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ABSTRACT

This work was intended as an attempt to motivate a new functional-type perspective on a posteriori
error estimates for boundary element methods. In contrast to the state of the art, we are interested in
finding computable bounds of the energy error ε = || ∇(u − uh)||L2(Ω) for an approximate solution
uh stemming from an either lowest order indirect or direct approach to solve the Dirichlet problem

∆u = 0 in Ω
u|Γ = g on Γ = ∂Ω

(1)

via Symm’s Integral Equation of the first kind. One major advantage of functional-type a posteriori
error estimates is, that they do not depend on crucial assumptions on the approximation method
but only exploit the mathematical structure of the PDE itself. This approach turns out to be very
convenient for the analysis of our energy error because the global reconstruction uh obtained by
BEM is not based on a discretized domain Ω but rather on a discrete representation by means of
boundary potentials. Hence, commonly demanded properties like Galerkin-orthogonality are just
not available for uh on Ω. BEM’s distinguishing feature that approximations solve the equation
exactly inside Ω is the only ingredient to conclude the sharp error bounds

max
τ∈D0(Ω)
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Γ
(g − uh|Γ) τ · n − ||τ ||2L2(Ω)

  
M(τ)

= || ∇(u − uh)||2L2(Ω) = min
ω∈H1(Ω)

ω|Γ=g−uh|Γ

|| ∇ ω||2L2(Ω)  
M(ω)

,

which lead to minimization/maximization procedures. Instead of solving the related problems on
Ω, we suggest a construction via FEM on a tiny boundary layer Ω̂. (see figure below) We obtain full
error control and as a last point reveal how an ε-error distribution on Ω̂ might indicate an adaptive
mesh-refinement on Γ to steer the BEM-algorithm.
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