Space-Time Finite Element Methods for Parabolic Initial-Boundary Value Problems with Distributional Data

Ulrich Langer*, Andreas Schafelner*, Panayot S. Vassilevski[†]

* Johannes Kepler University, Linz [†]Lawrence Livermore National Laboratory, Livermore, CA

A. Schafelner

Outline

Introduction

- Space-time Variational Formulations
- Space-time Finite Element Methods
- Numerical Experiments
- □ Conclusions & Outlook

Introduction

- Space-time Variational Formulations
- □ Space-time Finite Element Methods
- Numerical Experiments
- □ Conclusions & Outlook

A parabolic model problem

Where we aim

Let $Q = Q_T := \Omega \times (0, T)$ be the space-time cylinder and $\Sigma := \partial \Omega \times (0, T)$, $\Sigma_0 := \overline{\Omega} \times \{0\}$ and $\Sigma_T := \overline{\Omega} \times \{T\}$. Then: Given f, \mathbf{f} , g, σ , ν and u_0 , find u such that

$$\begin{split} \sigma(x,t)\partial_t u - \operatorname{div}_x(\nu(x,t,|\nabla_x u|)\nabla_x u) =& f + \operatorname{div}_x(\mathbf{f}) & \text{in } Q, \\ u(x,t) =& g(x,t), & (x,t) \in \Sigma, \\ u(x,0) =& u_0(x), & x \in \overline{\Omega}, \end{split}$$

where σ, ν are uniformly positive and bounded coefficients.

Α.	Schafelner	

A parabolic model problem

Where we are

Let $Q = Q_T := \Omega \times (0, T)$ be the space-time cylinder and $\Sigma := \partial \Omega \times (0, T)$, $\Sigma_0 := \overline{\Omega} \times \{0\}$ and $\Sigma_T := \overline{\Omega} \times \{T\}$. Then: Given f, g, ν and u_0 , find u such that

$$\begin{aligned} \partial_t u - \operatorname{div}_x(\nu(x,t)\nabla_x u) =& f + \operatorname{div}_x(\mathbf{f}) & \text{ in } Q, \\ u(x,t) =& 0, & (x,t) \in \Sigma, \\ u(x,0) =& 0, & x \in \overline{\Omega}, \end{aligned}$$

where ν is a uniformly positive and bounded coefficient. Examples: diffusion, heat-conduction and 2D eddy current.

References

Overview papers:

Gander ('15): Historical overview on 50 years time-parallel meth. Steinbach, Yang ('19): Overview on space-time methods

Recent unstructured FE space-time methods

Steinbach ('15): theory for the limit case of our method Bank, Vassilevski, Zikatanov ('16): non-localized version Devaud, Schwab ('18): mesh-grading in time

Introduction

Space-time Variational Formulations

- Space-time Finite Element Methods
- Numerical Experiments
- Conclusions & Outlook

Space-time Variational Formulations

- Line Variational Formulation and Vertical Method of Lines
 discretize first in space, then in time
 Line Variational Formulation and Horizontal Method of Lines
 - \triangleright discretize first in time, then in space
- (3) Space-time Variational Formulation
 - discretize all at once on unstructured decompositions of the space-time cylinder

Space-time Variational Formulations

- (1) Line Variational Formulation and Vertical Method of Lines by discretize first in space, then in time
- (2) Line Variational Formulation and Horizontal Method of Lines
- (3) Space-time Variational Formulation
 - discretize all at once on unstructured decompositions of the space-time cylinder

Space-time Variational Formulations

- (1) Line Variational Formulation and Vertical Method of Lines
- (2) Line Variational Formulation and Horizontal Method of Lines
- (3) Space-time Variational Formulation
 - discretize all at once on unstructured decompositions of the space-time cylinder

Pros? Cons?

