A Generalized *Aufbau principle* for Linear Partial Differential Operators

Elias Polak¹

University of Geneva

12th Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations (**AANMPDE**), July 1st-5th, 2019 in Strobl, Austria.

1/25

¹Elias.Polak@unige.ch

Table of contents

- Motivation
- 2 Introduction
 - Tensor products
 - Spectral Theory
- Main idea
- Examples
 - Ritz's method
 - Non-interacting Quantum systems
- 6 Additional models
 - Antisymmetric model
 - Quantum chemistry models
- 6 Outlook

Niels Bohr¹

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

Periodic table²

Niels Bohr¹

H Li Na	Be Mg											B	C	N P	0 S	F	N
K	Ca	Sc	Ťi	ů.	*Cr	Mn	Fe	Co	 Ni	Cu	"Zn	Ga	Ge	As	Se	Br	K
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	În	Sn	Sb	Те	1	X
Cs	Ba	J. C.	Hf	Ta	w	Re	Os	lr 22	Pt	Au	Hg	TI.	Pb	Bi	Ро	At	F
Fr	Ra	5.12	Rf	DЬ	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	C

Periodic table²

Erwin Madelung³



Madelung's Rule⁴

https://en.wikipedia.org/wiki/File:Niels_Bohr_-_LOC_-_ggbain_-_35303.jpg.

²https://www.philipharris.co.uk/blog/secondary/international-year-of-the-periodic-table/ ³https://alchetron.com/Erwin-Madelung.

⁴D. Pan Wong, Theoretical Justification of Madelung's Rule, J. Chem. Ed. Vol. 56, 11, 1979.

Problem

Is it possible (or even needed) to formulate a theoretical proof of the Aufbau principle?

Problem

Is it possible (or even needed) to formulate a theoretical proof of the Aufbau principle?

Solution

 V.M. Klechkovskii in Justification of the rule for succesive filling of (n+1) groups, Sov. Phys. Jetp, Vol. 14, 2, 1962.

Problem

Is it possible (or even needed) to formulate a theoretical proof of the Aufbau principle?

Solution

- V.M. Klechkovskii in Justification of the rule for succesive filling of (n+l) groups, Sov. Phys. Jetp, Vol. 14, 2, 1962.
- D. Pan Wong in Theoretical Justification of Madelung's Rule, J. Chem. Ed. Vol. 56, 11, 1979.

Problem

Is it possible (or even needed) to formulate a theoretical proof of the Aufbau principle?

Solution

- V.M. Klechkovskii in Justification of the rule for succesive filling of (n+1) groups, Sov. Phys. Jetp, Vol. 14, 2, 1962.
- D. Pan Wong in Theoretical Justification of Madelung's Rule, J. Chem. Ed. Vol. 56, 11, 1979.
- E.R. Scerri, V. Kreinovich and P. Wojciechowski in Ordinal explanation of the periodic system of chemical elements, Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems Vol. 6, 387-399, 1998.

Example

Aufbau principle in Electronic Structure Theory calculations with approximated optimization models of the Hamiltonian \mathbb{H} :

$$\min_{\Psi \in \mathcal{D}(\mathbb{H})} \mathcal{E}(\mathbb{H}, \Psi) \to \Psi_0 \text{ with } \textit{E}_0.$$

Example

Aufbau principle in Electronic Structure Theory calculations with approximated optimization models of the Hamiltonian \mathbb{H} :

$$\min_{\Psi \in \mathcal{D}(\mathbb{H})} \mathcal{E}(\mathbb{H}, \Psi) \to \Psi_0 \text{ with } \textit{E}_0.$$

- V. Bach, E.H. Lieb, M. Loss and J.P. Solovej, There are No Unfilled Shells in Unrestricted Hartree–Fock Theory, Phys. Rev. Lett. Volume 72, 19, 2981-2983, 1994.
- K.J.H. Giesbertz and E.J. Baerends, Aufbau derived from a unified treatment of occupation numbers in Hartree–Fock, Kohn-Sham, and natural orbital theories with the KKT conditions for the inequality constraints $n_i \leq 1$ and $n_i \geq 0$, J. Chem. Phy. 132, 194108, 2010.

