Shape and topology optimisation subject to 3D nonlinear magnetostatics - part 1: sensitivity analysis

Kevin Sturm TU Wien

joint work with Peter Gangl (TU Graz)

Outline

- Model Problem
- Topological Derivative
- Averaged adjoint formalism
- Application to model problem

Outline

■ Model Problem

- Topological Derivative
- Averaged adjoint formalism
- Application to model problem

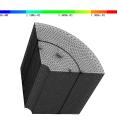
Topology Optimization of a 3D Electric Motor

Quasilinear Model Problem

$$\label{eq:definition} \begin{split} \min_{\Omega \in \mathcal{A}(D)} &J(\Omega) = \int_{\Gamma_0} |\operatorname{\mathbf{curl}} u \cdot \mathbf{n} - B_d^n|^2 \mathrm{d} S_x \\ \text{s.t. } u \in \mathbf{V} : \int_{\mathsf{D}} \nu_\Omega(x, |\operatorname{\mathbf{curl}} u|) \operatorname{\mathbf{curl}} u \cdot \operatorname{\mathbf{curl}} v \mathrm{d} x = \langle \mathbf{\textit{F}}, \mathbf{\textit{v}} \rangle \quad \text{for all } \mathbf{\textit{v}} \in \mathbf{V}. \end{split}$$

Here,

- $lackbox{lack} \langle m{F}, m{v}
 angle := \int_{\Omega_c} m{J} \cdot m{v} \mathrm{d} x + \int_{\Omega_-}
 u_m m{M} \cdot \mathbf{curl} \, m{v} \mathrm{d} x \quad ext{for } m{v} \in m{V},$
- $\mathbf{V} := H_0(\mathsf{D}, \mathbf{curl}) \cap H(\mathsf{D}, \mathsf{div} = 0),$
- $\mathbf{v}_1, \ \nu_2: \mathbf{R}_0^+ \to \mathbf{R}^+$ satisfy
 - $s \mapsto \nu_i(s)s$, i = 1, 2 is Lipschitz continuous and strongly monotone
 - $v_i \in C^2(\mathbb{R}_0^+)$, $v_i'(0) = 0$, and that there is a constant c such that for all $s \in \mathbb{R}_0^+$, $v_i'(s) \le c$ and $v_i''(s) \le c$



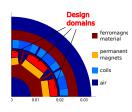
Topology Optimization of a 3D Electric Motor

Quasilinear Model Problem

$$\begin{split} \min_{\Omega \in \mathcal{A}(D)} &J(\Omega) = \int_{\Gamma_0} |\operatorname{curl} u \cdot \boldsymbol{n} - \mathcal{B}_d^n|^2 \mathrm{d} S_x \\ \text{s.t. } u \in \mathbf{V} : \int_{D} \nu_{\Omega}(x, |\operatorname{curl} u|) \operatorname{curl} u \cdot \operatorname{curl} v \mathrm{d} x = \langle \boldsymbol{F}, \boldsymbol{v} \rangle \quad \text{for all } \boldsymbol{v} \in \mathbf{V}. \end{split}$$

Here,

- $lackbox{lack} \langle m{F}, m{v}
 angle := \int_{\Omega_c} m{J} \cdot m{v} \mathrm{d} x + \int_{\Omega_-}
 u_m m{M} \cdot \mathbf{curl} \, m{v} \mathrm{d} x \quad ext{for } m{v} \in m{V},$
- $\mathbf{V} := H_0(\mathsf{D}, \mathbf{curl}) \cap H(\mathsf{D}, \mathsf{div} = 0),$
- $\mathbf{v}_1, \ \nu_2: \mathbf{R}_0^+ \to \mathbf{R}^+$ satisfy
 - $s \mapsto \nu_i(s)s$, i = 1, 2 is Lipschitz continuous and strongly monotone
 - $\nu_i \in C^2(\mathbb{R}_0^+)$, $\nu_i'(0) = 0$, and that there is a constant c such that for all $s \in \mathbb{R}_0^+$, $\nu_i'(s) \le c$ and $\nu_i''(s) \le c$