A (very) weak space-time variational formulation

Find $u \in H_0^{1,0}(Q)$ s.t.

$$a(u,v) = l(v) \qquad \qquad \forall v \in H^{1,1}_{0,\overline{0}}(Q), \qquad (\mathsf{VI})$$

with

$$\begin{split} a(u,v) &:= -\int_Q u(x,t) \ \partial_t v(x,t) + \nu(x,t) \nabla_x u(x,t) \cdot \nabla_x v(x,t) \ \mathrm{d}(x,t), \\ l(v) &:= \int_Q f(x,t) \ v(x,t) \ \mathrm{d}(x,t) + \int_Q \mathbf{f}(x,t) \cdot \nabla_x v(x,t) \ \mathrm{d}(x,t) \\ &+ \int_\Omega u_0(x) \ v(x,0) \ \mathrm{d}x. \end{split}$$

Regularity of solutions

Using a test function $\varphi\in \dot{C}^\infty(Q_i)$, we obtain from (VI)

$$-\int_{Q_i} u \,\partial_t \varphi + \nu \nabla_x u \cdot \nabla_x \varphi \,\mathrm{d}(x,t) = \int_{Q_i} f \,\varphi \,\mathrm{d}(x,t) + \int_{Q_i} \mathbf{f} \cdot \nabla_x \varphi \,\mathrm{d}(x,t),$$

where $\overline{Q} = \bigcup_{i=1}^{N} \overline{Q_i}$. Integration by parts yields

$$\int_{Q_i} \begin{pmatrix} \nu \nabla_x u \\ -u \end{pmatrix} \cdot \nabla \varphi \, \mathrm{d}(x,t) = \int_{Q_i} (f - \mathrm{div}_x \mathbf{f}) \varphi \, \mathrm{d}(x,t),$$

i.e, the definition of the weak (space-time) divergence

$$\operatorname{div} \begin{pmatrix} \nu \nabla_x u \\ -u \end{pmatrix} = f - \operatorname{div}_x \mathbf{f} \quad \text{in } L_2(Q_i).$$

Using this on (VI), we obtain for the sum of fluxes

$$\sum_{i=1}^N \int_{\partial Q_i} \binom{-\nu \nabla_x u}{u} \cdot \binom{\vec{n}_x}{n_t} v \, \mathrm{d} s_{(x,t)} = \sum_{i=1}^N \int_{\partial Q_i} \mathbf{f} \cdot \vec{n}_x \, v \, \mathrm{d}(x,t).$$

Introduction

Space-time Variational Formulations

Space-time Finite Element Methods

- Numerical Experiments
- Conclusions & Outlook

Space-time FEM with time-upwind stabilization

The main idea:

 \triangleright decompose Q into shape-regular finite elements $K \in \mathcal{T}_h$,

define conform finite element space

$$V_{0h} := \{ v \in C(\overline{Q}) : v(x_K(\cdot)) \in \mathbb{P}_p(\widehat{K}), \ v|_{\overline{\Sigma} \cup \overline{\Sigma}_0} = 0 \}$$

 \triangleright for each element K, define *individual* upwind test function

$$v_h(x,t) + \theta_K h_K \partial_t v_h(x,t)$$
, for all $(x,t) \in K$, (*)

with $\boldsymbol{\theta}_{\boldsymbol{K}}$ positive parameter, and $\boldsymbol{h}_{\boldsymbol{K}} := \operatorname{diam}(K)$,

The generalized space-time FE scheme

Find
$$u_h \in V_{0h} := \{ v \in C(\overline{Q}) : v(x_K(\cdot)) \in \mathbb{P}_p(K), v|_{\overline{\Sigma} \cup \overline{\Sigma}_0} = 0 \} :$$

$$\tilde{a}_h(u_h, v_h) = \tilde{l}_h(v_h), \quad \forall v_h \in V_{0h},$$
(1)

where

$$\begin{split} \tilde{a}_{h}(u_{h},v_{h}) &:= \sum_{K \in \mathcal{T}_{h}} \int_{K} \left[\begin{pmatrix} \nu \nabla_{x} u_{h} \\ -u_{h} \end{pmatrix} \cdot \nabla(v_{h} + \theta_{K} h_{K} \partial_{t} v_{h}) \right] \, \mathrm{d}(x,t) \\ &- \theta_{K} h_{K} \int_{\partial K} \left[\begin{pmatrix} \nu \nabla_{x} u_{h} \\ -u_{h} \end{pmatrix} \cdot \begin{pmatrix} \vec{n}_{x} \\ n_{t} \end{pmatrix} \right] \partial_{t} v_{h} \, \mathrm{d}s_{(x,t)} \\ \\ \tilde{l}_{h}(v_{h}) &:= \sum_{K \in \mathcal{T}_{h}} \int_{K} f(v_{h} + \theta_{K} h_{K} \partial_{t} v_{h}) + \mathbf{f} \cdot \nabla_{x} (v_{h} + \theta_{K} h_{K} \partial_{t} v_{h}) \, \mathrm{d}(x,t) \\ &- \theta_{K} h_{K} \int_{\partial K} \mathbf{f} \cdot \vec{n}_{x} \, \partial_{t} v_{h} \, \mathrm{d}(x,t) \end{split}$$