Tensor products

Tensor products

Definition (Tensor product of operators¹)

Let A and B be linear, not necessarily bounded and densely defined operators on the Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 . The Tensor product between A and B is the closure of $A \otimes B$ on the tensor product of the domains $\mathcal{D}(A) \otimes \mathcal{D}(B)$, which is the well defined operator:

$$A \otimes B : D(A) \otimes D(B) \mapsto \mathcal{H}_1 \otimes \mathcal{H}_2$$

$$\phi \otimes \psi \mapsto (A \otimes B)(\phi \otimes \psi) = A\phi \otimes B\psi$$

¹M. Reed and B. Simon, Methods of Modern Mathematical Physics I, chapter VIII.10, Academic Press 1972.

Notation

Let ${\mathcal H}$ be a Hilbert space. We denote

$$\mathcal{H}_{N} := \mathcal{H} \otimes \cdots \otimes \mathcal{H}$$

as the N-dimensional Hilbert space tensor product from \mathcal{H} . Further we define H_k as a family of essentially self–adjoint operators on $\mathcal{D}(H_k) \subset \mathcal{H}$ for $k=1,\ldots,N$.

Notation

Let ${\mathcal H}$ be a Hilbert space. We denote

$$\mathcal{H}_N:=\mathcal{H}\otimes\cdots\otimes\mathcal{H}$$

as the N-dimensional Hilbert space tensor product from \mathcal{H} . Further we define H_k as a family of essentially self–adjoint operators on $\mathcal{D}(H_k) \subset \mathcal{H}$ for $k=1,\ldots,N$. Since tensor products of Hilbert spaces induce an isomorphism to higher dimensional Hilbert spaces, we will also use the following notation for the family of operators now acting on \mathcal{H}_N

$$\tilde{H_k} = \overline{\mathcal{I} \otimes \cdots \otimes \underbrace{H_k}_{k \text{th position}} \otimes \cdots \otimes \overline{\mathcal{I}},$$

where \mathcal{I} is the identity operator on \mathcal{H} . The $\tilde{H_k}$ are still essentially self-adjoint on the tensor product $\mathcal{H} \otimes \cdots \otimes \underbrace{\mathcal{D}(\mathcal{H_k})}_{k\text{th position}} \otimes \cdots \otimes \mathcal{H}$.

Tensor products

Theorem (Linear combination of tensor products of operators¹)

Consider now $P(x_1,...,x_N)$ as a polynomial with real coefficients of degree n_k in the kth variable. Further let H_k be a family of operators which are essentially self-adjoint on $\mathcal{D}(H_k)$. Then,

• $P(\tilde{H}_1, \dots, \tilde{H}_N)$ is essentially self–adjoint on

$$D:=\bigotimes_{k=1}^N \mathcal{D}(H_k^{n_k})$$

• $\sigma(P(\tilde{H}_1, \dots, \tilde{H}_k)) = \overline{P(\sigma(H_1), \dots, \sigma(H_N))}$, where $\sigma(H_K)$ stands for the spectrum of the operator H_k . Note that $\mathcal{D}(H_k^{n_k}) \subseteq \mathcal{D}(H_k) \ \forall n_k \in \mathbb{N}$.

¹ M. Reed and B. Simon, Methods of Modern Mathematical Physics I, Theorem VIII.33, Academic Press 1972.

Spectral Theory

We denote $\sigma_d(H_k)$ as the discrete spectrum of H_k containing all isolated eigenvalues with finite multiplicity. Furthermore for $\lambda \in \sigma_d(H_k)$ let the eigenspace corresponding to the eigenvalue λ be

$$eig(\lambda) := \{ \phi \in \mathcal{H} | \phi \in Ker(H_k - \lambda \mathcal{I}) \}.$$

Spectral Theory

We denote $\sigma_d(H_k)$ as the discrete spectrum of H_k containing all isolated eigenvalues with finite multiplicity. Furthermore for $\lambda \in \sigma_d(H_k)$ let the eigenspace corresponding to the eigenvalue λ be

$$eig(\lambda) := \{ \phi \in \mathcal{H} | \phi \in Ker(H_k - \lambda \mathcal{I}) \}.$$

Now the so–called Min-Max $Theorem^1$ provides us an ordering of the eigenvalues in $\sigma_d(H_k)$ with corresponding eigenfunctions in $eig(\sigma_d(H_k))$. That is

$$\varepsilon_1 \leq \varepsilon_2 \leq \ldots$$
 and ϕ_1, ϕ_2, \ldots from solving $H_k \phi_n = \varepsilon_n \phi_n$.