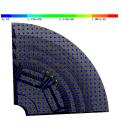
Topology Optimization of a 3D Electric Motor

Quasilinear Model Problem

$$\label{eq:local_equation} \begin{split} \min_{\Omega \in \mathcal{A}(D)} &J(\Omega) = \int_{\Gamma_0} |\operatorname{\mathbf{curl}} u \cdot \mathbf{n} - B_d^n|^2 \mathrm{d}S_x \\ \text{s.t. } u \in \mathbf{V} : \int_{D} \nu_{\Omega}(x, |\operatorname{\mathbf{curl}} u|) \operatorname{\mathbf{curl}} u \cdot \operatorname{\mathbf{curl}} v \mathrm{d}x = \langle \mathbf{\textit{F}}, \mathbf{\textit{v}} \rangle \quad \text{for all } \mathbf{\textit{v}} \in \mathbf{V}. \end{split}$$

Here,

- $\langle F, v \rangle := \int_{\Omega} J \cdot v dx + \int_{\Omega} \nu_m M \cdot \text{curl } v dx \text{ for } v \in V,$
- $\mathbf{V} := H_0(\mathsf{D}, \mathbf{curl}) \cap H(\mathsf{D}, \mathsf{div} = 0),$
- $\mathbf{v}_1, \ \nu_2: \mathbf{R}_0^+ \to \mathbf{R}^+$ satisfy
 - $s \mapsto \nu_i(s)s$, i = 1, 2 is Lipschitz continuous and strongly monotone
 - $\nu_i \in C^2(\mathbb{R}_0^+)$, $\nu_i'(0) = 0$, and that there is a constant c such that for all $s \in \mathbb{R}_0^+$, $\nu_i'(s) \le c$ and $\nu_i''(s) \le c$



Outline

- Model Problem
- Topological Derivative
- Averaged adjoint formalism
- Application to model problem

Topological Derivative: Definition

Idea:

Sensitivity of $\mathcal{J} = \mathcal{J}(\Omega) = J(\Omega, u(\Omega))$ w.r.t. insertion of hole $\omega_{\varepsilon} = x_0 + \varepsilon \omega$ (ω e.g. dots unit disk)

Definition (Topological derivative)

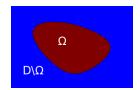
Let $D \subset \mathbf{R}^3$ be an open set and $\Omega \subset D$ an open subset. Let $\omega \subset \mathbf{R}^3$ be open with $0 \in \omega$. Define for $z \in \mathbf{R}^3$, $\omega_\varepsilon(z) := z + \varepsilon \omega$. Then the topological derivative of J at Ω at the point $z \in \mathbf{R}^3$ is defiend by

$$dJ(\Omega)(z) = \left\{ \begin{array}{ll} \lim_{\varepsilon \searrow 0} \frac{J(\Omega \setminus \omega_{\varepsilon}(z)) - J(\omega)}{|\omega_{\varepsilon}(z)|} & \text{if } z \in \Omega, \\ \lim_{\varepsilon \searrow 0} \frac{J(\Omega \cup \omega_{\varepsilon}(z)) - J(\omega)}{|\omega_{\varepsilon}(z)|} & \text{if } z \in D \setminus \overline{\Omega} \end{array} \right..$$

 $G^{f \rightarrow air}$: air inside ferromagnetic material

 $G^{air o f}$: ferromagnetic material inside air

Topological Derivative: Example

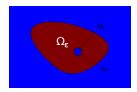


Example: $\mathcal{J}(\Omega) := |\Omega|, \ \omega_{\varepsilon} = x_0 + \varepsilon \omega, \ \omega \in \mathbf{R}^d, \ 0 \in \omega,$

Remark

Topological derivative can be seen as a semidifferential on the space of characteristic functions.

