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We study the inverse problem

Qs

Assuming that the given data zg € L2(T'1), where T+ =T x [0, T], we
aim at identifiying the initial condition u € H}(Q) which minimizes

. 1 5 o
ue”;é?m fu) = EH}/ - ZdHLZ(I'T) + EHUHHé(Q)»
where y solves the hyperbolic equation
y" — Ay =0, (x,t) e Q2 x (0, T)
y =0, x,t) € 0Q x [0, T]

y(0)=u,y'(0)=0, xeQ
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Solution theory

The wave equation: Solution theory

For any (f,y0,y1) € L2(2 x (0, T)) x H3(Q) x L2(Q) there exists a unique
yeW={yel?0, T;H;(Q)]| y' € L(0, T; L>(Q)), y" € [>(0, T; H71(Q))}

which satisfies (a variational form of) the wave equation with y(0) = yo, y'(0) = y1.
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The wave equation: Solution theory

For any (f,y0,y1) € L2(2 x (0, T)) x H3(Q) x L2(Q) there exists a unique
yeW={yel?0, T;H}(Q)| y' € L2(0, T; L3(Q)), y" € L2(0, T; H1(Q))}
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Additional regularity: (y,y’) € C([0, T]; H&(Q)) x C([0, T]; L3(Q)),

2 2
IYle o, rimgan + 1Y 1o, miez @y
< const (122 (g (0,)) + ol Za0) + IalP2qy )

= const (ILy 320, .12y + IV (O3 ) + 1Y O (g )

where
Ly =y" — Ay.
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Solution theory

Definition

Let Y < VW denote the space spanned by y as (f, yo, y1) ranges over
L2(Q x (0, T)) x HY(Q) x L3(Q),

Y ={yeW]|(y,y') e C([0, T]; H5(Q)) x C([0, T]; L*(Q)), Ly € L*(0, T; L*(Q))} .

Endowed with the norm
‘}/H%/ = HLy‘%Z(O,T,B(Q)) + |y (0) ,243(5-2) + yI(O)HiZ(Q)7
this is a Hilbert space.

Lemma

There exists a positive constant C = C(2,Qs, T) such that ||y| 2,y < Clyly for all
yey.

Corollary

For every a > 0, the norm

2 2 2 2 2
HYHYQ = HYHLZ(rT) + HLYHLZ(o,T;Lz(Q)) + (YH)’(O)HH‘}(Q) + HyI(O)\ [2(Q)

is equivalent to | - ||y on Y.




Saddle point problem
The saddle point problem

Set A = [%(0, T; L%(Q)) x L?(Q). The Lagrangian reads

1
LY XAN=R, Ly, A) = 5aly,y) + by, A) = 1(y),

where the (continuous) bilinear forms a: Y x Y — R and
b:Y x AN — R are given by

3(}/,)7) = (yay/)LQ(rT) + o (y(o)‘y(o))Hé(Q) )
b(yv)‘) - (Ly' W)L2(O7T;L2(Q)) + (y/<0)¢) [2(Q) A= (Wa ¢)7

together with the linear form /: Y — R, I(y) = (v, zd) 12(r,)-
Find (y,\) € Y x A such that

a(y,y)+b(y,\) = I(y) foral yeY,
b(y,\) = 0 forall X eA.



Saddle point problem

Well-posedness of the saddle point problem

Existence and uniqueness under the Brezzi conditions:
o The bilinear forms a: Yo X Yo = R and b: Yo X A — R are bounded,
la(y, V) < Gallyllva l¥liva, [0y, VI < Collyll vy [Aa

forall y,y € Yo, A€ A.
@ The bilinear form a is coercive on N(b) = {y € Yo | b(y, ) = 0 for all X € A}.
There exists a constant kg > 0 such that

aly,y) = kolyl3,
for all y € N'(b).

