2 2
5 8 4 3 3 3 2 2
6 8 4 3 3 3 3 2
7 8 4 4 3 3 3 3

V-cycle, ε = 10−8
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Quarter annulus

G
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Iteration counts

`� p 1 2 3 4 5 6 7

3 12 4 3 2 2 2 1
4 14 5 3 3 3 2 2
5 16 5 4 3 3 3 3
6 18 5 4 3 3 3 3
7 19 5 4 3 3 3 3

V-cycle, ε = 10−8
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Yeti footprint
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Decomposition of the degrees of freedom
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Decomposition of the degrees of freedom
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Iteration counts

`� p 1 2 3 4 5 6 7

2 12 9 10 11 11 11 11
3 16 10 12 13 15 18 17
4 16 11 14 16 18 21 20

V-cycle, ε = 10−8
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Macro-element Gauss-Seidel smoother

So far, no complete convergence analysis (showing robustness)

Robust convergence in grid size h, cf.

Gahalaut, Kraus, and Tomar
Multigrid methods for isogeometric discretization.
CMAME, 2013.

Model problem Multigrid Gauss-Seidel SCMS MGS Conclusions

www.ricam.oeaw.ac.at Stefan Takacs, Robust multigrid methods in isogeometric analysis



Johann Radon Institute for Computational and Applied Mathematics

Macro-element Gauss-Seidel smoother

So far, no complete convergence analysis (showing robustness)

Robust convergence in grid size h, cf.

Gahalaut, Kraus, and Tomar
Multigrid methods for isogeometric discretization.
CMAME, 2013.

Model problem Multigrid Gauss-Seidel SCMS MGS Conclusions

www.ricam.oeaw.ac.at Stefan Takacs, Robust multigrid methods in isogeometric analysis



Johann Radon Institute for Computational and Applied Mathematics

Computational complexity

Each macro-element has (2p − 1)d degrees of freedom

Setup of patch-local solver costs O(p3d ) flops

Application of patch-local solver costs O(p2d ) flops

Update of residual costs O(p2d ) flops

Total costs: O(p3dN) (application: O(p2dN) )

Can we improve?
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Macro-element Gauss-Seidel smoother

α

β

β
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Macro-element Gauss-Seidel smoother

α

β

β
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Computational complexity

Each macro-element has (α + 2β)d degrees of freedom

Setup of patch-local solver costs O((α + 2β)3d ) flops

Application of patch-local solver costs O((α + 2β)2d ) flops

Update of residual costs O((α + 2β)dpd ) flops

Number of macro-elements is h N/αd

Total costs: O((1 + α−1β)d ((α + β)2d + pd )N)
For β h p: O((1 + α−1p)d (α + p)2dN)
For α, β h p: O(p2dN) (application: O(pdN))
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Macro-element Gauss-Seidel

α := p, β := p − 1
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Unit square
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Iteration counts

`� p 1 2 3 4 5 6 7

3 8 4 3 3 2 2 1
4 8 4 3 3 3 3 2
5 8 4 3 3 3 3 3
6 8 4 3 3 3 3 3
7 8 4 4 3 3 3 3

V-cycle, ε = 10−8
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Quarter annulus

G
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Iteration counts

`� p 1 2 3 4 5 6 7

3 12 4 3 3 2 2 1
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6 18 5 4 3 3 3 3
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Yeti footprint
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Iteration counts

`� p 1 2 3 4 5 6 7

2 12 9 10 11 11 11 11
3 16 10 12 13 15 18 17
4 16 11 14 16 18 21 20

V-cycle, ε = 10−8
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Conclusions

Multigrid solvers can be fast in the IgA context.

Thay are robust in the grid size.

They can be provable robust in the spline degree (but maybe
those are not the fastest ones).

Simple Gauss-Seidel like constructions allow to solve for
non-trivial problems more easily, although they might not have
optimal complexity.

Thanks for your attention!
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