Topological Derivative: Example



Example:
$$\mathcal{J}(\Omega) := |\Omega|$$
, $\omega_{\varepsilon} = x_0 + \varepsilon \omega$, $\omega \in \mathbb{R}^d$, $0 \in \omega$,

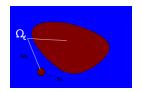
1 $x_0 \in \Omega$, $\Omega_{\varepsilon} = \Omega \setminus \overline{\omega_{\varepsilon}}$:

$$\frac{1}{|\omega_{\varepsilon}|}(\mathcal{J}(\Omega_{\varepsilon})-\mathcal{J}(\Omega))=-\frac{1}{|\omega_{\varepsilon}|}\int_{\omega_{\varepsilon}}f\ dx\ \to\ -f(x_{0}),$$

Remark

Topological derivative can be seen as a semidifferential on the space of characteristic functions.

Topological Derivative: Example



Example:
$$\mathcal{J}(\Omega) := |\Omega|$$
, $\omega_{\varepsilon} = x_0 + \varepsilon \omega$, $\omega \in \mathbb{R}^d$, $0 \in \omega$,

11 $x_0 \in \Omega$, $\Omega_{\varepsilon} = \Omega \setminus \overline{\omega_{\varepsilon}}$:

$$\frac{1}{|\omega_{\varepsilon}|}(\mathcal{J}(\Omega_{\varepsilon})-\mathcal{J}(\Omega))=-\frac{1}{|\omega_{\varepsilon}|}\int_{\omega_{\varepsilon}}f\ dx\ \to\ -f(x_{0}),$$

2 $x_0 \in D \setminus \overline{\Omega}$, $\Omega_{\varepsilon} = \Omega \cup \omega_{\varepsilon}$:

$$\frac{1}{|\omega_{\varepsilon}|}(\mathcal{J}(\Omega_{\varepsilon})-\mathcal{J}(\Omega))=\frac{1}{|\omega_{\varepsilon}|}\int_{\omega_{\varepsilon}}f\ dx\ \rightarrow\ f(x_{0}),$$

Remark

Topological derivative can be seen as a semidifferential on the space of characteristic functions.

Outline

- Model Problem
- Topological Derivative
- Averaged adjoint formalism
- Application to model problem

Lagrangian approach

Definition

Let X and Y be vector spaces and $\tau>0$. A <u>parametrised Lagrangian</u> (or short Lagrangian) is a function

$$(\varepsilon, u, q) \mapsto L(\varepsilon, u, q) : [0, \tau] \times X \times Y \to \mathbf{R},$$

satisfying for all $(\varepsilon, u) \in [0, \tau] \times X$,

$$q\mapsto L(\varepsilon,u,q)$$
 is affine on Y .

Example

Let $X = Y = H_0^1(\Omega)$ and

$$L(\varepsilon, u, q) := \int_{\Omega} u^2 dx + \int_{\Omega} \nabla u \cdot \nabla q - \varepsilon f q dx.$$

State and averaged adjoint state

Definition (Perturbed states)

For $\varepsilon \in [0,\tau]$ we define the (perturbed) state equation by: find $u_\varepsilon \in X$, such that

$$\partial_q L(\varepsilon, u_\varepsilon, 0)(\varphi) = 0$$
 for all $\varphi \in Y$.

The set of perturbed states is denoted $E(\varepsilon)$.

State and averaged adjoint state

Definition (Perturbed states)

For $\varepsilon \in [0,\tau]$ we define the (perturbed) state equation by: find $u_\varepsilon \in X$, such that

$$\partial_q L(\varepsilon,u_\varepsilon,0)(\varphi)=0 \quad \text{ for all } \varphi \in Y.$$

The set of perturbed states is denoted $E(\varepsilon)$.

"
$$\mathcal{J}(\varepsilon)$$
" = $L(\varepsilon, u_{\varepsilon}, \psi)$

State and averaged adjoint state

Definition (Perturbed states)

For $\varepsilon \in [0, \tau]$ we define the (perturbed) state equation by: find $u_{\varepsilon} \in X$, such that

$$\partial_q L(\varepsilon, u_\varepsilon, 0)(\varphi) = 0$$
 for all $\varphi \in Y$.