© The bilinear form b satisfies the inf-sup condition. There exists a constant
Bo > 0 such that
b(y, )
sup

o#veYa [IYlva

= Bol|M|a

for all A e A.

The bilinear forms a and b satisfy the Brezzi conditions. Moreover, C,, Cp, ko, Bo can
be chosen independent of o for

a:YaxYa—R and b:YyxAN—R.




Saddle point problem

The saddle point problem in operator notation

Let A: Yo — Y/ and B: Y, — N be given by

A Yy sy, = aly,y) and  (By,\pp = bly;A) forall y,yeYa, AeA.

Using this operator notation, the saddle point problem can be written as
i ’ ’ y _ A B y _
Aag i Yo x A= Y, x N, 'A('()\)*(B O><)\ =

Corollary

0 )

For every a > 0 the linear self-adjoint operator An is bounded and continuously
invertible.
Moreover, there exist positive constants €, c, both independent of «, such that

Mall £(va xA,(vaxny)y ST and A 2((vaxay, vaxn) <€t




Robust preconditioning

Robust preconditioning

For the operator A, we define the preconditioner

P 0
Ba: Ya x N> Y. x N, BQ:< gu PA>‘

Thus, B3 Aa : Yo x A = Yo x Ais an isomorphism and self-adjoint with respect to
the inner product on Y, x A. Moreover,

B2 Aal £y A Yo xn) = IAal £y, xa,(va xayy and

1B Ax) T 2o xA, Yo xA) = A2 ((Ya xAY, Ve ) -

The condition number of B;lAa is uniformly bounded with respect to c. In
words

k(B Aa) = B  Aall 20y A, Ve xm) (Bt Aa) T £ (v A va xA) <

0| 0ol




Discretization
Discretized problem

Given conforming discretization spaces Y, < Y and A, < A:

Ah Biz— Yn) _ (Zd.h
B, 0 Ap 0
—_— —_——

Ap Xp fh
An: (AynYn) = (YnYn)2rr) T (ya(0),¥4(0)) ya ()

Bh: (Byn,An) = (Lyn, Wh) 120, 7020 + (VA(0): &h) 12
with \p, = (Wh7¢h)

-
(Lyp, Wh)LQOTLz J J "Wy, dx dt — J JAthhdxdt
Q



Discretization

Stable discretization

We need to satisfy the discrete Brezzi conditions:
o Coercivity: We need to choose Y}, s.t.,

Ay, yh) = C1Hyh\|%/u_h for all  yj € ker B.

o Inf-sup: We need to choose Y}, and A\, s.t.

Byp, A
inf sup _ <Byn ) > 6 > 0.

0#AREN, 0#yhe Yy Hyh| YwhH)‘hH/\h




Discretization

Stable discretization: Coercivity

We circumvent the coercivity by replacing A with

CApYis Vo) =AYy Vi) +0 (Lyny LV h) 12(0,7:12(0)) +P (VA (0), ¥4 (0) 12(q)
for p > 0.

On the continuous level this is consistence since

Ly =0 and y'(0)=0.



Discretization

Stable discretization: Coercivity

We circumvent the coercivity by replacing A with
(Apyh: Yhy = (AYn, Yi)+p (Lyh, LV 1) 120, 7:12(0)) P (V4(0), 71 (0)) 12 (0
for p > 0.
On the continuous level this is consistence since
Ly =0 and y'(0)=0.
Note that:
Apyns yny = Spllynl3, , forall yhe Yi

This stabilization method is sometimes called augmented
Lagrangian.



Discretization

Stable discretization: Inf-sup

Assume we have chosen Y}, such that Y, < Y. We then choose A},
to be

Ab = {An = (Lyn, ¥4(0)) | ya(0) = 0, yh € Yh}.
Note that Ay, = A := L2(0, T; L2(Q)) x L?().
A basis of Ay, is found by using a basis of Y},

The inf-sup condition holds with the same constant as the
continuous case!



