Initial source recovery of the wave equation given internal boundary measurements

Jarle Sogn

Geometry + Simulation Joint work with Alexander Beigl, Otmer Scherzer and Walter Zulehner

July 4, 2019

<□▶ <□▶ < ≧▶ < ≧▶ ≧ の へ ? 1/24

Robust preconditioning

Discretization

Numerical results

We study the inverse problem

Assuming that the given data $z_d \in L^2(\Gamma_T)$, where $\Gamma_T = \Gamma \times [0, T]$, we aim at identifying the initial condition $u \in H^1_0(\Omega)$ which minimizes

$$\min_{u \in H_0^1(\Omega)} f(u) = \frac{1}{2} \|y - z_d\|_{L^2(\Gamma_T)}^2 + \frac{\alpha}{2} \|u\|_{H_0^1(\Omega)}^2$$

where y solves the hyperbolic equation

$$\begin{cases} y'' - \Delta y = 0, \quad (x, t) \in \Omega \times (0, T) \\ y = 0, \quad (x, t) \in \partial \Omega \times [0, T] \\ y(0) = u, y'(0) = 0, \quad x \in \Omega. \end{cases}$$

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q @ 3/24

Outline

- Solution theory
- Saddle point problem
- Robust preconditioning
- Stable discretization
- Numerical result
- Discussion

<□ > < □ > < □ > < Ξ > < Ξ > Ξ のQ @ 4/24

The wave equation: Solution theory

For any $(f, y_0, y_1) \in L^2(\Omega \times (0, T)) \times H^1_0(\Omega) \times L^2(\Omega)$ there exists a unique

$$y \in \mathcal{W} = \left\{ y \in L^{2}(0, T; H^{1}_{0}(\Omega)) \mid y' \in L^{2}(0, T; L^{2}(\Omega)), \, y'' \in L^{2}(0, T; H^{-1}(\Omega)) \right\}$$

which satisfies (a variational form of) the wave equation with $y(0) = y_0$, $y'(0) = y_1$.

The wave equation: Solution theory

For any $(f, y_0, y_1) \in L^2(\Omega \times (0, T)) \times H^1_0(\Omega) \times L^2(\Omega)$ there exists a unique

$$y \in \mathcal{W} = \left\{ y \in L^{2}(0, T; H^{1}_{0}(\Omega)) \mid y' \in L^{2}(0, T; L^{2}(\Omega)), \, y'' \in L^{2}(0, T; H^{-1}(\Omega)) \right\}$$

which satisfies (a variational form of) the wave equation with $y(0) = y_0$, $y'(0) = y_1$. Additional regularity: $(y, y') \in C([0, T]; H_0^1(\Omega)) \times C([0, T]; L^2(\Omega))$,

$$\begin{split} \|y\|_{\mathcal{C}([0,T];\mathcal{H}_{0}^{1}(\Omega))}^{2} + \|y'\|_{\mathcal{C}([0,T];L^{2}(\Omega))}^{2} \\ & \leq \operatorname{const}\left(\|f\|_{L^{2}(\Omega\times(0,T))}^{2} + \|y_{0}\|_{\mathcal{H}_{0}^{1}(\Omega)}^{2} + \|y_{1}\|_{L^{2}(\Omega)}^{2}\right) \\ & = \operatorname{const}\left(\|Ly\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} + \|y(0)\|_{\mathcal{H}_{0}^{1}(\Omega)}^{2} + \|y'(0)\|_{L^{2}(\Omega)}^{2}\right) \end{split}$$

where

$$Ly = y'' - \Delta y.$$

The wave equation: Solution theory

For any $(f, y_0, y_1) \in L^2(\Omega \times (0, T)) \times H^1_0(\Omega) \times L^2(\Omega)$ there exists a unique

$$y \in \mathcal{W} = \left\{ y \in L^{2}(0, T; H^{1}_{0}(\Omega)) \mid y' \in L^{2}(0, T; L^{2}(\Omega)), \, y'' \in L^{2}(0, T; H^{-1}(\Omega)) \right\}$$

which satisfies (a variational form of) the wave equation with $y(0) = y_0$, $y'(0) = y_1$. Additional regularity: $(y, y') \in C([0, T]; H_0^1(\Omega)) \times C([0, T]; L^2(\Omega))$,