The set of perturbed states is denoted $E(\varepsilon)$.

$$"\mathcal{J}(\varepsilon)" = L(\varepsilon, u_{\varepsilon}, \psi) = L(\varepsilon, u_{0}, \psi) + \int_{0}^{1} \partial_{u} L(\varepsilon, su_{\varepsilon} + (1 - s)u_{0}, \psi)(u_{\varepsilon} - u_{0}) ds$$

Definition (Averaged adjoint state)

Keivn Sturm (TU Wien)

Given $\varepsilon \in [0, \tau]$ and $(u_0, u_{\varepsilon}) \in E(0) \times E(\varepsilon)$, the averaged adjoint state equation is defined as follows: find $q_{\varepsilon} \in X$, such that

$$\int_0^1 \partial_u L(\varepsilon, su_\varepsilon + (1-s)u_0, q_\varepsilon)(\varphi) \, ds = 0 \quad \text{ for all } \varphi \in X.$$

The set of averaged adjoint states is denoted $Y(\varepsilon, u_0, u_{\varepsilon})$. We set $Y(0, u_0) := Y(0, u_0, u_0).$

Thus, "
$$\mathcal{J}(\varepsilon)$$
" = $L(\varepsilon, u_{\varepsilon}, \psi) = L(\varepsilon, u_{\varepsilon}, q_{\varepsilon}) = L(\varepsilon, u_{0}, q_{\varepsilon})$.

6 / 19

Averaged adjoint theorem

Theorem (Delfour/Sturm)

Let $\ell: \mathbf{R} \to \mathbf{R}$ be such that $\ell(0) = 0$. Suppose the following conditions are satisfied.

- (H1) The set of perturbed states and averaged adjoint states is non-empty for all $\varepsilon \in [0, \tau]$.
- (H2) For all $u_0 \in E(0)$ and $q_0 \in Y(0, u_0)$ the limit

$$\partial_\ell L(0,u_0,q_0) := \lim_{arepsilon \searrow 0} rac{L(arepsilon,u_0,q_0) - L(0,u_0,q_0)}{\ell(arepsilon)} \quad ext{ exists.}$$

(H3) The limit

$$R:=\lim_{arepsilon\searrow 0}rac{L(arepsilon,u_0,q_arepsilon)-L(arepsilon,u_0,q_0)}{\ell(arepsilon)}$$
 exists.

Then we have with $g(\varepsilon) := L(\varepsilon, u_{\varepsilon}, 0)$,

$$d_{\ell}g(0)=\partial_{\ell}L(0,u_0,q_0)+R.$$

Remark

For optimal control problems we usually choose $\ell(\varepsilon) = \varepsilon$.

Example

Recall the example $X=Y=H^1_0(\Omega),\ \ell(\varepsilon):=\varepsilon$, and

$$L(\varepsilon, u, q) := \int_{\Omega} u^2 \ dx + \int_{\Omega} \nabla u \cdot \nabla q - \varepsilon fq \ dx.$$

State and averaged adjoint state equation:

$$\begin{split} u_\varepsilon &\in H^1_0(\Omega), \quad \int_\Omega \nabla u_\varepsilon \cdot \nabla \varphi \ dx = \int_\Omega \varepsilon f \varphi \ dx \quad \text{ for all } \varphi \in H^1_0(\Omega) \\ q_\varepsilon &\in H^1_0(\Omega), \quad \int_\Omega \nabla \psi \cdot \nabla q_\varepsilon \ dx = -\int_\Omega (u_\varepsilon + u) \psi \ dx \quad \text{ for all } \psi \in H^1_0(\Omega). \end{split}$$

We have $(u := u_0, q := q_0)$

$$\partial_{\varepsilon} L(0, u, q) = \lim_{\varepsilon \searrow 0} \frac{L(\varepsilon, u, q) - L(0, u, q)}{\varepsilon} = -\int_{\Omega} fq \ dx$$

$$R = \lim_{\varepsilon \searrow 0} \frac{L(\varepsilon, u, q_{\varepsilon}) - L(\varepsilon, u, q)}{\varepsilon} = 0.$$

So
$$d_{\varepsilon}g(0) = \frac{d}{d\varepsilon}L(\varepsilon, u_{\varepsilon}, 0) = -\int_{\Omega} fq \ dx$$
.

