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We study the inverse problem

Ω

Γ Ωs

u

Assuming that the given data zd P L
2pΓT q, where ΓT “ Γˆ r0,T s, we

aim at identifiying the initial condition u P H1
0 pΩq which minimizes

min
uPH1

0 pΩq
f puq “

1
2
}y ´ zd}

2
L2pΓT q

`
𝛼

2
}u}2H1

0 pΩq
,

where y solves the hyperbolic equation
$

&

%

y2 ´Δy “ 0, px , tq P Ωˆ p0,T q
y “ 0, px , tq P BΩˆ r0,T s
yp0q “ u, y 1p0q “ 0, x P Ω.
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The wave equation: Solution theory

For any pf , y0, y1q P L2pΩˆ p0,T qq ˆ H1
0 pΩq ˆ L2pΩq there exists a unique

y P𝒲 “
 

y P L2p0,T ;H1
0 pΩqq

ˇ

ˇ y 1 P L2p0,T ; L2pΩqq, y2 P L2p0,T ;H´1pΩqq
(

which satisfies (a variational form of) the wave equation with yp0q “ y0, y 1p0q “ y1.

Additional regularity: py , y 1q P Cpr0,T s;H1
0 pΩqq ˆ Cpr0,T s; L2pΩqq,

}y}2
Cpr0,T s;H1

0 pΩqq
` }y 1}2Cpr0,T s;L2pΩqq

ď const
´

}f }2L2pΩˆp0,Tqq ` }y0}
2
H1

0 pΩq
` }y1}

2
L2pΩq

¯

“ const
´

}Ly}2L2p0,T ;L2pΩqq ` }yp0q}
2
H1

0 pΩq
` }y 1p0q}2L2pΩq

¯

where
Ly “ y2 ´Δy .
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Definition

Let Y Ă𝒲 denote the space spanned by y as pf , y0, y1q ranges over
L2pΩˆ p0,T qq ˆ H1

0 pΩq ˆ L2pΩq,

Y “ ty P𝒲 | py , y 1q P Cpr0,T s;H1
0 pΩqq ˆ Cpr0,T s; L2pΩqq, Ly P L2p0,T ; L2pΩqq

(

.

Endowed with the norm

}y}2Y “ }Ly}
2
L2p0,T ;L2pΩqq ` }yp0q}

2
H1

0 pΩq
` }y 1p0q}2L2pΩq,

this is a Hilbert space.

Lemma

There exists a positive constant C “ CpΩ,Ωs ,T q such that }y}L2pΓT q
ď C}y}Y for all

y P Y .

Corollary

For every 𝛼 ą 0, the norm

}y}2Y𝛼
“ }y}2L2pΓT q

` }Ly}2L2p0,T ;L2pΩqq ` 𝛼}yp0q}2
H1

0 pΩq
` }y 1p0q}2L2pΩq

is equivalent to } ¨ }Y on Y .

We denote Y𝛼 as the Hilbert space Y endowed with the norm } ¨ }Y𝛼 .
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The saddle point problem

Set Λ “ L2p0,T ; L2pΩqq ˆ L2pΩq. The Lagrangian reads

ℒ : Y ˆ ΛÑ R, ℒpy , 𝜆q “ 1
2
apy , yq ` bpy , 𝜆q ´ lpyq,

where the (continuous) bilinear forms a : Y ˆ Y Ñ R and
b : Y ˆ ΛÑ R are given by

apy , yq “ py , yqL2pΓT q
` 𝛼 pyp0q, yp0qqH1

0 pΩq
,

bpy , 𝜆q “ pLy ,wqL2p0,T ;L2pΩqq `
`

y 1p0q, 𝜑
˘

L2pΩq
, 𝜆 “ pw , 𝜑q,

together with the linear form l : Y Ñ R, lpyq “ py , zdqL2pΓT q
.

Find py , 𝜆q P Y ˆ Λ such that
"

apy , yq ` bpy , 𝜆q “ lpyq for all y P Y ,

bpy , 𝜆q “ 0 for all 𝜆 P Λ.
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Well-posedness of the saddle point problem
Existence and uniqueness under the Brezzi conditions:

1 The bilinear forms a : Y𝛼 ˆ Y𝛼 Ñ R and b : Y𝛼 ˆ ΛÑ R are bounded,

|apy , yq| ď Ca}y}Y𝛼}y}Y𝛼 , |bpy , 𝜆q| ď Cb}y}Y𝛼}𝜆}Λ

for all y , y P Y𝛼, 𝜆 P Λ.
2 The bilinear form a is coercive on 𝒩 pbq “ ty P Y𝛼 | bpy , 𝜆q “ 0 for all 𝜆 P Λu.

There exists a constant k0 ą 0 such that

apy , yq ě k0}y}
2
Y𝛼

for all y P 𝒩 pbq.
3 The bilinear form b satisfies the inf-sup condition. There exists a constant

𝛽0 ą 0 such that

sup
0‰yPY𝛼

bpy , 𝜆q

}y}Y𝛼

ě 𝛽0}𝜆}Λ

for all 𝜆 P Λ.