Discretization
Preconditioning

We precondition the system:
~1
P 0 A B
-1 — Yh p7h h
Bp,h‘AP,h ( 0 PAh) (Bh 0 )

PYh = A/’=h and P/\h - H)‘hH?\ = (/\h:)‘h)B'

where

With this preconditioner the condition number  is independed of o
and h, but depend on p!



Discretization

Discretization spaces

Our domain is a rectangle.
We consider tensor product B-splines as discretization space

Sp,l@ = Spt.,fr(ov T) ®S X7E><((O7 1)d)

Our discretization spaces are

Yy =S, Hy(0,1) and  Ap = {Xy = (Lyn, ¥4(0)) | yn € Yho}-

Our observation domain is the boundary of (3, 3)9.



Condition numbers

| A\ | 10° 102 [10° [1077 | DoFs |
2 ][ 2.65163 | 2.64811 | 2.64779 | 2.64770 | 176
3 [ 2.66313 | 2.65083 | 2.64879 | 2.64879 | 1216

Table: Condition numbers : B;},Ap:l,h, d=2and p=2

[ A\ [10°  J1002 [10° |10 [ DoFs |
|2 [ 265112 | 2.649 | 2.64887 | 2.64587 | 704 |

Table: Iteration numbers: B;},A,Fl’h d=3and p=2



Numerical results
lteration numbers

| A\a [[10°[ 1072 [ 10° | 10~ | DoFs |

2 9 9 9 9 176

3 9 9 9 9 1216
4 9 7 7 7 8960
5 7 7 7 7 68608

Table: Iteration numbers: B;}]Apﬂ,h, d=2and p=2

| A\a ][ 10° ] 1072 [ 10° [ 10~ [ DoFs |
2 9 ]9 9 9 704
3 7 |7 7 7 9728

Table: Iteration numbers: B;}]Ap=1’h, d=3and p=2



Numerical results
lteration numbers

| p\a [[10° [102[10°[10°" |
100 |7 7 7 7

1072 23 21 19 19
107> [ 351 | 343 [163 | 153
10~ || 3039 | 2940 | 1145 | 769

Table: Iteration numbers: B;lAp7h, d=2,p=2and{=5



Numerical results
Initial source recovery in 2D

@ Choose an initial image y(0, x) on (0, 1)?
@ Calculate y(t,x) on (0, T) x (0,1) by solving
deey — Ay =0 in (0,T) x (0,1)2
d:y(0) =0 on (0,1)?

Q Set zy = y‘rT

@ Use z4 in the optimal control problem and calculate y



Numerical results

Initial image
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Figure: Initial image



Numerical results

Initial y(0), projection
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Figure: p=2and £ =6



Numerical results

Recovery y(0) with full observation
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Figure:p=2 /=6 a=10 p=1.0



Numerical results

Recovery y(0) with full observation
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Numerical results

Recovery y(0) with full observation
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Numerical results

Recovery y(0) with full observation
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Figure: p=2 f=6 a=10""7 p=10"5



Numerical results

Recovery y(0) with full observation
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Numerical results

Recovery y(0) with full observation
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Figure: p=2 f=6 a=10"" p=10"7
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o Need low p to recover image, but iterative methods does not
converge for very low p

e A, might not have optimal approximation properties
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Numerical results

Discussion

@ Well established theory + generalization
o Stable discretization

e We have « and h robust preconditioner but not p robust

o Need low p to recover image, but iterative methods does not
converge for very low p

e A, might not have optimal approximation properties

o Need efficient “inversion” of the preconditioners

@ System matrix is very large (3 space dimension + time) +
“outer” domain. Possible to exploit tensorization!



Numerical results

Thank you for your attention!

A Beigl, O Scherzer, J Sogn, and W Zulehner. "Preconditioning Inverse Problems for Hyperbolic
Equations with Applications to Photoacoustic Tomography." arXiv preprint arXiv:1905.13490 (2019)
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