A second order multipoint flux mixed finite element method on hybrid meshes

Herbert Egger Bogdan Radu

Technische Universität Darmstadt
Graduate School of Computational Engineering

AANMPDE 12, Strobl, July 1st, 2019

Acknowledgement : The work of Bogdan Radu is supported by the 'Excellence Initiative' of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt

Porous media modeling

Model equations for single-phase flow:

Conservation of mass $\operatorname{div} \mathbf{u}=f$	Darcy's law $\mathbf{u}=-K \nabla p$

Quantity of interest: p

Porous media modeling

Model equations for single-phase flow:

Quantity of interest: p

Second order form

$$
\begin{aligned}
-\operatorname{div}(K \nabla p)=f & \text { in } \Omega \\
p=0 & \text { on } \partial \Omega
\end{aligned}
$$

(i) Discontinuous schemes (DFVM), (DG) for local mass conservation
(ii) Not accurate for rough coefficients (local arithmetic averaging of K)

Porous media modeling

Model equations for single-phase flow:

Quantity of interest: p

Second order form

$$
\begin{aligned}
-\operatorname{div}(K \nabla p)=f & \text { in } \Omega \\
p=0 & \text { on } \partial \Omega
\end{aligned}
$$

(i) Discontinuous schemes (DFVM), (DG) for local mass conservation
(ii) Not accurate for rough coefficients (local arithmetic averaging of K)

Mixed form

$$
\begin{array}{rll}
K^{-1} \mathbf{u}+\nabla p=0 & & \text { in } \Omega \\
\operatorname{div} \mathbf{u}=f & & \text { in } \Omega \\
p=0 & & \text { on } \partial \Omega .
\end{array}
$$

(i) Handles rough coefficients better (local harmonic averaging of K)
(ii) Have to solve a full saddle point problem... or do you ? \Rightarrow MFMFE

Variational formulation

$$
\begin{aligned}
K^{-1} \mathbf{u}+\nabla p=0 & & \text { in } \Omega \\
\operatorname{div} \mathbf{u}=f & & \text { in } \Omega \\
p=0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Variational formulation

$$
\begin{aligned}
\left(K^{-1} \mathbf{u}, \mathbf{v}\right)-(p, \operatorname{div} \mathbf{v}) & =0 & & \forall \mathbf{v} \in H(\operatorname{div}, \Omega) \\
(\operatorname{div} \mathbf{u}, q) & =(f, q) & & \forall q \in L^{2}(\Omega)
\end{aligned}
$$

Discrete variational formulation

$$
\begin{array}{rll}
K^{-1} \mathbf{u}+\nabla p=0 & & \text { in } \Omega \\
\operatorname{div} \mathbf{u}=f & & \text { in } \Omega \\
p=0 & & \text { on } \partial \Omega .
\end{array}
$$

Discrete variational formulation

$$
\begin{aligned}
\left(K^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)- & \left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =0 &
\end{aligned} \mathbf{v}_{h} \in \mathbf{V}_{h} \subseteq H(\operatorname{div}, \Omega) ~ 子 ~\left(\operatorname{div} \mathbf{u}_{h}, q_{h}\right)=\left(f, q_{h}\right) \quad \forall q_{h} \in Q_{h} \subseteq L^{2}(\Omega)
$$

Problem: we have to solve a full (indefinite) saddle point system ...

Mass lumping

$$
\begin{aligned}
& K^{-1} \mathbf{u}+\nabla p=0 \\
& \text { in } \Omega \\
& \operatorname{div} \mathbf{u}=f \\
& \text { in } \Omega \\
& p=0 \\
& \text { on } \partial \Omega .
\end{aligned}
$$

Discrete variational formulation via mass lumping (MFMFE)

$$
\begin{array}{rlrl}
\left(K^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \subseteq H(\operatorname{div}, \Omega) \\
\left(\operatorname{div} \mathbf{u}_{h}, q_{h}\right) & =\left(f, q_{h}\right) & \forall q_{h} \in Q_{h} \subseteq L^{2}(\Omega)
\end{array}
$$

Mass lumping

$$
\begin{aligned}
K^{-1} \mathbf{u}+\nabla p=0 & & \text { in } \Omega \\
\operatorname{div} \mathbf{u}=f & & \text { in } \Omega \\
p=0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Discrete variational formulation via mass lumping (MFMFE)

$$
\begin{array}{rlrl}
\left(K^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \subseteq H(\operatorname{div}, \Omega) \\
\left(\operatorname{div} \mathbf{u}_{h}, q_{h}\right) & =\left(f, q_{h}\right) & \forall q_{h} \in Q_{h} \subseteq L^{2}(\Omega)
\end{array}
$$