Definition (Mesh dependent norm).

$$\|v_h\|_h^2 := \sum_{K \in \mathcal{T}_h} \left[\|v^{1/2} \nabla_x v_h\|_{L_2(K)}^2 + \theta_K h_K \|\partial_t v_h\|_{L_2(K)}^2 \right] + \frac{1}{2} \|v_h\|_{L_2(\Sigma_T)}^2.$$

Lemma (Coercivity on the FE space [1]).

There exits a constant μ_c such that

$$a_h(v_h, v_h) \ge \mu_c \|v_h\|_h^2, \quad \forall v_h \in V_{0h},$$
with $\mu_c = \min_{K \in \mathcal{T}_h} \left\{ 1 - c_{Idiv} \sqrt{\frac{\overline{\nu_K \theta_K}}{4h_K}} \right\} \ge \frac{1}{2} \text{ for } \theta_K \le \frac{h_K}{c_{Idiv}^2 \overline{\nu_K}},$
i.e., $\mu_c = \frac{1}{2} \text{ for } \theta_K = \frac{h_K}{c_{Idiv}^2 \overline{\nu_K}}.$

with

Existence & Uniqueness

For the *finite dimensional* problem (1):

 $\mathsf{Coercivity} \Rightarrow \mathsf{Uniqueness} \Rightarrow \mathsf{Existence}$

The linear system

usual FEM procedure yields

$$\mathbf{K}_h \mathbf{u}_h = \mathbf{f}_h$$

with

 \triangleright **K**_h **non-symmetric**, but **positive definite** system matrix, \triangleright **u**_h the coefficient vector wrt the ansatz functions,

 \triangleright **f**_h the load vector stemming from the rhs

Boundedness

Definition.

$$\|v\|_{h,*}^2 := \|v\|_h^2 + \sum_{K \in \mathcal{T}_h} \left[(\theta_K h_K)^{-1} \|v\|_{L_2(K)}^2 + \theta_K h_K \|\operatorname{div}_x(\nu \nabla_x v)\|_{L_2(K)}^2 \right]$$

Lemma.

The bilinear form $\tilde{a}_h(.,.)$ is uniformly bounded on $V_{0h,*} \times V_{0h}$, i.e.,

$$|\tilde{a}_h(u, v_h)| \le \mu_b ||u||_{h,*} ||v_h||_h,$$

where $V_{0h,*} := V_{0h} + H^{\mathcal{L},1}(\mathcal{T}_h)$.

A Cèa-like estimate

Lemma ([1]).

Let $u \in H_{0,\underline{0}}^{\mathcal{L},1}(\mathcal{T}_h)$ be the exact solution, and $u_h \in V_{0h}$ the solution of the finite element scheme (1). Then there holds the Cèa-like estimate

$$||u - u_h||_h \le \left(1 + \frac{\mu_b}{\mu_c}\right) \inf_{v_h \in V_{0h}} ||u - v_h||_{h,*}.$$

Α.	Schafelner	

An a priori error estimate

Theorem ([2]).

Let $1 < l \leq p + 1$, $u \in V_0 \cap H^l(Q)$ be the exact solution, and $u_h \in V_{0h}$ be the solution of the finite element scheme (1). Furthermore, let $a_h(\cdot, \cdot)$ be coercive and bounded. Then the a priori error estimate

$$\|u - u_h\|_h \le C \left(\sum_{K \in \mathcal{T}_h} h_K^{2(s-1)} \left(|u|_{H^s(S_K)}^2 + \|\operatorname{div}_x(\nu \nabla_x u)\|_{L_2(K)}^2 \right) \right)^{1/2}$$

holds with $s = \min\{l, p+1\}$, S_K a neighborhood of K, and some generic positive constant C.