$$\begin{split} \|y\|_{\mathcal{C}([0,T];H^{1}_{0}(\Omega))}^{2} + \|y'\|_{\mathcal{C}([0,T];L^{2}(\Omega))}^{2} + \|Ly\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} \\ & \leq \operatorname{const}\left(\|f\|_{L^{2}(\Omega\times(0,T))}^{2} + \|y_{0}\|_{H^{1}_{0}(\Omega)}^{2} + \|y_{1}\|_{L^{2}(\Omega)}^{2}\right) \\ & = \operatorname{const}\left(\|Ly\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} + \|y(0)\|_{H^{1}_{0}(\Omega)}^{2} + \|y'(0)\|_{L^{2}(\Omega)}^{2}\right) \end{split}$$

where

$$Ly = y'' - \Delta y.$$

Definition

Let $Y \subset W$ denote the space spanned by y as (f, y_0, y_1) ranges over $L^2(\Omega \times (0, T)) \times H_0^1(\Omega) \times L^2(\Omega)$,

 $Y = \{y \in \mathcal{W} \mid (y, y') \in C([0, T]; H_0^1(\Omega)) \times C([0, T]; L^2(\Omega)), \, Ly \in L^2(0, T; L^2(\Omega))\}.$

Endowed with the norm

$$\|y\|_{Y}^{2} = \|Ly\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} + \|y(0)\|_{H^{1}_{0}(\Omega)}^{2} + \|y'(0)\|_{L^{2}(\Omega)}^{2}$$

this is a Hilbert space.

Lemma

There exists a positive constant $C = C(\Omega, \Omega_s, T)$ such that $\|y\|_{L^2(\Gamma_T)} \leq C \|y\|_Y$ for all $y \in Y$.

Corollary

For every $\alpha > 0$, the norm

$$\|y\|_{Y_{\alpha}}^{2} = \|y\|_{L^{2}(\Gamma_{T})}^{2} + \|Ly\|_{L^{2}(0,T;L^{2}(\Omega))}^{2} + \alpha\|y(0)\|_{H^{1}_{0}(\Omega)}^{2} + \|y'(0)\|_{L^{2}(\Omega)}^{2}$$

is equivalent to $\|\cdot\|_Y$ on Y.

The saddle point problem

Set $\Lambda = L^2(0, T; L^2(\Omega)) \times L^2(\Omega)$. The Lagrangian reads

$$\mathcal{L}: Y \times \Lambda \to \mathbb{R}, \quad \mathcal{L}(y, \lambda) = \frac{1}{2}a(y, y) + b(y, \lambda) - I(y),$$

where the (continuous) bilinear forms $a: Y \times Y \to \mathbb{R}$ and $b: Y \times \Lambda \to \mathbb{R}$ are given by

$$\begin{split} & \mathsf{a}(y,\overline{y}) = (y,\overline{y})_{L^2(\Gamma_T)} + \alpha \left(y(0),\overline{y}(0) \right)_{H^1_0(\Omega)}, \\ & \mathsf{b}(y,\lambda) = (Ly,w)_{L^2(0,T;L^2(\Omega))} + \left(y'(0),\phi \right)_{L^2(\Omega)}, \quad \lambda = (w,\phi), \end{split}$$

together with the linear form $I: Y \to \mathbb{R}$, $I(y) = (y, z_d)_{L^2(\Gamma_T)}$. Find $(y, \lambda) \in Y \times \Lambda$ such that

$$\begin{cases} a(y,\overline{y}) + b(\overline{y},\lambda) &= l(\overline{y}) \text{ for all } \overline{y} \in Y, \\ b(y,\overline{\lambda}) &= 0 \text{ for all } \overline{\lambda} \in \Lambda. \end{cases}$$

Well-posedness of the saddle point problem

Existence and uniqueness under the Brezzi conditions:

1 The bilinear forms $a: Y_{\alpha} \times Y_{\alpha} \to \mathbb{R}$ and $b: Y_{\alpha} \times \Lambda \to \mathbb{R}$ are bounded,

 $|a(y,\overline{y})| \leqslant C_a \|y\|_{Y_\alpha} \|\overline{y}\|_{Y_\alpha}, \quad |b(y,\lambda)| \leqslant C_b \|y\|_{Y_\alpha} \|\lambda\|_{\Lambda}$

for all $y, \overline{y} \in Y_{\alpha}, \lambda \in \Lambda$.

