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The plan

o Distance to the minimizer of an abstract variational problem.
o Setting
o Error measure and general error relations.
o Special case: problems with linear source functionals

o Examples

o Nonlinear decomposition of a Banach space (Helmgholtz type
theorem).

AANMPDE 12, Strobl 2019 S. Repin. Distance to minimizers



General variational problem

Milréva(v), J(v) = G(Aw) 4+ F(w) ?

4This class includes, e.g., a-Laplacian, NonNewtonian fluids, nonlinear
diffusion and reaction—diffusion, Linear and physically nonlinear elasticity,
Elasto—plasticity, Models with unilateral and obstacle conditions...

G : Y — Ry: convex, continuous, coercive functional vanishing at
zero element of Y (reflexive Banach space), A: V — Y bounded
linear operator, A*: Y* — V* Here A : V — Y is the differential
operator (e.g., V or Vgym),

A* is the conjugate operator (e.g., div or Div ):

< A'y* v >= (y*, Av)
Yand Y* = (y*,y), Vand V¥ = <v* v >.
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Example

V =W 1(Q), Y = L(Q, RY), Y* = L (O, RY),

1 1
===l a € (1,400)
14 (14
A = V, A= —div,
1
Gly) — 7/ Yy, F :/fd
0 = o [l F)= [ fa

) = i/ Volta— [ fud
(@) (@)

Euler equation for this problem is &« — Laplacian:

div |Vu[*2Vu+f=0,inQ, w=0onT,
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Variational method

We generate a sequence of numerical solutions u, € V and prove
that J(ux) — inf J as k — +oo (provided that all has been done
correctly).

Question 1:

Which features of the exact minimizer u can be reconstructed
and reliably controlled by this sequence?

Question 2:

How to control these features by computable quantities ?
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We need some specific notions:
O Fenchel conjugate functional to the functional g : X — X*:

g (") i=sup{ <> —¢g(0)}
rex

Example: if g() = 1|¢|%, then g*(¢*) = L|C*|*". Properties
and applications to convex variational problems are deeply
studied ( T. Rockafellar, J. Moreau,|. Ekeland and R.

Themam... )
O Compound functional is defined on X x X*:

Dg (8,8") :=g(5) +&"(&") —(¢".¢) >0!

Dg(C*,C) possesses an important "vanishing property”:

Dg(2,0") =0 & (" C9g(f)and { C 0g™ (L)

D, is a nonnegative functional, which vanishes only in some

special cases.
AANMPDE 12, Strobl 2019 S. Repin. Distance to minimizers



Special case: quadratic energy = linear problems

If (&) = 312]? and g*(&*) = 3|*|? then
Dg(8.8) = 512 + 5182~ (€. 6") = 518 - &*2
For this reason basic error relations

for linear problems (and only for them!) are presented
in terms of norms!
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O Original (primal) problem

J(u)=infJ(v), J(v)=G(Av)+ F(v).

u is the exact solution (minimizer).

has a dual counterpart

max I*(y*) where I*(y*) := —G*(y*) — F*(—=A*y"),
y*e *

p* is the exact dual solution, maximizer.

For a wide class of problems

J(u) < J(v)
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Q wu and p* satisfy two necessary and sufficient conditions:

(I) Dp(u, —A*p*) := F(u) + F*(=A*p")+ < A*p*,u >=0,
(I Dg(Au, p*) = G(Au)+ G*(p*) — (p*, Au) =0

Hint: Linear Elasticity (F(v) = [, fvdx)

() = Divp*+f=0,
() = p* =G (Vsym(v)) = LVgym(u).
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A variational numerical method approximates u or p*, or both
solutions simultaneously.

Let y* € Y* and v € V approximate p* and u . J

We introduce the following measure of the distance between
{u,p*}and {v, y" }:

p({u.ph {v.y" }):=Dr(u.—A"y" )+Dg(Au,y")
+ De( v ,—A™p*)+Dg(A v ,p*).

We have 4 nonnegative terms. The first pair compare v and y*
throughout A and A*.
The second pair does the same for v and p*.

It is clear that u({ u,p*}, { v, y* }) > 0. When it vanishes? )
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Since all the compounds are nonnegative, it must hold:
De(u, —A"y") =0,
De(v, —A*p*) =0,

what amounts

Av € 0G*(p*) and y* € 9G(Au),
—A*y* € 9F (u), and v € IF*(—A*p*).
These relations are equivalent to | and Il!

p({u,p*} {v.y*}) =0if and only if {v, y*} is equal to {u, p*}!
M is a right measure!
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The main error identity for variational problems

Foranyv € V and y* € Y*

p(v) +p(y*) =

Dg(Av,y*) + Dp(v, —A"y")

error measure computable quantity

Here the measure is decomposed into two parts

Dr(v.—A*p") + Da(A v p),
De(u,—A*y")+ Dg(A u,y).