For appropriate spaces \mathbf{V}_{h}, Q_{h} and $(\cdot, \cdot)_{h}$, the lumped mass matrix M_{h} is block-diagonal, and the variable \mathbf{u}_{h} can be eliminated efficiently.

$$
\left(\begin{array}{cc}
M_{h}-C^{\top} \\
C & 0
\end{array}\right)\binom{\mathrm{u}_{\mathrm{h}}}{\mathrm{p}_{\mathrm{h}}}=\binom{0}{\mathrm{f}} \quad \Longrightarrow \quad C M_{h}^{-1} C^{\top} \mathrm{p}_{\mathrm{h}}=\mathrm{f}
$$

The problem reduces to symmetric, positive definite cell-centered system for the pressure (CCFD)

Discretization

Discrete variational formulation via mass lumping (MFMFE)

$$
\begin{aligned}
\left(K^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \subseteq H(\operatorname{div}, \Omega) \\
\left(\operatorname{div} \mathbf{u}_{h}, q_{h}\right) & =\left(f, q_{h}\right) & & \forall q_{h} \in Q_{h} \subseteq L^{2}(\Omega)
\end{aligned}
$$

雨
M. Wheeler, I. Yotov A multipoint flux mixed finite element method. SIAM 2006

$$
\begin{aligned}
& V(T)=\operatorname{BDM}_{1}(T):=P_{1}(T)^{2} \\
& Q(T)=P_{0}(T)
\end{aligned}
$$

$$
\begin{array}{r}
\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}:=\frac{|T|}{3} \sum_{i=1}^{3} \mathbf{u}_{h}\left(r_{i}\right) \mathbf{v}_{h}\left(r_{i}\right) \\
r_{i} \text { vertex }
\end{array}
$$

Figure: DOFs of $V(T)$ (left) and $Q(T)$ (right). Blue circles are quadrature points.

Discretization

Discrete variational formulation via mass lumping (MFMFE)

$$
\begin{aligned}
\left(K^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \subseteq H(\operatorname{div}, \Omega) \\
& \left(\operatorname{div} \mathbf{u}_{h}, q_{h}\right) & =\left(f, q_{h}\right) &
\end{aligned} q_{h} \in Q_{h} \subseteq L^{2}(\Omega)
$$

M. Wheeler, I. Yotov A multipoint flux mixed finite element method. SIAM 2006

$$
\begin{array}{lr}
V(T)=\mathrm{BDM}_{1}(T):=P_{1}(T)^{2} \\
Q(T)=P_{0}(T) & \left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}:=\frac{|T|}{3} \sum_{i=1}^{3} \mathbf{u}_{h}\left(r_{i}\right) \mathbf{v}_{h}\left(r_{i}\right) \\
r_{i} \text { vertex }
\end{array}
$$

Discretization

Discrete variational formulation via mass lumping (MFMFE)

$$
\begin{aligned}
\left(K^{-1} \mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}-\left(p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =0 & & \forall \mathbf{v}_{h} \in \mathbf{V}_{h} \subseteq H(\operatorname{div}, \Omega) \\
\left(\operatorname{div} \mathbf{u}_{h}, q_{h}\right) & =\left(f, q_{h}\right) & & \forall q_{h} \in Q_{h} \subseteq L^{2}(\Omega)
\end{aligned}
$$

\square M. Wheeler, I. Yotov A multipoint flux mixed finite element method. SIAM 2006

$$
\begin{aligned}
& V(T)=\mathrm{BDM}_{1}(T):=P_{1}(T)^{2} \\
& Q(T)=P_{0}(T)
\end{aligned}
$$

$$
\begin{array}{r}
\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}:=\frac{|T|}{3} \sum_{i=1}^{3} \mathbf{u}_{h}\left(r_{i}\right) \mathbf{v}_{h}\left(r_{i}\right) \\
r_{i} \text { vertex }
\end{array}
$$

Figure: Matrix $C M_{h}^{-1} C^{T}$ (left), stencil of the method (right)