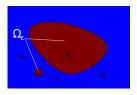
Outline

- Model Problem
- Topological Derivative
- Averaged adjoint formalism
- Application to model problem

Application to the model problem

From now on we fix:

- an open and bounded set $\omega \subset \mathbf{R}^d$ with $0 \in \omega$,
- lacksquare an open set $\Omega \Subset \mathsf{D}$ and a point $z \in \mathsf{D} \setminus \overline{\Omega}$,
- the perturbation $\Omega_{\varepsilon} := \Omega \cup \omega_{\varepsilon}(z)$, where $\omega_{\varepsilon}(z) := z + \varepsilon \omega$ and $\varepsilon \in [0, \tau], \ \tau > 0$.



Let $X = Y = H^1_0(D)$ and introduce the Lagrangian $G : [0, \tau] \times X \times Y \to \mathbf{R}$ associated with the perturbation Ω_ε by

$$L(\varepsilon,u,v) := \int_{\Gamma_0} |\operatorname{curl} u \cdot \mathbf{n} - B_d^n|^2 \mathrm{d}S_{\mathbf{x}} + \int_{\mathcal{D}} \nu_{\varepsilon}(\mathbf{x},|\operatorname{curl} u|) \operatorname{curl} u \cdot \operatorname{curl} v \mathrm{d}\mathbf{x} - \langle \mathbf{F},\mathbf{v} \rangle.$$

where we use the abbreviation

$$u_{\varepsilon}(\mathsf{x},\mathsf{s}) := \nu_1(\mathsf{s})\chi_{D\setminus\Omega_{\varepsilon}}(\mathsf{x}) + \nu_2(\mathsf{s})\chi_{\Omega_{\varepsilon}}(\mathsf{x})$$

We will apply the averaged adjoint theorem with $\ell(\varepsilon) = |\omega_{\varepsilon}|$.

Bound for the perturbed state

The perturbed state equation reads: find $u_{\varepsilon} \in V$ such that

$$\partial_q L(\varepsilon, u_\varepsilon, 0)(v) = 0$$
 for all $v \in \mathbf{V}$,

or equivalently $u_{\varepsilon} \in H(\mathsf{D},\mathbf{curl})$ satisfies,

$$\int_{D} \nu_{\varepsilon}(x, |\operatorname{\mathbf{curl}} u_{\varepsilon}|) \operatorname{\mathbf{curl}} u_{\varepsilon} \cdot \operatorname{\mathbf{curl}} v dx = \langle F, v \rangle \quad \text{for all } v \in V.$$

Lemma

There is a constant C > 0, such that for all small $\varepsilon > 0$,

$$\|u_{\varepsilon}-u\|_{L^2(\mathbb{D})^3}+\|\operatorname{curl}(u_{\varepsilon}-u)\|_{L^2(\mathbb{D})^3}\leq C\varepsilon^{d/2}.$$

Bound for the averaged adjoint state

For $x \in D$ and $v \in \mathbf{R}^3$, let $F_{\varepsilon}(x, v) := \nu_{\varepsilon}(x, |v|)v$. We introduce for $\varepsilon \in [0, \tau]$ and $v, w \in \mathbf{R}^3$, $v \neq 0$,

$$b_{\varepsilon}(x,v,w) := \partial_{v} F_{\varepsilon}(x,v) w = \left(\nu_{\varepsilon}(x,|v|) I + \frac{\nu'_{\varepsilon}(x,|v|)}{|v|} v \otimes v \right) w.$$

The averaged adjoint $q_{arepsilon} \in \mathbf{V}$ is defined by

$$\int_0^1 \partial_u L(\varepsilon, su_\varepsilon + (1-s)u_0, q_\varepsilon)(v) \ ds = 0 \quad \text{ for all } v \in \mathbf{V}.$$

This is equivalent to

$$\int_{D} \int_{0}^{1} b_{\varepsilon}(x, \mathbf{curl}(su_{\varepsilon} + (1 - s)u_{0}), \mathbf{curl}(v)) \ ds \cdot \mathbf{curl}(q_{\varepsilon}) \ dx$$

$$= -\int_{\Gamma_{0}} (\mathbf{curl}(u_{\varepsilon} + u_{0}) \cdot \mathbf{n} - 2B_{d}^{n}) \mathbf{curl}(v) \cdot \mathbf{n} \ dS_{x}$$

for all $v \in \mathbf{V}$.