=
*

<
*

Il
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duality gap

This identity? shows that a variational problem automatically
generates the measure !

If we minimize J(v) (e.g., classical FEM approach)
or maximize /*(y*) (e.g., dual FEM approach)
or do both (e.g., mixed FEM approach)

WE APPROXIMATE EXACT SOLUTIONS IN TERMS OF pu.

p is the maximal measure of a variational problem.

aS.R. Math. Comput., 2000; also exposed in the book form, Elsevier 2004
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Conclusion:
a variational problem itself generates a natural measure of errors,
which is provides maximum quantitative information on the quality
of approximating sequences.

In general, components of u are nonconvex functionals, e.g.,

Daly.y) = [ (G17+ 117 =) ox

is not a convex functional on Y X Y*. However,
p({u, p*},{v,y*}) generates a system of convex sets (local
topology) at the vicinity of the exact solutions pair (Vu, p*).
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Illustrative example

V=Y =R, 6= 2yl F(v) = WP a,p> 1
Av=rxv, Ay* = Ky*. G*(y*) = Ey*|*, Fr(v*) = kv
J(v) = %’KV’“ +1
J(y*) = —,,%Iy*l”‘ ‘K|ﬁ ly*|P", the maximizer p* is also zero.
Then

*|ﬁ*,

1 1 * 1ok *
Dg(Av,y*) = QIK\/!"‘+EIy © —xvy®,

L1 . 1
Do(Auy*) = =y [, Do(Av.p*) = ~fxv]*

* % 1 * % 1 * | B*
DF(Vv_Ap):B|V|ﬁ' =AY u) = gl —ny P

Hence the measure is given by the relation
S T S Il
p(v.y*iup) = IVI+[5|V|+M|y| +ﬁ*|

S. Repin. Distance to minimizers
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Level lines of p for & =2, =2, —l(tplft) x=3p=2,
toprigh) —13[3 2, £ = 1 (bottom left) and a = 4,
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Comment: other "nonlinear” error measures for the primal variable

Assumption: G is differentiable and uniformly convex , i.e.,

G(Y1 + ¥

1
2 G(YI)+§G(Y2) VyL,y2 €Y

N

1
)+ 5P —y) <
where @ : Y — IRT. Then we can introduce two other measures:

u(v) = (G (Au) — G'(Av), Av — Au), (monotonicity measure)
p (v) :=®(A(v—u)) (uniform convexity measure).

po(v) <p(v) <pf(v)  Wev
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Example: the classical obstacle problem

J(v) = /Q (%AVV'VV — fv)dx — min.
Nonlinear effects and free boundaries arise due to the set
K:={veVy:=H | p(x) <v(x) <p(x)aeinQ}, ¢, v € H*(Q).
Here Av = Vv, A*y* = —divy*,
G(AV) = [, LAV - Vvdx,  F(v) :/Q —frdx+¥(v)

0 ifp<v< .
Y(v) :{ e 4’&58—”” Let v* € L2(QQ)

F*(v*) = sup{(v*,v) — F(v)} = sup /Q v(v®+f)dx

vev veK

_/ S(v* + o + (v + Fa)dx,
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Then for v € K

Dr(v,—A*p*) = F(v) + F*(divp*) — (divp*,v)
—/ p(divp* +f)o + ¢p(divp* +f)e —fv —divp*v)dx.
—_———

On two obstacles p* is known and it is defined by ¢ and ¢.
Dr(v, —A*p*) = /W¢(X)(v—¢) dx+/w¢(x)(¢_v) o= e

where Wy (x) := —(divAV¢ + f) and Wy (x) := divAVYp +f
are two nonnegative weight functions
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We have an extra measure that has been missed before:  prgy(v)

It controls in a weak (integral) sense weather or not the function v
coincides with obstacles on true coincidence sets ()2, and ()%

p(v) := Dg(Vv,p*) + ppy(v)

If the functional G is generated by quadratic form, then
1
DG(VV, p*) = EHAVV — p*HE\A,

Error identity for the primal variable:

%HV(“ = V)IIa + pgy(v) = J(v) — J(u)
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Error identity yields the a posteriori error estimate for the
full error measure:

D6 (Vv,p*) 4 pgy(v) <
1 .
< (1+B7H)De(Vv,y*) + EC(Q)(l + B)||divy* + £ 4+ A1 — Ao||?

