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What is IgA?

New paradigm for solving PDEs
Idea: One and the same method that can be used for

Computer Aided Design (CAD) and Numerical
Simulation

Exact representation of geometric objects from CAD
systems without the need of meshing like in FEM
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What is IgA?

Based on splines
Univariate splines Sp,k,h(0, 1)

degree p
smoothness k
(Sp,k,h(0, 1) = {u ∈ Ck(0, 1) : u|[ih,(i+1)h) ∈ Pp})
grid size h

Tensor-product splines on Ω̂ := (0, 1)d

Global geometry function G :
Ω̂→ Ω = G(Ω̂)

G

IgA space in the physical domain Ω:
Sp,p−1,h(Ω) = Sp,p−1,h(Ω̂)◦G−1 = {u : u ◦G ∈ Sp,p−1,h(Ω̂)}
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What is IgA?

More complex geometries cannot be represented by one
geometry map
Use of multipatch domains:
Per patch geometry functions Gk :
Ω =

⋃K
k=1 Gk(Ω̂)

IgA space in the physical domain Ω:
Sp,p−1,h(Ω) = {u ∈ C0(Ω) : u ◦ Gk ∈ Sp,p−1,h(Ω̂)∀k=1,...,K}

www.numa.uni-linz.ac.at R. Schneckenleitner, IETI-DP in Electrical Engineering



Institute of Computational Mathematics

Why IgA for shape optimization?

IgA has approximation power of a high-order method:

inf
uh∈Sp,p−1,h

‖u − uh‖L2 . hp+1|u|Hp+1

IgA has the problem size of a low-order method:

dim Sp,p−1,h

'(n + p)d

Integration of geometry optimization in CAD environments
No conversion of design-suitable and analysis-suitable
models
→ Exact representation of the geometry
→ No systematic error
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Real IPM Motor and Computational Domain

(a) Interior permanent magnet
(IPM) electric motor

(b) Quarter of a cross section of
an IPM motor

Figure: Real world IPM motor1 vs. computational domain

1We acknowledge the permission to use this photo taken by the Linz Center of Mechatronics (LCM). The
motor was produced by Hanning Elektro-Werke GmbH & Co KG.
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Optimization w.r.t. Linear Magnetostatics

Optimization of the runout performance:

min
D

J(u) :=

∫
Γ
|B(u) · nΓ − Bd |2 ds =

∫
Γ
|∇u · τΓ − Bd |2 ds

subject to: find u ∈ H1
0 (Ω) such that

〈ADu, v〉 = 〈F , v〉 ∀v ∈ H1
0 (Ω) (1)

with

〈ADu, v〉 =

∫
Ω
νD(x)∇u · ∇v dx ,

〈F , v〉 =

∫
Ω

J3v + νMM⊥ · ∇v dx .
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IETI-DP in a Nutshell

Is a nonoverlapping domain decomposition method
IETI-DP is an abbreviation for Dual-Primal IsogEometric
Tearing and Interconnecting
Similar to FETI-DP
Basic idea:

Tearing of the computational domain into N subdomains
Posing the problem on a suitable interface space
DP approach requires for the solvability properly chosen
primal variables, e.g., vertex evaluation, face averages, ...
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Simulation with IETI-DP

State solution in the conforming case with IETI-DP

(a) Full cross section of an
IPM motor suitable for cG

(b) State on the full cross
section of an IPM motor

Multipatch domain with 372 patches and spline degree
p = 3
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Simulation with IETI-DP

Now we can compare the solution techniques for the full
cross section

# dofs SuperLU IETI-DP speedup

23612 8.9 sec 5.7 sec 1.56

72 572 36.0 sec 17.0 sec 2.12

250 844 193.0 sec 69.8 sec 2.77

928 796 1943.0 sec 463.0 sec 4.20

3 570 332 – 1179.0 sec –

Table: SuperLU vs. IETI-DP.
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Simulation with IETI-DP

Use of a parallel IETI-DP algorithm

# cores 1 2 4 8 16 32 64 128

time 1179 577 325 164 89 43 22 14

scaling – 2.04 1.78 1.98 1.84 2.07 1.95 1.57

Table: Strong scaling with IETI-DP and 3 570 332 dofs, time in
sec.