2 The bilinear form *a* is coercive on $\mathcal{N}(b) = \{y \in Y_{\alpha} \mid b(y, \lambda) = 0 \text{ for all } \lambda \in \Lambda\}.$ There exists a constant $k_0 > 0$ such that

$$a(y,y) \ge k_0 \|y\|_{Y_0}^2$$

for all $y \in \mathcal{N}(b)$.

3 The bilinear form b satisfies the inf-sup condition. There exists a constant $\beta_0>0$ such that

$$\sup_{\mathbf{0}\neq y\in Y_{\alpha}}\frac{b(y,\lambda)}{\|y\|_{Y_{\alpha}}} \ge \beta_{\mathbf{0}}\|\lambda\|_{\mathbf{\Lambda}}$$

for all $\lambda \in \Lambda$.

Theorem

The bilinear forms a and b satisfy the Brezzi conditions. Moreover, C_a , C_b , k_0 , β_0 can be chosen independent of α for

 $a: Y_{\alpha} \times Y_{\alpha} \to \mathbb{R}$ and $b: Y_{\alpha} \times \Lambda \to \mathbb{R}$.

The saddle point problem in operator notation

Let $A: Y_{\alpha} \to Y'_{\alpha}$ and $B: Y_{\alpha} \to \Lambda'$ be given by

 $\langle Ay, \overline{y} \rangle_{Y'_{\alpha} \times Y_{\alpha}} = a(y, \overline{y}) \quad \text{and} \quad \langle By, \lambda \rangle_{\Lambda' \times \Lambda} = b(y, \lambda) \quad \text{for all} \quad y, \overline{y} \in Y_{\alpha}, \, \lambda \in \Lambda.$

Using this operator notation, the saddle point problem can be written as

$$\mathcal{A}_{\alpha}: Y_{\alpha} \times \Lambda \to Y'_{\alpha} \times \Lambda', \qquad \mathcal{A}_{\alpha} \left(\begin{array}{c} y \\ \lambda \end{array}\right) = \left(\begin{array}{c} A & B' \\ B & 0 \end{array}\right) \left(\begin{array}{c} y \\ \lambda \end{array}\right) = \left(\begin{array}{c} l \\ 0 \end{array}\right).$$

Corollary

For every $\alpha > 0$ the linear self-adjoint operator A_{α} is bounded and continuously invertible.

Moreover, there exist positive constants \overline{c} , \underline{c} , both independent of α , such that

 $\|\mathcal{A}_{\alpha}\|_{\mathcal{L}(Y_{\alpha}\times\Lambda,(Y_{\alpha}\times\Lambda)')}\leqslant\overline{c}\quad\text{and}\quad\|\mathcal{A}_{\alpha}^{-1}\|_{\mathcal{L}((Y_{\alpha}\times\Lambda)',Y_{\alpha}\times\Lambda)}\leqslant\underline{c}^{-1}.$

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Robust preconditioning

For the operator \mathcal{A}_{lpha} we define the *preconditioner*

$$\mathcal{B}_{lpha}: Y_{lpha} imes \Lambda o Y'_{lpha} imes \Lambda', \qquad \mathcal{B}_{lpha} = \left(egin{array}{cc} P_{Y_{lpha}} & 0 \ 0 & P_{\Lambda} \end{array}
ight).$$