Introduction

- Space-time Variational Formulations
- □ Space-time Finite Element Methods
- Numerical Experiments
- □ Conclusions & Outlook

Numerical Experiments

Key information

- Space-time FEM was implemented with MFEM¹,
- ▷ Linear systems were solved by means of *hypre*,
- Tests were performed on quartz² (uniform) or on my workstation (adaptive),

¹http://mfem.org ²2604 nodes, 93744 cores, LLNL

Linear solvers

boomerAMG

	d=2	d=3
Relaxation	$(\ell_1$ -scaled) ł	nybrid Gauß-Seidel
Coarsening	Falgout	HMIS
Interpolation	Standard	Extended+i
AMG strength threshold	0.75	0.8

Parallel flexible GMRES

 $\,\triangleright\,$ stopped after initial residual is reduced by 10^{-8}

no restarts

³https://www.llnl.gov/casc/hypre/

The variable-step nonlinear AMLI cycle MG [3]

Algorithm (Recursive Definition)

For any fiven \mathbf{v} at level $k < \ell$ to compute $B_k[\mathbf{v}]$, we perform:

- \triangleright Pre-smooth, i.e., solve $M_k \mathbf{y} = \mathbf{v}$ and compute residual $\mathbf{r} = \mathbf{v} A_k \mathbf{y}$.
- ▷ Restrict residual, i.e., compute $\mathbf{r}_c = P_k^T \mathbf{r}$.
- ▷ If $k + 1 = \ell$, solve exactly, i.e., $\mathbf{x}_c = A_{\ell}^{-1} \mathbf{r}_c$. Otherwise, apply recursion to solve $A_{k+1}\mathbf{y}_c = \mathbf{r}_c$, i.e., use ν_{k+1} iterations of flexible GMRES with $B_{k+1}[.]$ (recursively defined) as a preconditioner, staring with zero initial iterate $\mathbf{y}_c^{(0)} = 0$. The result, is $\mathbf{x}_c = B_{k+1}^{(\nu_{k+1})}[\mathbf{r}_c] := \mathbf{y}_c^{(\nu_{k+1})}$.
- Update fine-level iterate, i.e., compute

$$\mathbf{y} = \mathbf{y} + P_k \mathbf{x}_c.$$

- \triangleright Post-smooth, i.e., solve for \mathbf{z} , $M_k'(\mathbf{z} \mathbf{y}) = \mathbf{v} A_k \mathbf{y}$.
- \triangleright This gives $B_k[\mathbf{v}] = \mathbf{z}$.

A. Schafelner

Example 1 (Smooth solution, constant coefficient).

We consider $Q=(0,1)^{d+1}\text{, }\nu\equiv1\text{, the exact solution}$

$$u(x,t) = \sum_{i=1}^{d} \sin(x_i \pi) \sin(t \pi).$$

Α.	Schafelner	

Example 1: Performance for d = 2.

(a) p = 1, 4096 cores

(b) $p = 2$,	4096	cores,	2	sweeps
---------------	------	--------	---	--------

dofs		AMLI	v	-cycle
4913	19	(0.08 s)	19	(0.43 s)
35 937	16	(0.18s)	17	(0.88 s)
274 625	13	(0.31 s)	16	(1.13s)
2 146 689	14	(0.79s)	23	(2.93 s)
16 974 593	15	(2.72s)	59	(5.70 s)
135 005 697	16	(6.70s)	248	(20.61 s)
1076890625	18	(24.24 s)	>300	(246.46 s)

dofs	AMLI		dofs AMLI		v	-cycle
35 937	20	(0.32s)	19	(1.51 s)		
274 625	22	(1.24 s)	24	(1.50 s)		
2 146 689	29	(2.88 s)	36	(3.58 s)		
16 974 593	36	(7.54 s)	61	(7.58 s)		
135 005 697	47	(27.05 s)	279	(41.81 s)		
1 076 890 625	63	(153.48 s)	>300	(386.86 s)		

Example 1: Iteration and time to solution, with p = 1 and d = 2.

A. Schafelner	JKU Linz	20 / 42

Example 1: Iteration and time to solution, with p = 2 and d = 2.