Since H_k are essentially self-adjoint, the ordered eigenfunctions yield an orthonormal basis $(\phi_n)_n$ in $\mathcal{D}(H_k)$.

9/25

¹R. Courant, Über Eigenwerte bei den Differentialgleichungen der mathematischen Physik, Mathematische Zeitschrift, Band 7, No. 1-4, 1-57, 1920.

Main idea

Definition (A generalized Aufbau principle)

Let H be an essentially self-adjoint operator on $\mathcal{D}(H)\subset\mathcal{H}_N$. If $H=P(\tilde{H}_1,\ldots,\tilde{H}_N)$ with $\dim(\operatorname{eig}(\sigma_d(H_k)))\geq 1$ for $k=1,\ldots,N$, then we denote the span of the N-dimensional tensor product of the orthonormal basis from $\operatorname{eig}(\sigma_d(H_k))$ as

$$B_{N}:=\left\{\psi\in\mathcal{H}_{N}|\psi=\sum_{n_{1},...,n_{N}}\alpha_{n_{1}...n_{N}}(\phi_{n_{1}}\otimes\cdots\otimes\phi_{n_{N}}),\sum_{|n|=1}|\alpha_{n_{1}...n_{n}}|^{2}=1\right\},$$

where the sum goes over all multi-indicies n_1, \ldots, n_N .

Main idea

Definition (A generalized Aufbau principle)

Let H be an essentially self-adjoint operator on $\mathcal{D}(H)\subset\mathcal{H}_N$. If $H=P(\tilde{H}_1,\ldots,\tilde{H}_N)$ with $\dim(\operatorname{eig}(\sigma_d(H_k)))\geq 1$ for $k=1,\ldots,N$, then we denote the span of the N-dimensional tensor product of the orthonormal basis from $\operatorname{eig}(\sigma_d(H_k))$ as

$$B_{N}:=\left\{\psi\in\mathcal{H}_{N}|\psi=\sum_{n_{1},\ldots,n_{N}}\alpha_{n_{1}\ldots n_{N}}(\phi_{n_{1}}\otimes\cdots\otimes\phi_{n_{N}}),\sum_{|n|=1}|\alpha_{n_{1}\ldots n_{n}}|^{2}=1\right\},$$

where the sum goes over all multi–indicies n_1, \ldots, n_N . We say now H satisfies the general Aufbau principle, i.e.

$$\underset{\psi \in \mathcal{B}_N}{\arg \min} \langle \psi \mid H\psi \rangle_{\mathcal{H}_N} = \alpha_{1...1} (\phi_1 \otimes \cdots \otimes \phi_1).$$

Hence in order to obtain the *N*-dimensional grorund state one uses the minimizing eigenfunctions from the single dimensional operator.

Example (Ritz's method¹)

We start with a (essentially) self-adjoint operator H on the N-dimensional Hilbert space \mathcal{H}_N . The goal is to minimize the corresponding energy functional, i.e. find the lower bound of the spectrum

$$\min_{\substack{\psi \in \mathcal{D}(H) \\ \|\psi\| = 1}} \langle \psi \mid H\psi \rangle .$$

Ritz's idea was to perform an optimization of parameters which correspond to a test function $\psi_a = \sum_m a_m \varphi_m$, where the $(\varphi_m)_m$ is a suitable chosen basis set. Thus

$$\min_{\substack{\psi \in \mathcal{D}(H) \\ \|\psi\| = 1}} \langle \psi \, | \, H\psi \rangle \leq \min_{\substack{a_m}} \langle \psi_{a} \, | \, H\psi_{a} \rangle \, .$$

¹M.J. Gander and G. Wanner, *From Euler, Ritz, and Galerkin to Modern Computing*, SIAM Review Vol. 54, No. 4, 2012.