We have an efficient PDE solver X
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Optimization with Ipopt and IETI-DP

Ipopt (Interior Point Optimizer)
Sign of the Jacobian determinant parametrization,

det(JG) =

M,N∑
k,`=1

ck,`M2p−1
k (u)N2q−1

` (v)

is used as constraint to prevent for self intersections
Move the design variables
Computation of the inner control coefficients from the
boundary by a spring model of the mesh

An inner control coefficient di,j satisfies

di,j =
di,j−1 + di+1,j + di,j+1 + di−1,j

4
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Optimization with Ipopt and IETI-DP

Ipopt options:
Limited memory BFGS-method
NLP error tolerance: 10−6
Relative error in the objective change: 10−6
3 acceptable iterations
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Optimization with Ipopt and IETI-DP

Optimization result with Ipopt:

Figure: Optimized domain with Ipopt after 95 optimization iterations,
the objective dropped from 4.266 · 10−4 down to 2.587 · 10−4
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Optimization with Ipopt and IETI-DP

Optimization result with Ipopt:

Figure: Optimized domain with Ipopt after 130 optimization iterations,
the objective dropped from 4.266 · 10−4 down to 2.436 · 10−4
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Preliminary Work to Capture the Rotation

Hanging nodes have to be allowed
We generalized the ideas in "Reparameterization and
Adaptive Quadrature for the Isogeometric Discontinuous
Galerkin method" by Seiler and Jüttler
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The Reparameterization Technique

Figure: Multipatch domain Ω
with geometry maps G1,G2

Interface e :=
G1(1, [0, 1]) = G2(0, [0, 1])

L = G1|(G1)−1(e) and
R = G2|(G2)−1(e)

λ : [0, 1]→ {1} × [0, 1]

% : [0, 1]→ {0} × [0, 1]

Relation L ◦ λ = R ◦ %
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The Reparameterization Technique

Fix the reparameterization λ
The reparameterization technique consists of 2 main steps:

1 For a given number of samples, we compute

%i = R−1 ◦ L ◦ λ
(

i
N

)
by solving

%i = argmin
ξ∈{0}×[0,1]

‖L ◦ λ
(

i
N

)
− R(ξ)‖

for i = 0, . . . ,N
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The Reparametrization Technique

The reparametrization technique consists of 2 main steps:
2 After choosing a suitable spline space we solve

N∑
i=1

( m∑
j=1

cjNj

(
i
N

)
− %i

)2

→ min!
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The Reparametrization Technique

Integration along the interface
Choose one master patch
Collect all breakpoints of the two patches
Compute preimages of breakpoints for the master patch
Put quadrature nodes between each of the breakpoints
Map the quadrature nodes via the reparameterization to the
parameter domain of the second patch
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Numerical Tests for the Reparameterization

We consider the dG-IgA problem:

Find u ∈ Vh : a(u, v) = F (v) ∀v ∈ Vh = {v |v |Ωk ∈ V k
h }

with the bilinear form

a(u, v) =
M∑
k=1

ak1 (u, v)− 1
2

∑
e∈Γc∪ΓD

(ae2,1(u, v) + ae2,2(u, v))

+
∑

e∈Γc∪ΓD

ae3(u, v)

and the right-hand side

F (v) =

∫
Ω

fv dx

www.numa.uni-linz.ac.at R. Schneckenleitner, IETI-DP in Electrical Engineering



Institute of Computational Mathematics

Numerical Tests for the Reparameterization

The quantities in the bilinear form are given by

ak1 (u, v) =

∫
Ωk
∇u · ∇v dx

ae2,1(u, v) =

∫
e
{∇u · n}e[v ]eds

ae2,2(u, v) =

∫
e
{∇v · n}e[u]eds

ae3(u, v) =

∫
e
α[u]e[v ]eds

{·}e , [·]e denote the average and the jump across e,
respectively and α ∼ p2

h is some suitably chosen parameter
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Problem Setting

f = 2π2sin(πx)sin(πy)

The exact solution of the problem is sin(πx)sin(πy)

Homogeneous boundary conditions
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Numerical Example 1

(a) Solution of the problem (b) Splitting of the domain

Figure: Solution with B-splines of degree 3
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Numerical Example 2

(a) Solution of the problem (b) Splitting of the domain

Figure: Solution with NURBS of degree 3
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Numerical Example 2

(a) Solution of the problem (b) Splitting of the domain

Figure: Solution with NURBS of degree 3
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Convergence Test of Example 1

# dofs L2 error conv. rate H1 error conv. rate

75 0.00108993 0 0.0544043 0

147 0.000160162 2.767 0.0113958 2.25522

363 8.21729e-06 4.285 0.000902003 3.65922

1083 4.82416e-07 4.090 8.37942e-05 3.42821

3675 2.9596e-08 4.029 8.53316e-06 3.2957

13467 1.83882e-09 4.009 9.30043e-07 3.19771

51483 1.14684e-10 4.003 1.06861e-07 3.12156

201243 7.17393e-12 3.999 1.27334e-08 3.06904

Table: L2 and H1 convergence rates for example 1 with B-splines of
degree 3
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How to Handle Rotations of Elec. Machines?

dG-IETI method
Would be completely new
No cG conforming meshes for the subdomains necessary
No theory so far (theory relies on matching vertices)

Quasi p-robust multipatch multigrid
Developed mainly by Stefan Takacs at RICAM
Theory not complete
First experiments are promising

. . .