A. Schafelner	JKU Linz	21/42

Example 1: Weak scaling with \sim 274625 dofs per core.

A. Schafelner

JKU Linz

Example 1: Performance for d = 3.

(a) p = 1, 256 cores

(b) $p = 2$	256 cores	5
-------------	-----------	---

dofs	AMLI		V	/-cycle
625	10	(0.01 s)	10	(0.02 s)
6561	16	(0.05 s)	16	(0.09 s)
83 521	22	(0.24 s)	23	(0.17 s)
1 185 921	33	(1.01s)	35	(2.46 s)
17 850 625	58	(13.35 s)	58	(9.30 s)

dofs		AMLI	V	/-cycle
6561	32	(0.08 s)	27	(0.10 s)
83 521	51	(0.43 s)	44	(0.23 s)
1 185 921	83	(2.76 s)	75	(2.06 s)
17 850 625	162	(45.68 s)	148	(31.35 s)

$$(\eta^*)^2 = \sum_{K \in \mathcal{T}_h} (\eta^*_K)^2$$

An error indicator

Residual-based error indicator by Steinbach & Yang ('17)

$$(\eta_K^{\mathcal{R}})^2 := h_K^2 R_h(u_h) + h_K J_h(u_h),$$

where

$$R_h(u_h) := \|f + \operatorname{div}_x(\nu \nabla_x u_h) - \partial_t u_h\|_{L_2(K)}^2,$$

$$J_h(u_h) := \|[\nu \nabla_x u_h]_e\|_{L_2(\partial K)}^2.$$

	Α.	Schafelner
--	----	------------

Functional error indicator

Guaranteed error bound, see e.g. Repin ('08)

$$\|\nabla_x(u-u_h)\|_{L_2(Q)} + \frac{1}{2} \|u(\cdot,T) - u_h(\cdot,T)\|_{L_2(\Omega)} \le \overline{\mathfrak{M}}_{EV1}^2(\beta,\delta,v,\mathbf{y}_h),$$

where $\mathbf{y}_h = \arg \min_{\mathbf{y}} \overline{\mathfrak{M}}_{EV1}^2(\beta, \delta, u_h, \mathbf{y})$, with $\delta = 1/2$, and the first form of the error majorant

$$\begin{aligned} \overline{\mathfrak{M}}_{EV1}^2(\beta, \delta, v, \mathbf{y}) &:= \int_Q \left[(1 + \beta(t)) |\mathbf{y} - \nu \nabla_x v|^2 + (1 + \frac{1}{\beta(t)}) |f - \partial_t v + \operatorname{div}_x \mathbf{y}|^2 \right] \, \mathrm{d}(x, t). \end{aligned}$$

Error indicator

$$(\eta_K^{\mathfrak{M}})^2 := \|\mathbf{y}_h - \nu \nabla_x u_h\|_{L_2(K)}^2$$

A. Schafelner

Functional error indicator (generalized)

Guaranteed error bound, see e.g. Repin ('08)

$$\|\nabla_x(u-u_h)\|_{L_2(Q)} + \frac{1}{2} \|u(\cdot,T) - u_h(\cdot,T)\|_{L_2(\Omega)} \le \overline{\mathfrak{M}}_{EV1}^2(\beta,\delta,v,\mathbf{y}_h),$$

where $\mathbf{y}_h = \arg \min_{\mathbf{y}} \overline{\mathfrak{M}}_{EV1}^2(\beta, \delta, u_h, \mathbf{y})$, with $\delta = 1/2$, and the first form of the error majorant

$$\begin{aligned} \overline{\mathfrak{M}}_{EV1}^2(\beta, \delta, v, \mathbf{y}) &:= \int_Q \left[(1 + \beta(t)) |\mathbf{y} - \nu \nabla_x v + \mathbf{f}|^2 \right. \\ &+ \left. (1 + \frac{1}{\beta(t)}) |f - \partial_t v + \operatorname{div}_x \mathbf{y}|^2 \right] \, \mathrm{d}(x, t). \end{aligned}$$

Error indicator

$$(\eta_K^{\mathfrak{M}})^2 := \|\mathbf{y}_h - \nu \nabla_x u_h + \mathbf{f}\|_{L_2(K)}^2$$

A. Schafelner

Dörfler's Marking

Determine set $\mathcal{M}_h \subset \mathcal{T}_h$ of minimal cardinality s.t.

$$\Xi(\eta^*)^2 \le \sum_{K \in \mathcal{M}_h} (\eta_K^*)^2,$$

and MARK all $K \in \mathcal{M}_h$

Example 2 (NIST Benchmark "Moving Wavefront").