Theorem

The bilinear forms a and b satisfy the Brezzi conditions. Moreover, Ca, Cb, k0, 𝛽0 can
be chosen independent of 𝛼 for

a : Y𝛼 ˆ Y𝛼 Ñ R and b : Y𝛼 ˆ ΛÑ R.
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The saddle point problem in operator notation

Let A : Y𝛼 Ñ Y 1𝛼 and B : Y𝛼 Ñ Λ1 be given by

xAy , yyY 1
𝛼ˆY𝛼

“ apy , yq and xBy , 𝜆yΛ1ˆΛ “ bpy , 𝜆q for all y , y P Y𝛼, 𝜆 P Λ.

Using this operator notation, the saddle point problem can be written as

𝒜𝛼 : Y𝛼 ˆ ΛÑ Y 1𝛼 ˆ Λ1, 𝒜𝛼

ˆ

y
𝜆

˙

“

ˆ

A B 1

B 0

˙ˆ

y
𝜆

˙

“

ˆ

l
0

˙

.

Corollary

For every 𝛼 ą 0 the linear self-adjoint operator 𝒜𝛼 is bounded and continuously
invertible.
Moreover, there exist positive constants c, c, both independent of 𝛼, such that

}𝒜𝛼}ℒpY𝛼ˆΛ,pY𝛼ˆΛq1q ď c and }𝒜´1
𝛼 }ℒppY𝛼ˆΛq1,Y𝛼ˆΛq ď c´1.
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Robust preconditioning

For the operator 𝒜𝛼 we define the preconditioner

ℬ𝛼 : Y𝛼 ˆ ΛÑ Y 1𝛼 ˆ Λ1, ℬ𝛼 “

ˆ

PY𝛼 0
0 PΛ

˙

.

Thus, ℬ´1
𝛼 𝒜𝛼 : Y𝛼 ˆ ΛÑ Y𝛼 ˆ Λ is an isomorphism and self-adjoint with respect to

the inner product on Y𝛼 ˆ Λ. Moreover,

}ℬ´1
𝛼 𝒜𝛼}ℒpY𝛼ˆΛ,Y𝛼ˆΛq “ }𝒜𝛼}ℒpY𝛼ˆΛ,pY𝛼ˆΛq1q and

}pℬ´1
𝛼 𝒜𝛼q

´1}ℒpY𝛼ˆΛ,Y𝛼ˆΛq “ }𝒜´1
𝛼 }ℒppY𝛼ˆΛq1,Y𝛼ˆΛq.

Corollary

The condition number of ℬ´1
𝛼 𝒜𝛼 is uniformly bounded with respect to 𝛼. In other

words

𝜅pℬ´1
𝛼 𝒜𝛼q :“ }ℬ´1

𝛼 𝒜𝛼}ℒpY𝛼ˆΛ,Y𝛼ˆΛq}pℬ´1
𝛼 𝒜𝛼q

´1}ℒpY𝛼ˆΛ,Y𝛼ˆΛq ď
c

c
.
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Discretized problem

Given conforming discretization spaces Yh Ă Y and Λh Ă Λ:
ˆ

Ah BT
h

Bh 0

˙

looooomooooon

𝒜h

ˆ

y
h

𝜆h

˙

loomoon

xh

“

ˆ

zd ,h
0

˙

loomoon

fh

Ah : xA yh, yhy “ pyh, yhqL2pΓT q
` 𝛼 pyhp0q, yhp0qqH1

0 pΩq

Bh : xByh, 𝜆hy “ pLyh,whqL2p0,T ;L2pΩqq `
`

y 1hp0q, 𝜑h

˘

L2pΩq

with 𝜆h “ pwh, 𝜑hq

pLyh,whqL2p0,T ;L2pΩqq “

ż T

0

ż

Ω
y2h wh dx dt ´

ż T

0

ż

Ω
Δyh wh dx dt
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Stable discretization

We need to satisfy the discrete Brezzi conditions:
Coercivity: We need to choose Yh s.t.,

xAyh, yhy ě c1}yh}
2
Y𝛼,h

for all yh P kerB.

Inf-sup: We need to choose Yh and Λh s.t.

inf
0‰𝜆hPΛh

sup
0‰yhPYh

xByh, 𝜆hy

}yh}Y𝛼,h
}𝜆h}Λh

ě 𝛿0 ą 0.
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Stable discretization: Coercivity

We circumvent the coercivity by replacing A with

xA𝜌yh, yhy “ xAyh, yhy`𝜌 pLyh, LyhqL2p0,T ;L2pΩqq`𝜌py
1
hp0q, y

1
hp0qqL2pΩq

for 𝜌 ą 0.

On the continuous level this is consistence since

Ly “ 0 and y 1p0q “ 0.

Note that:

xA𝜌yh, yhy ě c𝜌}yh}
2
Y𝛼,h

for all yh P Yh.

This stabilization method is sometimes called augmented
Lagrangian.
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Stable discretization: Inf-sup

Assume we have chosen Yh such that Yh Ă Y . We then choose Λh

to be

Λh :“
 

𝜆h “ pLyh, y
1
hp0qq | yhp0q “ 0, yh P Yh

(

.

