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Topology Optimization of a 3D Electric Motor
Quasilinear Model Problem

min JQ)—/ |curl u - n — Bj|*dS,
Qe A(D)

st.ueV: / va(x,|curlul) curl u - curlvdx = (F,v) forall v € V.
D

Here,
m vo(x,s) = xa(x)va(s) + XD\E(X)Vl(S),
m (Fv):= [y J vdx+ [ vmM - curlvdx forveV,
m V := Hy(D, curl) N H(D, div = 0),
m v, v2: Rf — R" satisfy

m s — vi(s)s, i = 1,2 is Lipschitz continuous and
strongly monotone

m v; € C?(RY), v/(0) =0, and that there is a constant
c such that for all s € R{, v/(s) < c and v/’(s) < c
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Topological Derivative: Definition

Sensitivity of J = J(Q) = J(2, u(R)) w.r.t. insertion of hole w. = xp +ew
(w e.g. dots unit disk)

Definition (Topological derivative)

Let D C R® be an open set and Q C D an open subset. Let w C R® be open
with 0 € w. Define for z € R3, we(z) := z + ew. Then the topological
derivative of J at Q at the point z € R® is defiend by

JRQwe @MW) i, e Q

|im5\o
dJ(Q)(z) =1 . R 5
|.m€\o%&§|”> ifzeD\Q

. Y.
G4 air inside ferromagnetic G~ ferromagnetic material inside

material air
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Topological Derivative: Example

Example: 7(Q) := [Q|, we = x0 +ew, w € R?, 0 € w,

Topological derivative can be seen as a semidifferential on the space of
characteristic functions.
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Lagrangian approach

Definition

Let X and Y be vector spaces and 7 > 0. A parametrised Lagrangian (or short
Lagrangian) is a function

(g,u,9) = L(g,u,q) : [0,7] x X X Y — R,
satisfying for all (g, u) € [0, 7] X X,

q— L(e,u,q) is affineon Y.

Example
Let X =Y = H3(Q) and

L(e,u,q) ::/Qu2 dx+/QVu-Vq—sfq dx.
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State and averaged adjoint state
Definition (Perturbed states)

For £ € [0, 7] we define the (perturbed) state equation by: find u. € X, such
that
OqL(g,us,0)(p) =0 forallpe Y.

The set of perturbed states is denoted E(¢).
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State and averaged adjoint state
Definition (Perturbed states)

For £ € [0, 7] we define the (perturbed) state equation by: find u. € X, such
that
OqL(g,us,0)(p) =0 forallpe Y.

The set of perturbed states is denoted E(¢).

1
T = L(e, o) = L(z, o, ) + / DuL(e, st + (1 — s)uio, ) (ue — uo) ds
0

Definition (Averaged adjoint state)

Given € € [0, 7] and (uo, u:) € E(0) x E(g), the averaged adjoint state
equation is defined as follows: find g- € X, such that

1
/ Oul(e,su: + (1 — s)uo, g-)(p)ds =0 for all ¢ € X.
0

The set of averaged adjoint states is denoted Y(e, uo, u:). We set
Y (0, uo) := Y(0, uo, up).

Thus, “J(e)" = L(e, ue, ¥) = L(e, ue, g2) = L(e, wo, Ge).-
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Averaged adjoint theorem

Theorem (Delfour/Sturm)

Let £ : R — R be such that ¢(0) = 0. Suppose the following conditions are
satisfied.
(H1) The set of perturbed states and averaged adjoint states is non-empty for
alle € [0, 7].
(H2) For all up € E(0) and qo € Y(0, uo) the limit
L(€7 uo, qO) — L(07 U, qO)

9¢L(0, uo, qo) := EI@) 78) exists.

(H3) The limit

R = lim L(67 Uo, q&) — L(E7 Uo, qO)

=0 6(8) exists.

Then we have with g(e) := L(e, uc,0),
dgg(O) = 8@/.(0, up, qo) + R.

For optimal control problems we usually choose £(g) = e.
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Example
Recall the example X = Y = H3(Q), £(¢) := ¢, and

L(e,u,q) ::/u2 dX+/Vu-Vq—5fq dx.
Q Q

State and averaged adjoint state equation:

u- € Hy(Q), /Vus -V dx = / efpdx forall ¢ € Hy(Q)
Q Q

ge € H(}(Q)7 / Vi -Vge dx = —/(uE +u)ypdx forall ¢ e Hé(Q).
Q Q

We have (u := up, q := qo)

. L(e,u,q) = L(0,u,q) /
L(0,u,q) =1 fq d
0:L(0,u, q) = lim . q dx
R = lim L(Ea u, qE) — L(E7 u, q) =0.
eN\0 g

So d-g(0) = JLL(e, u:,0) = — [ fq dx.
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Application to the model problem

From now on we fix:

m an open and bounded set w C RY with 0 € w,
m an open set Q € D and a point z € D\ Q,

m the perturbation Q. := QU w.(z), where
we(z) :=z+ewand e € [0,7], 7 > 0.