Example (Ritz's method)

If now H satisfies our $Aufbau\ principle$, then one can choose the $(\varphi_m)_m$ to be in the span of the N-dimensional tensor product of the orthonormal basis B_N :

$$\varphi_m = \sum_{n_1,\dots,n_N}^m \alpha_{n_1\dots n_N} (\phi_{n_1} \otimes \dots \otimes \phi_{n_N}) \text{ with } \sum_{|n|=1}^m |\alpha_{n_1\dots n_N}|^2 = 1.$$

Example (Ritz's method)

If now H satisfies our Aufbau principle, then one can choose the $(\varphi_m)_m$ to be in the span of the N-dimensional tensor product of the orthonormal basis B_N :

$$\varphi_m = \sum_{n_1,\dots,n_N}^m \alpha_{n_1\dots n_N} (\phi_{n_1} \otimes \dots \otimes \phi_{n_N}) \text{ with } \sum_{|n|=1}^m |\alpha_{n_1\dots n_N}|^2 = 1.$$

Finally the first basis function, which yields the smallest eigenvalue of H on B_N will be chosen as the tensor product of the minimizers from the discrete spectrum of H_k . That is

$$\varphi_1 = \alpha_{1...1}(\phi_1 \otimes \cdots \otimes \phi_1).$$

Example (Application of Ritz's method)

Let us consider an easy example. We are going to construct the two–dimensional vibration eigenfunctions by using the single–dimensional ones. Thus we have a compact set $\Omega \times \Omega = \Omega^2 \subset \mathbb{R}^2$ and $H := -\Delta$ acting on $\mathcal{H}_2 := L^2(\Omega^2)$. Then we can define

$$\tilde{\mathcal{H}_1} := \overline{-\Delta_1 \otimes \mathcal{I}} \text{ and } \tilde{\mathcal{H}_2} := \overline{\mathcal{I} \otimes -\Delta_2},$$

such that $H = \tilde{H}_1 + \tilde{H}_2$ is on $D := C_c^{\infty}(\Omega) \otimes C_c^{\infty}(\Omega)$ essentially self-adjoint¹. So we can find the one-dimensional eigenspace by solving

$$\begin{cases} -\Delta \phi = \varepsilon \phi & \text{in } \Omega \\ \phi = 0 & \text{on } \partial \Omega. \end{cases}$$

¹M. Loss, http://people.math.gatech.edu/ loss/14SPRINGTEA/laplacian.pdf, accessed 28.06.2019.

Example (Application of Ritz's method)

The solution yields indeed a discrete ordered spectrum $\varepsilon_1 \leq \varepsilon_2 \leq \ldots$ and corresponding eigenfunctions ϕ_1, ϕ_2, \ldots Finally we can use the Theorem for *Linear combination of tensor products of operators* in order to find the lowest eigenvalue of the two–dimensional operator.

$$P(\tilde{H_1}, \tilde{H_2}) := \tilde{H_1} + \tilde{H_2} = H$$

$$\Rightarrow \min \sigma_d(H) = \min P(\sigma_d(H_1), \sigma_d(H_2)) = \min \sigma_d(H_1) + \min \sigma_d(H_2).$$

Example (Application of Ritz's method)

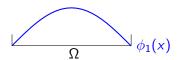
The solution yields indeed a discrete ordered spectrum $\varepsilon_1 \leq \varepsilon_2 \leq \ldots$ and corresponding eigenfunctions ϕ_1, ϕ_2, \ldots Finally we can use the Theorem for *Linear combination of tensor products of operators* in order to find the lowest eigenvalue of the two–dimensional operator.

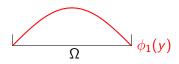
$$P(\tilde{H_1}, \tilde{H_2}) := \tilde{H_1} + \tilde{H_2} = H$$

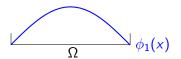
$$\Rightarrow \min \sigma_d(H) = \min P(\sigma_d(H_1), \sigma_d(H_2)) = \min \sigma_d(H_1) + \min \sigma_d(H_2).$$

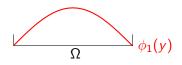
Hence the corresponding minimizer from H will be just the direct (tensor) product of the minimizer from H_1 and H_2 . That is

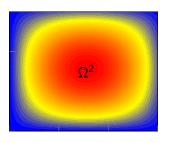
$$\psi_{11}(x,y) := \underset{\psi \in D}{\text{arg min }} \langle \psi \mid H\psi \rangle = \underset{\phi \in C_c^{\infty}(\Omega)}{\text{arg min }} \langle \phi \mid H_1\phi \rangle \otimes \underset{\phi \in C_c^{\infty}(\Omega)}{\text{arg min }} \langle \phi \mid H_2\phi \rangle$$
$$= \phi_1(x)\phi_1(y).$$