Note that Λh Ă Λ :“ L2p0,T ; L2pΩqq ˆ L2pΩq.

A basis of Λh is found by using a basis of Yh.

The inf-sup condition holds with the same constant as the
continuous case!
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Preconditioning

We precondition the system:

ℬ´1
𝜌,h𝒜𝜌,h “

ˆ

PYh
0

0 PΛh

˙´1 ˆ
A𝜌,h BT

h

Bh 0

˙

where
PYh

“ A𝜌,h and PΛh
“ }𝜆h}

2
Λ “ p𝜆h, 𝜆hqL2 .

With this preconditioner the condition number 𝜅 is independed of 𝛼
and h, but depend on 𝜌!
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Discretization spaces

Our domain is a rectangle.
We consider tensor product B-splines as discretization space

Sp,ℓ “ Spt ,ℓt p0,T q b Spx ,ℓx pp0, 1q
dq.

Our discretization spaces are

Yh :“ Sp,ℓ X H1
0 p0, 1q and Λh :“

 

𝜆h “ pLyh, y
1
hp0qq | yh P Yh,0

(

.

Our observation domain is the boundary of p14 ,
3
4q

d .
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Condition numbers

ℓ∖𝛼 100 10´2 10´5 10´7 DoFs
2 2.65163 2.64811 2.64779 2.64770 176
3 2.66313 2.65083 2.64879 2.64879 1216

Table: Condition numbers : ℬ´1
𝜌,h𝒜𝜌“1,h, d “ 2 and p “ 2

ℓ∖𝛼 100 10´2 10´5 10´7 DoFs
2 2.65112 2.649 2.64887 2.64587 704

Table: Iteration numbers: ℬ´1
𝜌,h𝒜𝜌“1,h, d “ 3 and p “ 2
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Iteration numbers

ℓ∖𝛼 100 10´2 10´5 10´7 DoFs
2 9 9 9 9 176
3 9 9 9 9 1216
4 9 7 7 7 8960
5 7 7 7 7 68608

Table: Iteration numbers: ℬ´1
𝜌,h𝒜𝜌“1,h, d “ 2 and p “ 2

ℓ∖𝛼 100 10´2 10´5 10´7 DoFs
2 9 9 9 9 704
3 7 7 7 7 9728

Table: Iteration numbers: ℬ´1
𝜌,h𝒜𝜌“1,h, d “ 3 and p “ 2
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Iteration numbers

𝜌∖𝛼 100 10´2 10´5 10´7

100 7 7 7 7
10´2 23 21 19 19
10´5 351 343 163 153
10´7 3039 2940 1145 769

Table: Iteration numbers: ℬ´1
h 𝒜𝜌,h, d “ 2, p “ 2 and ℓ “ 5
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Initial source recovery in 2D

1 Choose an initial image yp0, xq on p0, 1q2

2 Calculate ypt, xq on p0,T q ˆ p0, 1q2 by solving

Btty ´Δy “ 0 in p0,T q ˆ p0, 1q2

Btyp0q “ 0 on p0, 1q2

3 Set zd “ y |ΓT
4 Use zd in the optimal control problem and calculate ỹ
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Initial image

Figure: Initial image
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Initial yp0q, projection

Figure: p “ 2 and ℓ “ 6
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Recovery ỹp0q with full observation

Figure: p “ 2 ℓ “ 6 𝛼 “ 1.0 𝜌 “ 1.0



22/24

Solution theory Saddle point problem Robust preconditioning Discretization Numerical results

Recovery ỹp0q with full observation

Figure: p “ 2 ℓ “ 𝛼 “ 10´7 𝜌 “ 1.0



22/24

Solution theory Saddle point problem Robust preconditioning Discretization Numerical results

Recovery ỹp0q with full observation

Figure: p “ 2 ℓ “ 6 𝛼 “ 10´7 𝜌 “ 10´2
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Recovery ỹp0q with full observation

Figure: p “ 2 ℓ “ 6 𝛼 “ 10´7 𝜌 “ 10´5
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Recovery ỹp0q with full observation

Figure: p “ 2 ℓ “ 6 𝛼 “ 10´7 𝜌 “ 10´6
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Recovery ỹp0q with full observation

Figure: p “ 2 ℓ “ 6 𝛼 “ 10´7 𝜌 “ 10´7
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Discussion

Well established theory + generalization

Stable discretization
We have 𝛼 and h robust preconditioner but not 𝜌 robust
Need low 𝜌 to recover image, but iterative methods does not
converge for very low 𝜌
Λh might not have optimal approximation properties

Need efficient “inversion” of the preconditioners
System matrix is very large (3 space dimension + time) +
“outer” domain. Possible to exploit tensorization!
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Thank you for your attention!
A Beigl, O Scherzer, J Sogn, and W Zulehner. "Preconditioning Inverse Problems for Hyperbolic

Equations with Applications to Photoacoustic Tomography." arXiv preprint arXiv:1905.13490 (2019)
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