Convergence analysis

Summary of the convergence results

$$
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|=O(h) \quad \text { and } \quad\left\|\pi_{h}^{0} p-p_{h}\right\|=O\left(h^{2}\right)
$$

Relevant properties
(i) $P_{0}(T)^{2} \subseteq \mathbf{V}(T)$ and $P_{0}(T) \subseteq Q(T)$ such that div $\mathbf{V}(T) \subseteq Q(T)$
(ii) The quadrature rule is exact for $P_{0}(T)^{2} \times \mathbf{V}(T)$
(iii) The quadrature rule induces a norm on $\mathbf{V}(T)$

Convergence analysis

Summary of the convergence results

$$
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|=O(h) \quad \text { and } \quad\left\|\pi_{h}^{0} p-p_{h}\right\|=O\left(h^{2}\right)
$$

Relevant properties
(i) $P_{0}(T)^{2} \subseteq \mathbf{V}(T)$ and $P_{0}(T) \subseteq Q(T)$ such that $\operatorname{div} \mathbf{V}(T) \subseteq Q(T) \checkmark$
(ii) The quadrature rule is exact for $P_{0}(T)^{2} \times \mathbf{V}(T) \checkmark$
(iii) The quadrature rule induces a norm on $\mathbf{V}(T) \checkmark$

Wheeler-Yotov element : $\mathbf{V}(T)=\mathrm{BDM}_{1}(T)=P_{1}(T)^{2}$

Figure: DOFs of $V(T)$ (left) and $Q(T)$ (right). Blue circles are quadrature points. The quadrature rule is exact for $P_{1}(T)$.

Higher order candidates

Natural extension of the first order estimates

$$
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|=O\left(h^{2}\right) \quad \text { and } \quad\left\|\pi_{h}^{1} p-p_{h}\right\|=O\left(h^{3}\right)
$$

Relevant properties
(i) $P_{1}(T)^{2} \subseteq \mathbf{V}(T)$ and $P_{1}(T) \subseteq Q(T)$ such that $\operatorname{div} \mathbf{V}(T) \subseteq Q(T)$
(ii) The quadrature rule is exact for $P_{1}(T)^{2} \times \mathbf{V}(T)$
(iii) The quadrature rule induces a norm on $\mathbf{V}(T)$

Higher order candidates

Natural extension of the first order estimates

$$
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|=O\left(h^{2}\right) \quad \text { and } \quad\left\|\pi_{h}^{1} p-p_{h}\right\|=O\left(h^{3}\right)
$$

Relevant properties
(i) $P_{1}(T)^{2} \subseteq \mathbf{V}(T)$ and $P_{1}(T) \subseteq Q(T)$ such that $\operatorname{div} \mathbf{V}(T) \subseteq Q(T) \checkmark$
(ii) The quadrature rule is exact for $P_{1}(T)^{2} \times \mathbf{V}(T) \times$
(iii) The quadrature rule induces a norm on $\mathbf{V}(T) \boldsymbol{x}$

First candidate : $\mathbf{V}(T)=\mathrm{BDM}_{2}(T)=P_{2}(T)^{2}$

Figure: DOFs of $V(T)$ (left) and $Q(T)$ (right). Blue circles are quadrature points.

Higher order candidates

Natural extension of the first order estimates

$$
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|=O\left(h^{2}\right) \quad \text { and } \quad\left\|\pi_{h}^{1} p-p_{h}\right\|=O\left(h^{3}\right)
$$

Relevant properties
(i) $P_{1}(T)^{2} \subseteq \mathbf{V}(T)$ and $P_{1}(T) \subseteq Q(T)$ such that $\operatorname{div} \mathbf{V}(T) \subseteq Q(T) \checkmark$
(ii) The quadrature rule is exact for $P_{1}(T)^{2} \times \mathbf{V}(T) \checkmark$
(iii) The quadrature rule induces a norm on $\mathbf{V}(T) \checkmark$

Second candidate : $\mathbf{V}(T)=\operatorname{BDM}_{2}^{+}(T)=P_{2}(T)^{2} \oplus b_{3} \cdot[1,0]^{T} \oplus b_{3} \cdot[0,1]^{T}$

Figure: DOFs of $V(T)$ (left) and $Q(T)$ (right). Blue circles are quadrature points. The quadrature rule is exact for $P_{3}(T) \oplus b_{3} \cdot P_{1}(T)$.