Lemma

There is a constant C > 0, such that for all small $\varepsilon > 0$,

$$\|q_{\varepsilon} - q\|_{H(\mathsf{D}, \mathbf{curl})} \le C \left(\|\mathbf{curl}(u_{\varepsilon} - u)\|_{L_2(\mathsf{D})^3} + \varepsilon^{d/2}\right).$$

Topological Derivative

By the previous theorem, we get that the topological derivative is given by

$$G^{1\to 2}(z)=d_\ell g(0)=\partial_\ell L(0,u,q)+R$$

if both terms exist.

Lemma

We have

$$\begin{split} \partial_{\ell} L(0,u,q) &= \lim_{\varepsilon \searrow 0} \frac{L(\varepsilon,u,q) - L(0,u,q)}{|\omega_{\varepsilon}|} \\ &= \left(\nu_{2}(|\operatorname{curl} u(z)|) - \nu_{1}(|\operatorname{curl} u(z)|)\right) \operatorname{curl} u(z) \cdot \operatorname{curl} q(z) \end{split}$$

Proof.

Change of variables and using that all functions are continuous at z.

Topological Derivative

Let us now consider the second term

$$R = \lim_{\varepsilon \searrow 0} \frac{L(\varepsilon, u, q_{\varepsilon}) - L(\varepsilon, u, q)}{\ell(\varepsilon)}$$

where $\ell(\varepsilon)=|\omega_\varepsilon|$. First note that testing the state equation for $\varepsilon=0$ with ${\bf v}:=q_\varepsilon-q$ yields

$$\int_{\Omega} \nu_0(x, |\operatorname{curl} u|) \operatorname{curl} u \cdot \operatorname{curl}(q_{\varepsilon} - q) \ dx = \langle F, q_{\varepsilon} - q \rangle. \tag{1}$$

Therefore

$$\begin{split} L(\varepsilon,u,q_\varepsilon) - L(\varepsilon,u,q) &= \int_{\mathbb{D}} \nu_\varepsilon(x,|\operatorname{curl} u|) \operatorname{curl} u \cdot \operatorname{curl}(q_\varepsilon - q) \ dx - \langle \pmb{F},q_\varepsilon - q \rangle \\ &\stackrel{\text{(1)}}{=} \int_{\mathbb{D}} (\nu_\varepsilon(x,|\operatorname{curl} u|) - \nu_0(x,|\operatorname{curl} u|)) \operatorname{curl} u \cdot \operatorname{curl}(q_\varepsilon - q) \ dx \\ &= \int_{|u|_\varepsilon} (\nu_2(|\operatorname{curl} u|) - \nu_1(|\operatorname{curl} u|)) \operatorname{curl} u \cdot \operatorname{curl}(q_\varepsilon - q) \ dx. \end{split}$$

Helmholtz decomposition

Definition

We use the following Helmholtz decomposition for u_{ε} :

$$u_{\varepsilon} = \nabla \phi_{\varepsilon} + w_{\varepsilon}, \quad \phi_{\varepsilon} \in H_0^1(\mathsf{D}), \ w_{\varepsilon} \in H_0^1(\mathsf{D})^3.$$

Similarly we decompose q_{ε} :

$$q_{\varepsilon} =
abla \psi_{\varepsilon} + \mathbf{z}_{\varepsilon}, \quad \psi_{\varepsilon} \in H^1_0(\mathsf{D}), \ z_{\varepsilon} \in H^1_0(\mathsf{D})^3.$$

Topological Derivative

Definition

The variation of the averaged adjoint state q_{ε} is defined pointwise a.e. in \mathbf{R}^d by

$$Q_{\varepsilon}(x) := \frac{\tilde{z}_{\varepsilon}(T_{\varepsilon}(x)) - \tilde{z}(T_{\varepsilon}(x))}{\varepsilon},$$

and the variation of the direct state u_{ε} is defined pointwise a.e. in \mathbf{R}^d by

$$W_{\varepsilon}(x) := \frac{\tilde{w}_{\varepsilon}(T_{\varepsilon}(x)) - \tilde{w}(T_{\varepsilon}(x))}{\varepsilon}.$$

Here, \tilde{q}_{ε} , \tilde{q} , \tilde{u}_{ε} , \tilde{u} are extensions of q_{ε} , q, u_{ε} , u by zero.