Choose space-time cylinder $Q=\prod_{i=1}^d(x_{i,0},x_{i,1})\times(0,T)$, $\nu\equiv$ 1, and exact solution

$$u(x,t) = B(x) \arctan(t) \left(\frac{\pi}{2} - \arctan(\alpha(r-t))\right)$$

with $r^2 := \sum_{i=1}^d (x_i - x_{i,c})^2$ and

$$B(x) := \prod_{i=1}^{d} \frac{(x_i - x_{i,0})(x_i - x_{i,1})}{(-1)^{d+1}C}$$

A. Schafelner	JKU Linz	27 / 42

Δ

$Q = (0,10) \times (-5,5) \times (0,10)$, $\alpha = 20$, $C = 10\,000$, $x_c = (0,0)$

. Schafelner	JKU Linz	28 / 42

Numerical Experiments : Adaptivity

Example 2 Error rates for *functional estimator* $\eta^{\mathfrak{M}}$ and Dörfler's marking.

Α.	Schafelner	

t = 0.75

	C I C I	
Δ	Schatelner	
<i>/</i>	Scharchici	

Numerical Experiments : Adaptivity

Example 2 Efficiency indices for Dörfler's marking.

A. Schafelner	JKU Linz	31 / 42

$$Q = (0,10) \times (-5,5)^2 \times (0,10)$$
, $\alpha = 20$, $C = 100\,000$, $x_c = (0,0,0)$

t = 0.00

Α	A. Schafelner	JKU Linz	32 / 42

Numerical Experiments : Adaptivity

Example 2 Error rates for *functional estimator* $\eta^{\mathfrak{M}}$ and Dörfler's marking.

Α.	Schafelner	

A. Schafelner	JKU Linz	34 / 42

A. Schafelner	JKU Linz	34 / 42

-

A. Schafelner	JKU Linz	34 / 42

A. Schafelner	JKU Linz	34 / 42

A. Schafelner	JKU Linz	34 / 42

Numerical Experiments : Adaptivity

Example 2 Efficiency indices for Dörfler's marking.

A. Schafelner	JKU Linz	35 / 42

Introduction

- Space-time Variational Formulations
- □ Space-time Finite Element Methods
- Numerical Experiments
- Conclusions & Outlook

Conclusions

- \triangleright stability of the FE scheme provided that $\theta_K = \mathcal{O}(h_K)$,
- a priori estimates for the discretization error,
- ▷ results can be generalized to a space-time scheme with distributional rhs = $f + \text{div}_x \mathbf{f}$
- ▷ the numerical experiments are in accordance with the theory,
- ▷ fully *parallel* space-time FEM
- $\triangleright\,$ adaptivity simultaneously in space and time for d=1,2,3 for residual and functional error indicators

Outlook & Future Work

Analysis

□ reliable and efficient a posterior error estimators

> Computational

application to more complex problems,

- $\ \square$ preconditioners for p>1, and d=3,
- □ parallelization of the AMR (load balancing)

Main future goal

non-linear parabolic problems and eddy-current problems

- Langer, U., Neumüller, M., and Schafelner, A. Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients. In Advanced Finite Element Methods with Applications - Proceedings of the 30th Chemnitz FEM Symposium 2017, T. Apel, U. Langer, A. Meyer, and O. Steinbach, Eds., vol. 128 of LNCSE. Springer, Berlin, Heidelberg, New York, 2019, pp. 229–256. to appear.
- [2] Langer, U., and Schafelner, A. Space-time finite element methods for parabolic evolution problems with non-smooth solutions, 2019, arXiv:1903.02350.
- [3] Schafelner, A., and Vassilevski, P. S. Nonlinear AMLI cycle Solver for Space-time Finite Element Equations, 2019. In preparation.

Thank you!