Higher order candidates

Natural extension of the first order estimates

$$
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|=O\left(h^{2}\right) \quad \text { and } \quad\left\|\pi_{h}^{1} p-p_{h}\right\|=O\left(h^{3}\right)
$$

Relevant properties
(i) $P_{1}(T)^{2} \subseteq \mathbf{V}(T)$ and $P_{1}(T) \subseteq Q(T)$ such that $\operatorname{div} \mathbf{V}(T) \subseteq Q(T) \checkmark$
(ii) The quadrature rule is exact for $P_{1}(T)^{2} \times \mathbf{V}(T) \times$
(iii) The quadrature rule induces a norm on $\mathbf{V}(T) \checkmark$

Third candidate: $\mathbf{V}(T)=\mathrm{R}_{1}(T):=P_{1}(T)^{2}+\mathbf{x} \cdot P_{1}^{h}(T)$

Figure: DOFs of $V(T)$ (left) and $Q(T)$ (right). Blue circles are quadrature points. The quadrature rule is exact for $P_{2}(T)$.

A new theory

Split the error in $\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{L^{2}(\Omega)} \leq\left\|\mathbf{u}-\Pi_{h} \mathbf{u}\right\|_{L^{2}(\Omega)}+\left\|\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right\|_{L^{2}(\Omega)}$

$$
\begin{aligned}
\left(\Pi_{h} \mathbf{u}-\mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}-\left(\pi_{h}^{1} p-p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =\left(\Pi_{h} \mathbf{u}-\mathbf{u}, \mathbf{v}_{h}\right)+\sigma_{h}\left(\Pi_{h} \mathbf{u}, v_{h}\right) \\
\left(\operatorname{div}\left(\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right), q_{h}\right) & =0
\end{aligned}
$$

with $\sigma_{h}\left(\Pi_{h} \mathbf{u}, \mathbf{v}_{h}\right)=\left(\Pi_{h} \mathbf{u}, \mathbf{v}_{h}\right)_{h}-\left(\Pi_{h} \mathbf{u}, \mathbf{v}_{h}\right)$.

A new theory

Split the error in $\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{L^{2}(\Omega)} \leq\left\|\mathbf{u}-\Pi_{h} \mathbf{u}\right\|_{L^{2}(\Omega)}+\left\|\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right\|_{L^{2}(\Omega)}$

$$
\begin{aligned}
\left(\Pi_{h} \mathbf{u}-\mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}-\left(\pi_{h}^{1} p-p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =\left(\Pi_{h} \mathbf{u}-\mathbf{u}, \mathbf{v}_{h}\right)+\sigma_{h}\left(\Pi_{h} \mathbf{u}, v_{h}\right) \\
\left(\operatorname{div}\left(\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right), q_{h}\right) & =0
\end{aligned}
$$

with $\sigma_{h}\left(\Pi_{h} \mathbf{u}, \mathbf{v}_{h}\right)=\left(\Pi_{h} \mathbf{u}, \mathbf{v}_{h}\right)_{h}-\left(\Pi_{h} \mathbf{u}, \mathbf{v}_{h}\right)$.
(I) $\operatorname{div}\left(\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right)=0 \quad \Rightarrow \quad \Pi_{h} \mathbf{u}-\mathbf{u}_{h} \in P_{1}(T)^{2}$
(II) $\sigma_{h}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)=0$ if $\mathbf{u}_{h}, \mathbf{v}_{h} \in P_{1}(T)^{2}$

A new theory

Split the error in $\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{L^{2}(\Omega)} \leq\left\|\mathbf{u}-\Pi_{h} \mathbf{u}\right\|_{L^{2}(\Omega)}+\left\|\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right\|_{L^{2}(\Omega)}$

$$
\begin{aligned}
\left(\Pi_{h} \mathbf{u}-\mathbf{u}_{h}, \mathbf{v}_{h}\right)_{h}-\left(\pi_{h}^{1} p-p_{h}, \operatorname{div} \mathbf{v}_{h}\right) & =\left(\Pi_{h} \mathbf{u}-\mathbf{u}, \mathbf{v}_{h}\right)+\sigma_{h}\left(\Pi_{h} \mathbf{u}, v_{h}\right) \\
\left(\operatorname{div}\left(\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right), q_{h}\right) & =0
\end{aligned}
$$

with $\sigma_{h}\left(\Pi_{h} \mathbf{u}, \mathbf{v}_{h}\right)=\left(\Pi_{h} \mathbf{u}, \mathbf{v}_{h}\right)_{h}-\left(\Pi_{h} \mathbf{u}, \mathbf{v}_{h}\right)$.
(I) $\operatorname{div}\left(\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right)=0 \quad \Rightarrow \quad \Pi_{h} \mathbf{u}-\mathbf{u}_{h} \in P_{1}(T)^{2}$
(II) $\sigma_{h}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right)=0$ if $\mathbf{u}_{h}, \mathbf{v}_{h} \in P_{1}(T)^{2}$