Example (Non–interacting Quantum systems¹)

The many–particle unrestricted electronic Hamiltonian for N non–interacting electrons is

$$\mathbb{H} := \sum_{k=1}^N \left[-\Delta_k + V(x_k) \right].$$

The corresponding quantum system is fully described by solving the so–called *Schrödinger equation* $\mathbb{H}\Psi=E\Psi$. Equivalently one computes the stationary states of the energy functional, i.e. the inner product of \mathbb{H} and a normalized function Ψ in the Hilbert space $\mathcal{H}_N:=L^2(\mathbb{R}^{3N})$

$$\min_{\Psi \in \mathcal{D}(\mathbb{H})} \mathcal{E}(\mathbb{H}, \Psi) = \min_{\Psi \in \mathcal{D}(\mathbb{H})} \left\langle \Psi \, | \, \mathbb{H}\Psi \right\rangle = E > -\infty.$$

Thus we can apply the same technique as for the Ritz's method!

¹A. Szabo and N.S. Ostlund, Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory, Dover Publications, 2015.

Example (Non-interacting Quantum systems)

The N-dimensional Hilbert space \mathcal{H}_N is isomorphic¹ to the N-dimensional tensor product of the single particle Hilbert spaces

$$L^2(\mathbb{R}^{3N})\cong L^2(\mathbb{R}^3)\otimes\cdots\otimes L^2(\mathbb{R}^3).$$

Thus consider now the family of operators $H_k := -\Delta_k + V(x_k)$ on $\mathcal{H} = L^2(\mathbb{R}^3)$. The H_k are essentially self-adjoint² on $\mathcal{D}(H_k) := C_c^\infty(\mathbb{R}^3)$ under conditions on V. Now we can use our notation for tensor products of operators in order to seperater \mathbb{H}

$$\mathbb{H} = \sum_{k=1}^{N} \overline{\mathcal{I} \otimes \cdots \otimes \mathcal{H}_{k} \otimes \cdots \otimes \mathcal{I}}.$$

¹M. Reed and B. Simon, *Methods of Modern Mathematical Physics I*, Theorem II.10, Academic Press 1972.

²M. Reed and B. Simon, Methods of Modern Mathematical Physics II, Theorem X.15, Academic Press 1975.

Example (Non-interacting Quantum systems)

With the Theorem we know that $\mathbb H$ is essentially self-adjoint on

$$D:=\bigotimes_{k=1}^N\mathcal{D}(H_k).$$

Furthermore the discrete spectrum of the single particle operators H_k can be found below the essential spectrum with corresponding ordered eigenstates¹. We can construct once more the set B_N and minimize the energy functional by using the minimizers from the eigenspace of H_k for the discrete spectrum $\sigma_d(H_k)$. Finally this is corresponds just to the definition of our *Aufbau principle* for the many–particle electronic Hamiltonian for non-interacting electrons!

¹E.H. Lieb and M. Loss, *ANALYSIS*, 2nd edition, Graduate Studies in Mathematics Vol. 14, American Mathematical Society, 2001.

The Pauli-principle

However one important property of electrons has been neglected so far, the so-called *Pauli-principle*.

The Pauli-principle

However one important property of electrons has been neglected so far, the so-called *Pauli-principle*.

Definition (The Pauli-principle¹)

The total electronic wave function obtained by the *Schrödinger equation* must be antisymmetric under interchange of two coordinates. Consequently two different electrons are not allowed to be in the same single state.

Thus a new concept for our generalized Aufbau principle is needed!

¹A. Szabo and N.S. Ostlund, Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory, Dover Publications, 2015.

Additional models

Definition (Antisymmetric tensor product Hilbert space¹)

We define first $A_N := \frac{1}{\sqrt{N}} \sum_{\tau \in S_N} \operatorname{sign}(\tau) \tau$ which is an orthogonal projection with S_N as the permutation group on N elements and τ defined as the operator

$$\tau(\phi_{k_1}\otimes\cdots\otimes\phi_{k_N})=\phi_{k_{\tau(1)}}\otimes\cdots\otimes\phi_{k_{\tau(N)}}$$

for an arbitrarily chosen basis set in \mathcal{H}_N . Then the N-dimensional antisymmetric tensor product Hilbert space is denoted as

$$\mathcal{H}_N^A := A_N \mathcal{H}_N.$$

¹M. Reed and B. Simon, Methods of Modern Mathematical Physics I, II.4, Academic Press 1972.