Supported by the Austrian Science Fund (FWF) under the grant W1214, project DK4. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. \triangleright the constant $c_{I, \operatorname{div}_x}$ comes from the *inverse inequality*

 $\|\operatorname{div}_{x}(\nu w_{h})\|_{L_{2}(K)} \leq c_{I,\operatorname{div}_{x}} h_{K}^{-1} \|\nu w_{h}\|_{L_{2}(K)}, \forall w_{h} \in W_{h}|_{K},$

with $W_h|_K := \nabla_x \left(V_{0h}|_K \right)$ and $\nu \in W^{1,\infty}(\mathcal{T}_h)$,

- $\triangleright \ c_{I,{\rm div}_x}$ is independent of h_K , but depends on polynomial degree p and the dimension d,
- $\triangleright c_{I, \operatorname{div}_x}$ is computable!

 $\hfill\square$ to be precise, we can compute a sharp lower bound for $c_{I,{\rm div}_x}h_K^{-1}$

Definition (A different norm).

$$\|v_h\|_{x,T}^2 := \sum_{K \in \mathcal{T}_h} \left[\|\nu^{1/2} \nabla_x v_h\|_{L_2(K)}^2 \right] + \frac{1}{2} \|v_h\|_{L_2(\Sigma_T)}^2.$$

Lemma (Coercivity on the FE space?).

There exits a constant $\tilde{\mu}_c$ such that

$$\tilde{a}_h(v_h, v_h) \ge \tilde{\mu}_c \|v_h\|_{x,T}^2, \quad \forall v_h \in V_{0h},$$

with $\tilde{\mu}_c = 1/2$ for $\theta_K = \frac{h_K}{c_{Idiv}^2 \overline{\nu}_K}$.

Boundedness (generalized)

Definition.

$$\|v\|_{x,T,\operatorname{div}}^{2} := \|v\|_{x,T}^{2} + \sum_{K \in \mathcal{T}_{h}} (\theta_{K}h_{K})^{-1} \|u\|_{L_{2}(K)}^{2} + \theta_{K}h_{K} \|\operatorname{div} \begin{pmatrix} \nu \nabla_{x}u \\ -u \end{pmatrix}\|_{L_{2}(K)}^{2}$$

Conjecture.

The bilinear form $\tilde{a}_h(.,.)$ is uniformly bounded on $V_{0h,div} \times V_{0h}$, i.e., $|\tilde{a}_h(u,v_h)| \leq \tilde{\mu}_b ||u||_{x,T,div} ||v_h||_{x,T}$, where $V_{0h,div} := V_{0h} + H^{1,0}(Q)$.

Example 3 (Kellogg's problem ('74)).

Consider space-time cylinder $Q = (-1, 1)^2 \times (0, 1)$,

$$\nu(x,t) = \begin{cases} 161.4476387975885, & \text{if } (x,t) \in Q_1 \cup Q_3\\ 1, & \text{if } (x,t) \in Q_2 \cup Q_4 \end{cases}$$

and choose

$$u(r,\phi,t) = r^{\gamma}\mu(\phi) t$$

with

$$\mu(\phi) := \begin{cases} \cos(\gamma(\frac{\pi}{2} - \sigma))\cos(\gamma(\phi - \frac{\pi}{2} + \rho)), & \text{for } \phi \in [0, \frac{\pi}{2}], \\ \cos(\gamma\rho)\cos(\gamma(\phi - \pi + \sigma)), & \text{for } \phi \in [\frac{\pi}{2}, \pi], \\ \cos(\gamma\sigma)\cos(\gamma(\phi + \pi - \rho)), & \text{for } \phi \in [-\pi, -\frac{\pi}{2}], \\ \cos(\gamma(\frac{\pi}{2} - \rho))\cos(\gamma(\phi + \frac{\pi}{2} - \sigma)), & \text{for } \phi \in [-\frac{\pi}{2}, 0], \end{cases}$$

and
$$\sigma = -19\pi/4$$
, $\rho = \pi/4$ and $\gamma = 0.1$, i.e., $u \in H^{1,1}(Q_i)$

A. Schafelner

Example	3:	Solution	at	<i>t</i> =	= 1
---------	----	----------	----	------------	-----

A. Schafelner JKU Linz 40/42			
	A. Schafelner	JKU Linz	40 / 42

Conclusions & Outlook :

A. Schafelner