Thus, $\mathcal{B}_{\alpha}^{-1}\mathcal{A}_{\alpha}: Y_{\alpha} \times \Lambda \to Y_{\alpha} \times \Lambda$ is an isomorphism and self-adjoint with respect to the inner product on $Y_{\alpha} \times \Lambda$. Moreover,

$$\begin{split} \|\mathcal{B}_{\alpha}^{-1}\mathcal{A}_{\alpha}\|_{\mathcal{L}(Y_{\alpha}\times\Lambda,Y_{\alpha}\times\Lambda)} &= \|\mathcal{A}_{\alpha}\|_{\mathcal{L}(Y_{\alpha}\times\Lambda,(Y_{\alpha}\times\Lambda)')} \quad \text{and} \\ \|(\mathcal{B}_{\alpha}^{-1}\mathcal{A}_{\alpha})^{-1}\|_{\mathcal{L}(Y_{\alpha}\times\Lambda,Y_{\alpha}\times\Lambda)} &= \|\mathcal{A}_{\alpha}^{-1}\|_{\mathcal{L}((Y_{\alpha}\times\Lambda)',Y_{\alpha}\times\Lambda)}. \end{split}$$

Corollary

The condition number of $\mathcal{B}_{\alpha}^{-1}\mathcal{A}_{\alpha}$ is uniformly bounded with respect to α . In other words

$$\kappa(\mathcal{B}_{\alpha}^{-1}\mathcal{A}_{\alpha}) := \|\mathcal{B}_{\alpha}^{-1}\mathcal{A}_{\alpha}\|_{\mathcal{L}(Y_{\alpha} \times \Lambda, Y_{\alpha} \times \Lambda)} \|(\mathcal{B}_{\alpha}^{-1}\mathcal{A}_{\alpha})^{-1}\|_{\mathcal{L}(Y_{\alpha} \times \Lambda, Y_{\alpha} \times \Lambda)} \leqslant \frac{\overline{c}}{c}.$$

Discretized problem

Given conforming discretization spaces $Y_h \subset Y$ and $\Lambda_h \subset \Lambda$:

$$\underbrace{\begin{pmatrix} A_h & B_h^T \\ B_h & 0 \end{pmatrix}}_{\mathcal{A}_h} \underbrace{\begin{pmatrix} \underline{y}_h \\ \underline{\lambda}_h \end{pmatrix}}_{\mathbf{x}_h} = \underbrace{\begin{pmatrix} \underline{z}_{d,h} \\ 0 \end{pmatrix}}_{\mathbf{f}_h}$$

$$\begin{aligned} A_h : & \langle A \ y_h, \overline{y_h} \rangle = (y_h, \overline{y}_h)_{L^2(\Gamma_T)} + \alpha \left(y_h(0), \overline{y_h}(0) \right)_{H_0^1(\Omega)} \\ B_h : & \langle By_h, \overline{\lambda}_h \rangle = (Ly_h, \overline{w}_h)_{L^2(0, T; L^2(\Omega))} + \left(y'_h(0), \overline{\phi}_h \right)_{L^2(\Omega)} \\ & \text{with } \lambda_h = (w_h, \phi_h) \end{aligned}$$

$$(Ly_h,\overline{w}_h)_{L^2(0,T;L^2(\Omega))} = \int_0^T \int_\Omega y_h'' \,\overline{w}_h \, dx \, dt - \int_0^T \int_\Omega \Delta y_h \,\overline{w}_h \, dx \, dt$$

Stable discretization

We need to satisfy the discrete Brezzi conditions:

• Coercivity: We need to choose Y_h s.t.,

 $\langle Ay_h, y_h \rangle \geqslant c_1 \|y_h\|_{Y_{\alpha,h}}^2$ for all $y_h \in \ker B$.

• Inf-sup: We need to choose Y_h and Λ_h s.t.

 $\inf_{0\neq\lambda_h\in\Lambda_h} \sup_{0\neq y_h\in Y_h} \frac{\langle By_h,\lambda_h\rangle}{\|y_h\|_{Y_{\alpha,h}}\|\lambda_h\|_{\Lambda_h}} \geqslant \delta_0 > 0.$

◆□▶ ◆□▶ ◆ ■▶ ◆ ■ ● ● ● ● ● 11/24

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 12/24

Stable discretization: Coercivity

We circumvent the coercivity by replacing A with

 $\left\langle A_{\rho}y_{h},\overline{y_{h}}\right\rangle = \left\langle Ay_{h},\overline{y_{h}}\right\rangle + \rho\left(Ly_{h},L\overline{y}_{h}\right)_{L^{2}(0,T;L^{2}(\Omega))} + \rho(y_{h}'(0),\overline{y}_{h}'(0))_{L^{2}(\Omega)}$

for $\rho > 0$.