Taking $\mathbf{v}_{h}=\Pi_{h} \mathbf{u}-\mathbf{u}_{h}$ and $q_{h}=\pi_{h}^{1} p-p_{h}$, we obtain

$$
\begin{aligned}
\left\|\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right\|_{h}^{2} & =\left(\Pi_{h} \mathbf{u}-\mathbf{u}, \Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right)+\sigma_{h}\left(\Pi_{h} \mathbf{u}, \Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right) \\
& =\left(\Pi_{h} \mathbf{u}-\mathbf{u}, \Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right)+\sigma_{h}\left(\Pi_{h} \mathbf{u}-\pi_{h}^{1} \mathbf{u}, \Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right) \\
& \leq\left\|\Pi_{h} \mathbf{u}-\mathbf{u}\right\|_{0}\left\|\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right\|_{0}+c\left\|\Pi_{h} \mathbf{u}-\pi_{h}^{1} \mathbf{u}\right\|_{0}\left\|\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right\|_{0} \\
& \leq C h^{2}\|\mathbf{u}\|_{H^{2}\left(\mathcal{T}_{h}\right)}\left\|\Pi_{h} \mathbf{u}-\mathbf{u}_{h}\right\|_{0}
\end{aligned}
$$

A new theory
Theorem

$$
\left\|\mathbf{u}-\mathbf{u}_{h}\right\|=O\left(h^{2}\right) \quad \text { and } \quad\left\|\pi_{h}^{0}\left(p-p_{h}\right)\right\|=O\left(h^{3}\right)
$$

Relevant properties
(i) $P_{1}(T)^{2} \subset \mathbf{V}(T)$ and $P_{1}(T) \subset Q(T)$ such that $\operatorname{div} \mathbf{V}(T) \subseteq Q(T) \checkmark$
(iia) $\exists \tilde{\mathbf{V}}(T) \subset \mathbf{V}(T)$ s.t. $\mathbf{v} \in \mathbf{V}(T)$ with $\operatorname{div} \mathbf{v} \in \operatorname{div} \tilde{\mathbf{V}}(T)$ imply $\mathbf{v} \in \tilde{\mathbf{V}}(T) \checkmark$
(iib) The quadrature rule is exact for $P_{1}(T)^{2} \times \tilde{\mathbf{V}}(T) \checkmark$
(iii) The quadrature rule induces a norm on $\mathbf{V}(T) \checkmark$

Third candidate : $\mathbf{V}(T)=\mathrm{R}_{1}(T):=P_{1}(T)^{2}+\mathbf{x} \cdot P_{1}^{h}(T)$

Figure: DOFs of $V(T)$ (left) and $Q(T)$ (right). Blue circles are quadrature points.

Remarks

(i) The quadrature formula has to only be exact on a certain subspace.

Remarks

(i) The quadrature formula has to only be exact on a certain subspace.
(ii) We can devise local post-processing strategies for the pressure

Remarks

(i) The quadrature formula has to only be exact on a certain subspace.
(ii) We can devise local post-processing strategies for the pressure
(iii) The theory can be used to design even higher order approximations, but finding appropriate spaces and quadrature formulas gets increasingly difficult.

Similar concept in the paper by Geevers, et al, 2018

Remarks

(i) The quadrature formula has to only be exact on a certain subspace.
(ii) We can devise local post-processing strategies for the pressure
(iii) The theory can be used to design even higher order approximations, but finding appropriate spaces and quadrature formulas gets increasingly difficult.

Similar concept in the paper by Geevers, et al, 2018
(iv) Application to wave propagation

$$
\begin{array}{rlrl}
\partial_{t} \mathbf{u}+\nabla p & =f & & \text { in } \Omega \\
\partial_{t} p+\operatorname{div} \mathbf{u} & =g & & \text { in } \Omega \\
p=0 & & \text { on } \partial \Omega .
\end{array}
$$

Comparison

The $\mathrm{RT}_{1}-\mathrm{P}_{1}$ pair is about 3 x faster than the $\mathrm{BDM}_{2}^{+}-\mathrm{P}_{1}^{+}$pair.