+ [ (v =) + Aoy = v)) i
The estimate has no gap! Indeed, set y* = p*, and
A= —(divp*+f), A2=0 onQy,
A =divp*+f, A1 =0 onQ},
A1 =0, A, =0 onQf

Then, the second term vanishes. Tend B to +oo, then the first
term tends to Dg(Vv, p*), and the last term tends to ppy(v).

Minimization of the majorant with respect to y* € H(Q, div ), Ay,
Az in L%, and B > 0 provides true value of u(v).
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Practical reconstruction of A1 and As:

Al = (divy* ol f)@, )\2 =0 on Qé,
Ay = (divy*+f)g, A1=0 onQy,
)\1:0, /\2:0 01’106.

In other words, we define A; and A using known sets

QY = {x € Q| v(x) = p(x)}, QL = {x € Q| v(x) = p(x)}.

See more about in S.R. and J. Valdman ZAMM, 2017.
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tipy(Vv) is not enough informative to detect free boundaries

Example:
¢ and 1 are harmonic functions, and f = const < 0.
In this case (34 = @ and

Hop (V) = £ [ (=) dc= (v 2 ¢) = Fllv = plluom)
oy

L1-norm of the distance to ¢ says nothing about configuration of
the free boundary.

Concerning reliable approximation of free boundaries we arrive at a
pessimistic conclusion:

top(v) is too weak to control configuration of the free boundary!
In general, energy based numerical methods are principally invalid
for such type (profound) quantitative analysis!
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Classical Helmgholtz Decomposition Theorem

A vector field y in L2(Q) is uniquely decomposed in the form

Y = yo + yv, where yg := Vw, w € H}(Q), divyy =0

This result was firstly established for the vector fields in L2(IR3),
but also holds for a bounded Lipshitz domain Q) if we set suitable
boundary conditions (I' = T'p UTy).
Define the sets:

Qo : divyg =0, yo-n=0o0nTy,

Vo w e H(Q), w=0onTp.

We have orthogonality in the standard sense:

/ Yo - Yy dx = 0. (1)
Q

AANMPDE 12, Strobl 2019 S. Repin. Distance to minimizers

24



Nonlinear decomposition of a reflexive Banach space Y*

Assumptions:

o [A]A:V — Y and A*: Y* — V* are bounded linear
operators

o [B] G:Y — Ry is convex, continuous, and Gateaux
differentiable, G(0y) = 0.

o [C] ||Av||y generates an equivalent norm in V and
[Avily = ellv]v-

o [D] growth conditions: G(y) > Clly||*t%, « > 0.
D] g y y
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Define two sets in Y*:

Yi(Q) = {y* € Y*(Q)|IveV: Dg(Av,y") :0}_

y* € Y(Q) if it is representable via Av and the nonlinear
relation.
Another set is

Y$(Q) ::{y*e YH(Q) | (v, Aw)=0Y w € V(Q)}.

Recall that (y*, Aw) = (A*y*, w), so that
y*EYF(Q) & yr e N(A¥) = RE(A).
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Let [A]-[D] holds. Then
o The sets Y5 (Q) and Y3 (Q) are closed subsets of Y*((2)
o Y5 (Q)NYL(Q) contains only zero element.
o For any function y* € Y*(Q)) there exists a unique
decomposition

Y'=yr+w

where y5 € Y5 (Q) and y; € Y{(Q).

Remark: Orthogonality condition has a different form: any element
Av and y; are orthogonal in the sense of Y* <+ Y pairing:

(vo. Av) =0.

* S.R., St. Petersburg. Math. J., 1999
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Classical Helmgholtz decomposition is a very special case:

V=H{(Q), A=V,
Y = Y* = [?(Q,RY) and these spaces are identified

D¢(Vv,y*) = 0 is equivalent to L? equality y* = Vv.

Then the decomposition reads
y=y+Vv
and orthogonality is simply in (y, Vv);2 =0
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Sketch of the proof

o Intersection of Y} and Yj.
If y* € Y, then there exists w € V such that

De(Aw,y*) = G(Aw) + G*(y*) — (y*, Aw) = 0.