On the continuous level this is consistence since

Ly = 0 and y'(0) = 0.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 12/24

Stable discretization: Coercivity

We circumvent the coercivity by replacing A with

 $\langle A_{\rho} y_{h}, \overline{y_{h}} \rangle = \langle A y_{h}, \overline{y_{h}} \rangle + \rho \left(L y_{h}, L \overline{y}_{h} \right)_{L^{2}(0, T; L^{2}(\Omega))} + \rho (y_{h}'(0), \overline{y}_{h}'(0))_{L^{2}(\Omega)}$

for $\rho > 0$.

On the continuous level this is consistence since

Ly = 0 and y'(0) = 0.

Note that:

$$\langle A_{\rho} y_h, y_h \rangle \geqslant c_{\rho} \| y_h \|_{Y_{\alpha,h}}^2$$
 for all $y_h \in Y_h$.

This stabilization method is sometimes called augmented Lagrangian.

<□ > < @ > < E > < E > E の Q @ 13/24

Stable discretization: Inf-sup

Assume we have chosen Y_h such that $Y_h \subset Y$. We then choose Λ_h to be

$$\Lambda_h := \left\{ \lambda_h = (Ly_h, y_h'(0)) \, | \, y_h(0) = 0, \, \, y_h \in Y_h \right\}.$$

Note that $\Lambda_h \subset \Lambda := L^2(0, T; L^2(\Omega)) \times L^2(\Omega)$.

A basis of Λ_h is found by using a basis of Y_h .

The **inf-sup** condition holds with the same constant as the continuous case!

< □ ▶ < @ ▶ < E ▶ < E ▶ E の Q @ 14/24

Preconditioning

We precondition the system:

$$\mathcal{B}_{\rho,h}^{-1}\mathcal{A}_{\rho,h} = \begin{pmatrix} P_{\mathbf{Y}_h} & 0\\ 0 & P_{\Lambda_h} \end{pmatrix}^{-1} \begin{pmatrix} A_{\rho,h} & B_h^T\\ B_h & 0 \end{pmatrix}$$

where

$$P_{Y_h} = A_{\rho,h}$$
 and $P_{\Lambda_h} = \|\lambda_h\|_{\Lambda}^2 = (\lambda_h, \lambda_h)_{L^2}.$

With this preconditioner the condition number κ is independed of α and h, but depend on ρ !

Discretization spaces

Our domain is a rectangle.

We consider tensor product B-splines as discretization space

 $S_{p,\ell} = S_{p_t,\ell_t}(0,T) \otimes S_{p_x,\ell_x}((0,1)^d).$

Our discretization spaces are

 $Y_h := S_{p,\ell} \cap H_0^1(0,1) \text{ and } \Lambda_h := \{\lambda_h = (Ly_h, y_h'(0)) \, | \, y_h \in Y_{h,0}\}.$

Our observation domain is the boundary of $(\frac{1}{4}, \frac{3}{4})^d$.

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 15/24

Condition numbers

$\ell \backslash \alpha$	10 ⁰	10 ⁻²	10 ⁻⁵	10^{-7}	DoFs
2	2.65163	2.64811	2.64779	2.64770	176
3	2.66313	2.65083	2.64879	2.64879	1216

Table: Condition numbers : $\mathcal{B}_{\rho,h}^{-1}\mathcal{A}_{\rho=1,h}$, d = 2 and p = 2

$\ell \backslash \alpha$	10 ⁰	10^{-2}	10 ⁻⁵	10 ⁻⁷	DoFs
2	2.65112	2.649	2.64887	2.64587	704

Table: Iteration numbers: $\mathcal{B}_{\rho,h}^{-1}\mathcal{A}_{\rho=1,h}$, d=3 and p=2

Iteration numbers

$\ell \backslash \alpha$	100	10^{-2}	10 ⁻⁵	10 ⁻⁷	DoFs
2	9	9	9	9	176
3	9	9	9	9	1216
4	9	7	7	7	8960
5	7	7	7	7	68608

Table: Iteration numbers:
$$\mathcal{B}_{\rho,h}^{-1}\mathcal{A}_{\rho=1,h}$$
, $d=2$ and $p=2$