Invoking the change of variables $y = T_{\varepsilon}(x) = z + \varepsilon x$, we get

$$\begin{split} & \frac{L(\varepsilon, u, q_{\varepsilon}) - L(\varepsilon, u, q)}{|\omega_{\varepsilon}|} \\ &= \frac{1}{|\omega|} \int_{\omega} (\nu_{2}(|\operatorname{curl} u(T_{\varepsilon}(x))|) - \nu_{1}(|\operatorname{curl} u(T_{\varepsilon}(x))|)) \operatorname{curl} u(T_{\varepsilon}(x)) \cdot \operatorname{curl} Q_{\varepsilon} \ dx. \end{split}$$

Topological Derivative

Definition

The variation of the averaged adjoint state q_{ε} is defined pointwise a.e. in \mathbf{R}^d by

$$Q_{\varepsilon}(x) := \frac{\tilde{z}_{\varepsilon}(T_{\varepsilon}(x)) - \tilde{z}(T_{\varepsilon}(x))}{\varepsilon},$$

and the variation of the direct state u_{ε} is defined pointwise a.e. in \mathbf{R}^d by

$$W_{\varepsilon}(x) := \frac{\tilde{w}_{\varepsilon}(T_{\varepsilon}(x)) - \tilde{w}(T_{\varepsilon}(x))}{\varepsilon}.$$

Here, \tilde{q}_{ε} , \tilde{q} , \tilde{u}_{ε} , \tilde{u} are extensions of q_{ε} , q, u_{ε} , u by zero.

Invoking the change of variables $y = T_{\varepsilon}(x) = z + \varepsilon x$, we get

$$\begin{split} & \frac{L(\varepsilon, u, q_{\varepsilon}) - L(\varepsilon, u, q)}{|\omega_{\varepsilon}|} \\ &= \frac{1}{|\omega|} \int_{\omega} (\nu_{2}(|\operatorname{curl} u(T_{\varepsilon}(x))|) - \nu_{1}(|\operatorname{curl} u(T_{\varepsilon}(x))|)) \operatorname{curl} u(T_{\varepsilon}(x)) \cdot \operatorname{curl} Q_{\varepsilon} \ dx. \\ & \xrightarrow{\varepsilon \to 0} ??? \end{split}$$

Conjecture

There exists $W \in BL(\mathbf{R}^3)$, such that

$$\begin{array}{lll} \partial W_\varepsilon \to \partial W & \text{in } L_2({\mathsf R}^3)^{3\times 3} & \text{as } \varepsilon \searrow 0 \\ & \text{curl}(W_\varepsilon) \to \text{curl}(W) & \text{in } L_2({\mathsf R}^3)^3 & \text{as } \varepsilon \searrow 0. \end{array}$$

Moreover, W satisfies

$$\begin{split} &\int_{\mathbf{R}^3} (F_\omega(x, \operatorname{curl} W + \operatorname{curl}(w_0)(z)) - F_\omega(x, \operatorname{curl} w_0(z))) \cdot \operatorname{curl} v \ dx = \\ &\quad - \int_\omega \left(\nu_1(|\operatorname{curl} w_0(z)|) - \nu_2(|\operatorname{curl} w_0(z)|) \right) \operatorname{curl} w_0(z) \right) \cdot \operatorname{curl} v \ dx \end{split}$$

for all $v \in BL(\mathbf{R}^3)$. Here $F_{\omega}(x,y) := \nu_1(y)\chi_{\mathbf{R}^3 \setminus \omega}(x) + \nu_2(y)\chi_{\omega}(x)$.