Hybrid meshes

	$\begin{gathered} \operatorname{dim} \\ \mathbf{V}(T) \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{dim} \\ Q(T) \end{gathered}$	$\left\\|\mathbf{u}-\mathbf{u}_{h}\right\\|_{0}$	$\left\\|\pi_{h}^{0} p-p_{h}\right\\|_{0}$	DOFs for \mathbf{u}_{h}	DOFs for p_{h}
$\mathrm{BDM}_{1}-\mathrm{P}_{0}$	6+0	1	$O(h)$	$O\left(h^{2}\right)$		
$\mathrm{RT}_{1}-\mathrm{P}_{1}$	6+2	3	$O\left(h^{2}\right)$	$O\left(h^{3}\right)$	$\stackrel{4}{4}$	
$\mathrm{BDM}_{1}-\mathrm{P}_{0}$	8+0	1	$O(h)$	$O\left(h^{2}\right)$	$\stackrel{\uparrow}{\hookleftarrow}$	\bullet
$\begin{gathered} \mathrm{BDFM}_{2}- \\ \mathrm{P}_{1} \end{gathered}$	8+2	3	$O\left(h^{2}\right)$	$O\left(h^{3}\right)$	$\stackrel{\uparrow}{\downarrow}$	\bigcirc

Numerical tests

$$
p=\sin (\pi x) \sin (\pi y) \quad K=\left(\begin{array}{cc}
4+(x+2)^{2}+y^{2} & 1+\sin (x y) \\
1+\sin (x y) & 2
\end{array}\right)
$$

Figure: Snapshots of the pressure p_{h} (left) and the two velocity components $u_{x, h}, u_{y, h}$ (middle, right) for the second order approximation.

h	DOF u	DOF p	$\left\\|u-u_{h}\right\\|$	eoc	$\left\\|\pi_{h}^{0}\left(p-p_{h}\right)\right\\|$	eoc
2^{-1}	164	84	0.078309	-	0.033106	-
2^{-2}	724	396	0.013097	2.57	0.002864	3.53
2^{-3}	2498	1386	0.002275	2.52	0.000391	2.87
2^{-4}	9738	5466	0.000484	2.23	0.000049	2.99
2^{-5}	40230	22770	0.000099	2.28	0.000005	3.13

Table: Degrees of freedom, relative discretization errors, and convergence rates for the second order multipoint flux finite element method.

Summary

\rightarrow Introduced the multipoint flux mixed finite element method (MFMFE)
\rightarrow Presented the first order approximation introduced by Wheeler and Yotov
\rightarrow Proposed an extension to second order approximations
H. Egger, B. Radu A second order multipoint flux mixed finite element method on hybrid meshes, TU Darmstadt, 12/2018 arXive: 1812.03938

A few additional remarks
\rightarrow Extension to the $3 D$ case has also been done.
\rightarrow The framework can be used to design even higher order approximations
\rightarrow We can devise local post-processing strategies for the pressure
\rightarrow The techniques can also be applied for the wave and Maxwell's equations

Summary

\rightarrow Introduced the multipoint flux mixed finite element method (MFMFE)
\rightarrow Presented the first order approximation introduced by Wheeler and Yotov
\rightarrow Proposed an extension to second order approximations
-
H. Egger, B. Radu A second order multipoint flux mixed finite element method on hybrid meshes, TU Darmstadt, 12/2018 arXive: 1812.03938

A few additional remarks
\rightarrow Extension to the $3 D$ case has also been done.
\rightarrow The framework can be used to design even higher order approximations
\rightarrow We can devise local post-processing strategies for the pressure
\rightarrow The techniques can also be applied for the wave and Maxwell's equations

Thank you for your attention

Acknowledgement: The work of Bogdan Radu is supported by the 'Excellence Initiative' of the German Federal and State Governments and the Graduate School of Computational Engineering at Technische Universität Darmstadt

Triangles

(a) BDM_{1} first order element

(b) RT_{1} second order element

Tetrahedra

(a) BDM_{1} first order element

(b) RT_{1} second order element

Parallelograms

Hexahedra

(a) eBDDF $_{1}$ first order element order element