. . .
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dG-IETI-DP

Theory so far needs vertex values as primal variables
Hanging nodes occur in the consideration of rotating
machines
→ Vertex values are not feasible any more
→ Only edge averages are allowed
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dG-IETI-DP

(a) Solution of the problem (b) Splitting of the domain

Figure: Solution with B-splines of degree 3
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dG-IETI-DP

(a) Solution of the problem (b) Splitting of the domain

Figure: Solution with NURBS of degree 3
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Tests with dG-IETI-DP

Unit square with degree 3, NURBS circular rings with
degree 3

Unit square NURBS circular rings

# dofs Solving time CG-Iterations # dofs Solving time CG-Iterations

363 0.21 4 392 0.97 23

1 083 0.37 5 968 1.43 32

3 675 0.89 6 2 888 2.50 33

13 467 2.95 7 9 800 5.53 31

51 483 13.84 8 35 912 16.93 34

201 243 82.19 9 137 288 71.48 33

Table: Solving time in sec and iterations for dG-IETI-DP, Error
tolerance 1e-5
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Multigrid in a Nutshell

Iterative method for solving large linear systems Ax = f
Use a hierarchy of discretizations
Basic algorithm consists of 3 steps:

Smoothing:
xk ← xk + P−1(f − Axk)
Restriction of the residual r
Prolongation of the correction w = A−1r and
setting xk+1 = xk + w

Can be used as solver as well as preconditioner for e.g. CG
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Quasi p-robust Multigrid

Key idea is a stable splitting of the spline spaces

Figure: Decomposition of dofs
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Quasi p-robust Multigrid

(a) Solution of the problem (b) Splitting of the domain
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Tests with Multigrid

Test on the unit square

Unit square

r\p 1 2 3 4 5

2 7/44 6/70 7/102 8/140 10/184

3 8/184 7/234 8/290 9/352 12/420

4 8/752 8/850 9/954 11/1064 15/1180

5 8/3040 9/3234 10/3434 11/3640 18/3852

6 8/12224 9/12610 10/13002 12/13400 20/13804

7 9/49024 9/49794 11/50570 12/51352 20/52140

8 9/196352 10/137890 11/199434 12/200984 20/202540

Table: Iterations/#dofs, Error tolerance 1e-8
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Tests with Multigrid

Test on the rectangular domain

Rectangular domain

r\p 1 2 3 4 5

2 8/84 6/130 5/186 6/252 6/328

3 8/328 6/414 7/510 7/616 7/732

4 8/1296 6/1462 7/1638 8/1824 9/2020

5 8/5152 7/5478 8/5814 9/6160 10/6516

6 9/20544 7/21190 8/21846 9/22512 11/23188

7 9/82048 7/83334 8/84630 9/85936 11/87252

8 9/327936 7/330502 8/333078 10/335664 11/338260

Table: Iterations/#dofs, Error tolerance 1e-8
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Tests with Multigrid

Test on the circular rings

Circular rings

r\p 1 2 3 4 5

2 13/160 14/240 15/336 16/448 17/576

3 19/576 19/720 22/880 22/1056 30/1248

4 19/2176 21/2448 23/2736 26/3040 31/3360

5 20/8448 21/8976 26/9520 29/10080 36/10656

6 23/33280 23/34320 26/35376 30/36448 37/37536

7 23/132096 23/134160 27/136240 30/138336 37/140448

8 23/526336 23/530448 27/534576 30/538720 38/542880

Table: Iterations/#dofs, Error tolerance 1e-8
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Tests with Multigrid

Test on the circular rings with improved scaling

Circular rings

r\p 1 2 3 4 5

2 10/160 11/240 14/336 14/448 12/576

3 15/576 15/720 17/880 18/1056 27/1248

4 17/2176 16/2448 19/2736 20/3040 27/3360

5 20/8448 17/8976 20/9520 22/10080 29/10656

6 21/33280 18/34320 21/35376 22/36448 32/37536

7 22/132096 19/134160 22/136240 23/138336 32/140448

8 23/526336 19/530448 22/534576 23/538720 36/542880

Table: Iterations/#dofs, Error tolerance 1e-8
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dG-IETI on a NURBS based geometry

Solution on a NURBS based model of the IPM
T-junctions but no rotation
Same solution as in the conforming case

Figure: Discretization and solution of linear magnetostatics
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dG-IETI on a NURBS based geometry

We are now able to consider an arbitrary position of the
motor:

Decompositon Solution
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Summary

So far only the linear static case is considered
Need additional techniques to capture rotation
Introduction of dG-IETI-DP and multipatch multigrid
First results are promising
dG-IETI-DP and multigrid still require some investigation
Also reparametrization seems to influence the results
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Outlook

Provide a theory for dG-IETI-DP
Provide a theory for multipatch multigrid
Introduction of the nonlinearity in ν, i.e., ν = ν(x , |∇u|)
Apply multipatch multigrid to the motorsimultation
Proper treatment of highly distorted geometries
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