Since y* € Yy, (y*, Aw) = 0.
Hence y* = 0.
o Decomposition of y* € Y* Consider the problem

inf {G(Av) — (", Av))

Minimizer v« exists and is unique due to
reflexivity+coercivity+strong convexity.
It satisfies

(G'(Avys) —y*,Av) =0 VveV.
Hence y§ := y* — G'(Avy+) € Y§
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It is easy to see that the element y} := G'(Av,-) belongs to Y.

This immediately follows from the property of compounds:
G(Avyr) + G*(ya) — (Ya  Avys) = 0.

Uniqueness of decomposition
The element yx = G’(v,+) is unique. Hence nonuniqueness may
arise only if there exist two different yg; and yg, such that

Y =yatYo1 Y =YatYoo
Then for any positive A1, Ay such that A; +A; =1

MDg(Avys, y* — y51) +A2Dg(Avys, y* — y5,) =0

G(Avy )+ MG (y" —y51)
+ MG (Y —y5) — (Avys, y" — Myg1 — Aaygo) =0
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Since

MG (y" = y51) + 2267 (y" = yo1) = G7(y" — Aiyg1 — Azyo2)

we conclude that

G(Avy )+ G (y" = Ay —Asyo.2) = (Avy, y" = A1yg 1 — Aaypp) < 0.

Above relation may hold as the equality only!
Due to properties of compounds, this means that

Yy = Myg1—Asyo2 = G'(Avy) = yi.

Such a relation cannot be true because the element yx is uniquely
defined.
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Thank you for attention
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Distance to the set of "equilibrated” fields Y/

Assume that there exists a nonnegative continuous functional
H:V — Ry such that G(Aw) > H(w) for all w € V.

Let H* : V* — R, is the Young— Fenchel conjugate to H.
Then for any y* € QF, the following estimate holds

inf G*(y" —¢")dx < H'(R(y"))
q*EYZ

where R : V. — IR is a linear functional
(R(y*),w) := (y*, Aw) + < ¢, w >, that defines the set

Y ={y"eY" | (R(y*),w)=0VYw € V}
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e}
Example: " Distamce Lemma in terms of L% spaces’, V =W 14(Q)

" Energy functional”: G(Aw) =1 [, \VW\ dx,
"Dual Energy functional”: G*(y ) a lv* | dx.
Friedrichs type inequality: [|w|, < CFHVWH,,‘ yields the estimate

1
G(Vw) = = | Vwlls = H(w)

F
Majorant of the distance to Y/ is given by H*. Compute it!
For w* € L% (Q) it is simple:

H*(w*) = sup {/ ww dx — L ||W||”‘} = C’% HW*H
wev Q DCC;?

Thus, if divy* + £ € LY then
D(/

. * [ % * C . * !
|nf‘ G*(qg*—y*) < lx—fHdlvy +4||%
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General form of the error majorant of pu(v) = Dg(Av, p*)

Introduce
*

p(A, y*) = AG* <};> -G (y")+ (y AV + < lv>.

If y* = Y, and A = 1, then p(A,y*) — 0!

For any y* € Y* and A € (0,1),

u(v) <pt(v,y*):=Dg(Av,y*) + H* <17_QA> +p(AyY),

p(v)= _inf  u(v,y*)

= n
A>0,y*eY*
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Majorant for a bit more "regular” y*.

If y* € Q*, then R(y*) = A*y* + £,
We obtain
] L Nyr L
u(v) < Dg(Av,y*)+ H -
+ AG* <);\> — Gy )+ <AN'y"+/l,v>
Here blue terms present a combined measure of the distance to
Y. If A*y* + £ is small, then these terms are small.
Since Ap* + ¢ = 0, this measure also has no gap!
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Example: u and its majorant for a—Laplacian

1 o 1 * o *
B < [ IV Iy = Vv y)dx+

{X,

+ |\ div y* — €))% +

___F
a'(1—A)
1 1 * (| * !

Conclusion:

(a) The majorant is fully computable.

(b) if ||div y* — £||o is small then A can be set small, three last
terms are small and the main part of the error majorant is
D(Vv,y*),

(c) in this case, D(Vv, y*) is a good error indicator for mesh
refinement.
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Thank you for attention
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First we prove the completeness of Y (Q). Let {y*,,} bea
sequence in Y (Q)) that converges to y*. In this case, there exists
a sequence {vi,} € Vo + up such that

L& () 480 ) = Vvm-y ) =0, (2)

By using ??, ?? and 2 we find that the sequence {v,,} is bounded
in V(Q). Therefore, there exists a weakly converging subsequence
which for the sake of simplicity is also denoted by v,,. Let

v € WV + up be a weak limit of this sequence. Since the functional
fQ g"* (Vvm)dx is weakly lower semicontinuous we get