Corollary of Conjecture

The weak limit **Q** of $\mathbf{Q}_{\varepsilon}=(\mathbf{q}_{\varepsilon}-\mathbf{q}_{0})/\varepsilon\circ\mathcal{T}_{\varepsilon}$ satisfies

$$\begin{split} &\int_{\mathbf{R}^3} \left(\int_0^1 \partial_y \tilde{F}_\omega(x, s \operatorname{curl} W + \operatorname{curl} \mathbf{u}_0(z)) \operatorname{curl} \bar{\mathbf{v}} \ ds \right) \cdot \operatorname{curl} \mathbf{Q} \ dx \\ = &- \int_{\mathbf{R}^3} \left[\int_0^1 \partial_y \tilde{F}_\omega(x, s \operatorname{curl} W + \operatorname{curl} u_0(z)) \operatorname{curl} (\bar{\mathbf{v}}) \ ds \right. \\ &- \partial_y \tilde{F}_\omega(x, \operatorname{curl} \mathbf{u}_0(z)) \operatorname{curl} (\bar{\mathbf{v}}) \right] \cdot \operatorname{curl} \mathbf{q}_0(z) \ dx \\ &- \int_{\mathbf{R}^3} \left[\partial_y F_2(\operatorname{curl} \mathbf{u}_0(z)) - \partial_y F_1(\operatorname{curl} \mathbf{u}_0(z)) \right] \operatorname{curl} (\bar{\mathbf{v}}) \cdot \operatorname{curl} \mathbf{q}_0(z) \ dx. \end{split}$$

Topological Derivative

Suppose that Conjecture holds. Then

$$\begin{split} & \frac{L(\varepsilon, u, q_{\varepsilon}) - L(\varepsilon, u, q)}{|\omega_{\varepsilon}|} \\ &= \frac{1}{|\omega|} \int_{\omega} (\nu_{2}(|\operatorname{curl} u(T_{\varepsilon}(x))|) - \nu_{1}(|\operatorname{curl} u(T_{\varepsilon}(x))|)) \operatorname{curl} u(T_{\varepsilon}(x)) \cdot \operatorname{curl} Q_{\varepsilon} \ dx. \\ & \xrightarrow{\varepsilon \to 0} (\nu_{2}(|\operatorname{curl} u(z)|) - \nu_{1}(|\operatorname{curl} u(z)|)) \operatorname{curl} u(z) \cdot \frac{1}{|\omega|} \int \operatorname{curl} Q \ dx \end{split}$$

For the topological derivative, we would get

$$\begin{split} \partial J(z) = & d_\ell g(0) = \partial_\ell L(0,u_0,q_0) + R \\ = & \left(\nu_2(|\operatorname{curl} u(z)|) - \nu_1(|\operatorname{curl} u(z)|) \right) \operatorname{curl} u(z) \cdot \left(\operatorname{curl} q(z) + \frac{1}{|\omega|} \int_\omega \operatorname{curl} Q \ dx \right) \end{split}$$

It's not the end of the story

- computation of Q is numerically infeasible
- BUT: we can eliminate it by testing the equation for W by Q and using the fundamental theorem of calculus.

$$\begin{split} R(u,p) &= \left(\nu_1(|\operatorname{curl} u(z)|) - \nu_2(|\operatorname{curl} u(z)|)\right)\operatorname{curl} u(z) \cdot \frac{1}{|\omega|} \int_{\omega} \operatorname{curl} Q \ dx \\ &= \frac{1}{|\omega|} \int_{\mathbf{R}^3} \left[\tilde{F}_{\omega}(x,\operatorname{curl} W + \operatorname{curl} w_0(z)) - \tilde{F}_{\omega}(x,\operatorname{curl} w_0(z)) \right. \\ &\quad \left. - \partial_y \tilde{F}_{\omega}(x,\operatorname{curl} w_0(z))\operatorname{curl}(W) \right] \cdot \operatorname{curl} q_0 \ dx \\ &\quad \left. + \frac{1}{|\omega|} \int_{\omega} \left[\partial_y F_2(\operatorname{curl} w_0(z)) - \partial_y F_1(\operatorname{curl} w_0(z)) \right] \operatorname{curl}(W) \cdot \operatorname{curl} q_0(z) \ dx. \end{split}$$