Let X = Y = H}(D) and introduce the Lagrangian G : [0,7] x X x Y — R
associated with the perturbation . by

L(e,u,v):= |curlu-n— Bg\2dSX+/ ve(x, | curl u|) curl u-curl vdx —(F, v).
D

o

where we use the abbreviation
ve(x,s) == vi(s)xp\a. (X) + v2(s)xa. (x)

We will apply the averaged adjoint theorem with £(g) = |we|.
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Bound for the perturbed state

The perturbed state equation reads: find u. € V such that

OqL(e,u:,0)(v) =0 forallveV,

or equivalently u. € H(D, curl) satisfies,

/ ve(x,|curluz|) curl u - curlvdx = (F,v) forall v € V.
D

Lemma

There is a constant C > 0, such that for all small ¢ > 0,

llue — ull 2oy + || curl(ue — u)l| 2y < Ce®2.
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Bound for the averaged adjoint state

For x € D and v € R®, let F.(x,v) := vc(x, |v|)v. We introduce for ¢ € [0, 7]
and v,w € R® v #0,

/
be(x, v, w) := O Fe(x,v)w = <l/s(><7 V)l + %v ® v) w.

The averaged adjoint g- € V is defined by

1
/ Oul(e,su: + (1 — s)uo, ge)(v) ds =0 forall v € V.
0

This is equivalent to

/D/O b:(x, curl(su: + (1 — s)uo), curl(v)) ds - curl(g:) dx

= —/ (curl(ues + uo) - n — 2Bg) curl(v) - n dS,
o
forall v € V.

There is a constant C > 0, such that for all small € > 0,

||q5 - q”H(D,curI) < C (” curl(ue - U)||L2(D)3 aF €d/2) .
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Topological Derivative

By the previous theorem, we get that the topological derivative is given by
G'7%(2) = dig(0) = 8eL(0,u,q) + R

if both terms exist.

We have
L(e,u,q) — L(0, u, q)

|ee |

0eL(0, u, g) = lim

= (v2(| curl u(2)|) — vi(| curl u(z)|)) curl u(z) - curl g(z)

Change of variables and using that all functions are continuous at z. O
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Topological Derivative

Let us now consider the second term

R = lim L(&', u, qE) — L(E7 u, q)
BN L(e)

where £(g) = |we|. First note that testing the state equation for ¢ = 0 with
v := g — q yields

/ vo(x, | curl u]) curl u - curl(ge — q) dx = (F, g- — q). (1)
D

Therefore

L(e,u,q:) — L(e,u,q) = / ve(x, | curlul)curlu - curl(g. — q) dx — (F,q- — q)
D
) /(us(x7 | curl u]) — vo(x, | curl ul)) curl u - curl(g: — q) dx
D

= / (v2(] curl u]) — vi(| curl u])) curl u - curl(g: — q) dx.
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Helmholtz decomposition

We use the following Helmholtz decomposition for u.:
u.=Vo. + i@, - € Hy(D), w. € Hs(D).
Similarly we decompose g.:

ge =V + B - € Ho(D), z € Hy(D)*.

Keivn Sturm (TU Wien) Shape and topology optimisation 14 /19



Topological Derivative
The variation of the averaged adjoint state g. is defined pointwise a.e. in RY by

0.0 - ZT=00) ~ (T.()

&

and the variation of the direct state v, is defined pointwise a.e. in RY by

W0 = FTL) = AT)

Here, ., §, i, U are extensions of qg-, q, u-, u by zero.
Invoking the change of variables y = T.(x) = z + ex, we get

L(€7 u, qE) — L(€7 u, q)
|we

= ﬁ /W(V2(| curl u(T:(x))|) — va(| curl u( T<(x))|)) curl u( T-(x)) - curl Q. dx.
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Conjecture
There exists W € BL(R?), such that

oW, — oW in LR ase\,0
curl(W.) — curl(W) in L(R?)®  ase\,0.

Moreover, W satisfies
/ (Fu(x, curl W + curl(wo)(2)) — Fu(x, curl wo(z))) - curl v dx =
R3
- / (v1(] curl wo(2)|) — va(| curl wo(2)|)) curl wo(2)) - curl v dx

for all v € BL(R®). Here F.(x,y) := vi(y)XRre\w (X) + 22(Y) Xw (X).
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Corollary of Conjecture

The weak limit Q of Q. = (q- — qo)/c o T. satisfies
1
/ (/ 9y Fu,(x,s curl W + curl ug(z)) curlv ds> -curl Q dx
R \Jo
1
=— / [/ Oy Fu(x, s curl W + curl up(z)) curl(v) ds
re LJo

— 8, F(x, curl ug(2)) curl(\’l)} -curlqo(z) dx

— / [0y F2(curlug(z)) — 0, Fi(curlug(z))] curl(v) - curl qo(z) dx.
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Topological Derivative

Suppose that Conjecture holds. Then

L(Ev u, qs) — L(57 u, q)
|we|

= ﬁ /(V2(| curl u(T-(x))]) — vi(] curl u(T-(x))|)) curl u( T<(x)) - curl Q- dx.

=9 (v2(] curl u(2)]) — va(| curl u(z)|)) curl u(z) - ﬁ/ curl Q dx

For the topological derivative, we would get

8‘](2) :d[g(o) = aeL(()? uo, qO) + R
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It's not the end of the story

m computation of Q is numerically infeasible

m BUT: we can eliminate it by testing the equation for W by Q and using
the fundamental theorem of calculus.

R(u, p) = (v1(] curl u(z)]) — v2(] curl u(z)])) curl u(z) - %‘ / curl Q dx

! [I:_w(x, curl W + curl wo(2)) — Fu(x, curl wo(z))

7|UJ| R3

— 8y Fuu(x, curl wy(2)) curl(W) | - curl g dx

+ ﬁ/ [0y Fo(curl wy(z)) — Oy Fi(curl wy(2))] curl(W) - curl go(z) dx.
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