/Q D(Vv,y*)dx=/Q (7 (Vv)+g"(y") = Vv-y") dx < 0. (3)

By recalling that D is nonnegative we arrive at the conclusion that
holds as equality what, in fact, means that y* € Y (Q)).
The completeness of Y/ (Q) follows straightforwardly from its

definition.
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Let us show that Y (Q2) N Y/ (Q) = {p*}. For this purpose we
use the identity

/Q D(Vw,y") =1"(w) = I"(y") + /Q (p*—y") - V(w—ug)dx Vw ¢

Assume that y* belongs the sets Y (Q) and Y7 (Q)
simultaneously. The integral in the right hand side of 4 equals zero
because y* € Y7 (Q). Whence,

i /D(W,y*)dx: inf I (w) — I*(y*) = inf P** — I*(y*).
@)

weVo+ug weVo+ug

The left hand side of 5 equals zero because y* € Y (Q). Thus,
I*(y*) = inf P*™* = supP*,

so that y* is a solution of the dual problem.
The reminder of the present is devoted to the proof of ??. Prior to

giving it, however, we note that the existence of y*f € Y/ (Q) and
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y*1 € YX(Q) such that y* = y*f + y*/ readily follows from the
existence of a minimizer v of the problem

'f/ *(Vv) — y* - Vv + fr) dx.
b (@ (V) = y* - Vv o i) dx

Indeed, 7 meets the Euler's equation
/ (y*—AVYV)-Vwdx = / fwdx Yw e V(Q)
o} Q

what means that y* — AVv € Y/ (Q). Since AVv € Y;(Q) the
existence of y*f and y*/ follows. The uniqueness of such
decomposition we prove by reductio ab absurdum. Assume that
there are two different functions y*; and y*,¢ in Y7 (Q) such that

v —y*1r € YX(Q)),
Yy =y r € YZ(Q).

Then Vg + ug contains two functions v; and v, which satisfy the
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equalities

L@ (T +g' 0 —ya0) = [ T (' —y'sr) d6)

L (€ (Vwa) +&" (v —y'ar)) dx = [ Tva- (v —y'ar) )
We note that

JaVvi-(y* =y*ie)dx = /Q (Vvi-y" =Vuo -y s —y"ir - V(vi — 1
= / (Vvi-y* —=Vug-y*is — f(vi — o)) dx
Q
Let us multiply 6 on A; and 7 on Ay, where

AM+A=1, A; >0 i=1,2

AANMPDE 12, Strobl 2019 S. Repin. Distance to minimizers 38



and add these equalities. When taking into account 8 we obtain

[ g™ (1) 4 228 (V32) + g (" = y*s1) + 128" (" — "o
+/Q (VU() . (Aly*lf —|—/\2y*2f)) CI’X—l—/Q f()tlvl +Aovp — Uo) dx =

= A (AMVvi +AVw) - y*dx. (9)

Since
A1vi + Aavo € Vo + uo,
My*1r+Aay*ar € YF(Q)
we have

/Q f(/\lvl + Aovp — UO) dx = /Q (Aly*lf + /\Zy*2f) . (/\1VV1 + AV, -

The function g** is convex, the function g* is strongly convex and
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y*1f 7# ¥*o¢ by the assumption. Therefore,

Mg (y* —y*17) + Aag* (v  —y*ar) > & (v — Awy"1r — A2yTor) =
Alg**(Vvl) = )\zg**(VVg) > g**(/\;[VVl —l—/\zVVg) = g**(

Now 9, 10, 11 and 12 yields the strict inequality

o~

| € (0 +g (" =5 = (' =) - VF) k<0, (13)
where vV := Ajvi + Aavp and A1y* ¢ + Aoy ™o, However, the

integrand of 13 is nonnegative. Thus, we arrive at a contradiction
which completes the proof.
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Remark:

The above proof is not based on any specific properties of
functions g* and g** other than convexity of g* and strong
convexity of g**. For this reason, Theorem ?? has a general
meaning and is applicable not only to the considered class of
variational problems. In particular, if g and g* are positively
defined quadratic functions then Y/ (Q) and Y (Q) are linear
manifolds. For example, if g(Vv) =3 [Vv|? uy=0and f =0,
then Y/ (Q)) is the set of solenoidal functions and Y (QQ) is the set
of gradients of scalar valued functions vanishing on the boundary
dQ). It is well known that these two sets are orthogonal subspaces
of the space L2Q), R" (see e.g. [?]).
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