$\ell \backslash \alpha$	100	10^{-2}	10 ⁻⁵	10^{-7}	DoFs
2	9	9	9	9	704
3	7	7	7	7	9728

Table: Iteration numbers: $\mathcal{B}_{\rho,h}^{-1}\mathcal{A}_{\rho=1,h}$, d=3 and p=2

Iteration numbers

$\rho \backslash \alpha$	100	10^{-2}	10^{-5}	10^{-7}
10 ⁰	7	7	7	7
10^{-2}	23	21	19	19
10^{-5}	351	343	163	153
10^{-7}	3039	2940	1145	769

Table: Iteration numbers: $\mathcal{B}_{h}^{-1}\mathcal{A}_{\rho,h}$, d = 2, p = 2 and $\ell = 5$

▲□▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ ▶ ▲ @ > 18/24

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ りへで 19/24

Initial source recovery in 2D

- Choose an initial image y(0, x) on $(0, 1)^2$
- 2 Calculate y(t, x) on $(0, T) \times (0, 1)^2$ by solving

$$\partial_{tt}y - \Delta y = 0$$
 in $(0, T) \times (0, 1)^2$
 $\partial_t y(0) = 0$ on $(0, 1)^2$

- Set $z_d = y|_{\Gamma_T}$
- Use z_d in the optimal control problem and calculate \tilde{y}

Initial image

Figure: Initial image

Initial y(0), projection

Figure: p = 2 and $\ell = 6$

<ロト < 団 > < 臣 > < 臣 > 臣 の < @ 21/24

Saddle point problem Robust preconditioning

Discretization

Numerical results

Recovery $\tilde{y}(0)$ with full observation

Figure: p = 2 $\ell = 6$ $\alpha = 1.0$ $\rho = 1.0$

Saddle point problem Robust preconditioning

Discretization

Numerical results

Recovery $\tilde{y}(0)$ with full observation

Figure: p = 2 $\ell = \alpha = 10^{-7}$ $\rho = 1.0$

Saddle point problem

Robust preconditioning

Discretization

Numerical results

Recovery $\tilde{y}(0)$ with full observation

Figure: p = 2 $\ell = 6$ $\alpha = 10^{-7}$ $\rho = 10^{-2}$

Saddle point problem

Robust preconditioning

Discretization

Numerical results

Recovery $\tilde{y}(0)$ with full observation

Figure: p = 2 $\ell = 6$ $\alpha = 10^{-7}$ $\rho = 10^{-5}$

Saddle point problem

Robust preconditioning

Discretization

Numerical results

Recovery $\tilde{y}(0)$ with full observation

Figure: p = 2 $\ell = 6$ $\alpha = 10^{-7}$ $\rho = 10^{-6}$

Saddle point problem

Robust preconditioning

Discretization

Numerical results

Recovery $\tilde{y}(0)$ with full observation

Figure: p = 2 $\ell = 6$ $\alpha = 10^{-7}$ $\rho = 10^{-7}$

• Well established theory + generalization

- Well established theory + generalization
- Stable discretization
 - We have α and h robust preconditioner but not ρ robust
 - Need low ρ to recover image, but iterative methods does not converge for very low ρ
 - Λ_h might not have optimal approximation properties

- Well established theory + generalization
- Stable discretization
 - We have α and h robust preconditioner but not ρ robust
 - Need low ρ to recover image, but iterative methods does not converge for very low ρ
 - Λ_h might not have optimal approximation properties
- Need efficient "inversion" of the preconditioners

- Well established theory + generalization
- Stable discretization
 - We have α and h robust preconditioner but not ρ robust
 - Need low ρ to recover image, but iterative methods does not converge for very low ρ
 - Λ_h might not have optimal approximation properties
- Need efficient "inversion" of the preconditioners
- System matrix is very large (3 space dimension + time) + "outer" domain. Possible to exploit tensorization!

<□ > < @ > < E > < E > E の < C 24/24

Thank you for your attention!

A Beigl, O Scherzer, J Sogn, and W Zulehner. "Preconditioning Inverse Problems for Hyperbolic Equations with Applications to Photoacoustic Tomography." arXiv preprint arXiv:1905.13490 (2019)