Antisymmetric model

Now our essentially self-adjoint N-dimensional operator H needs to be defined as well on the antisymmetric domain

$$\mathcal{D}^{A}(H) := A_{N}D = A_{N} \bigotimes_{k=1}^{N} \mathcal{D}(H_{k}).$$

And in the same way we get an antisymmetric span of the N-dimensional tensor product of the orthonormal basis from $\operatorname{eig}(\sigma_d(H_k))$, that is $B_N^A := A_N B_N$

$$\begin{split} = \Big\{ \Psi \in \mathcal{H}_{\mathit{N}}^{\mathit{A}} \mid \Psi & = & \frac{1}{\sqrt{\mathit{N}}} \sum_{\tau \in \mathit{S}_{\mathit{N}}} \mathsf{sign}(\tau) \sum_{n_{\tau(1)}, \dots, n_{\tau(\mathit{N})}} \alpha_{n_{\tau(1)} \dots n_{\tau(\mathit{N})}} (\phi_{n_{\tau(1)}} \otimes \dots \otimes \phi_{n_{\tau(\mathit{N})}}), \\ & \sum_{|n|=1} |\alpha_{n_{\tau(1)} \dots n_{\tau(\mathit{N})}}|^2 = 1 \Big\}. \end{split}$$

Antisymmetric model

Definition (Antisymmetric Aufbau principle)

If the N-dimensional operator H on \mathcal{H}_N^A can be represented as $H=P(\tilde{H_1},\ldots,\tilde{H_N})$ then we say H satisfies the *antisymmetric Aufbau principle*, i.e.

$$\underset{\Psi \in \mathcal{B}_{N}^{A}}{\operatorname{arg\,min}} \langle \Psi \mid H\Psi \rangle = \frac{1}{\sqrt{N}} \sum_{\tau \in S_{N}} \operatorname{sign}(\tau) \sum_{n_{\tau(1)}, \dots, n_{\tau(N)} = 1}^{N} \alpha_{n_{\tau(1)}, \dots, n_{\tau(N)}} (\phi_{n_{\tau(1)}} \otimes \dots \otimes \phi_{n_{\tau(N)}}).$$

The antisymmetric tensor product of the first N different one—dimensional state functions corresponding to the first N eigenvalues in $\operatorname{eig}(\sigma_d(H_k))$ provide the ground state for the total N-dimensional system.

Quantum chemistry models

Problem (Non-Separability of the full many-particle Hamiltonian)

The full many–particle Hamiltonian for a quantum chemical system is not straight forward separable. That is due to the interaction term in \mathbb{H} ;

$$\mathbb{H} = \sum_{k=1}^{N} \left[-\Delta_k + V(x_k) + \sum_{m=1}^{N} W(x_k, x_m) \right].$$

Quantum chemistry models

Problem (Non-Separability of the full many-particle Hamiltonian)

The full many–particle Hamiltonian for a quantum chemical system is not straight forward separable. That is due to the interaction term in \mathbb{H} ;

$$\mathbb{H} = \sum_{k=1}^{N} \left[-\Delta_k + V(x_k) + \sum_{m=1}^{N} W(x_k, x_m) \right].$$

Example (Quantum chemical methods¹)

In quantum chemistry one uses different models for the approximation, such as Hartree-Fock or Kohn-Sham Density Functional Theory which provide respectively different single-particle Hamiltonians H_k with a chosen basis set

$$\min_{\substack{\Psi \in \mathcal{D}(\mathbb{H}) \\ \|\Psi\| = 1}} \mathcal{E}(\mathbb{H}, \Psi) \leq \min_{\substack{(\phi_n)_n \subset \mathcal{D}(H_k) \\ \langle \phi_k \mid \phi_m \rangle = \delta_{km}}} \left[\sum_{k=1}^N \langle \phi_n \mid H_k \phi_n \rangle + \tilde{W}[\Psi((\phi_n)_n)] \right].$$

¹A. Szabo and N.S. Ostlund, Modern Quantum Chemistry, Introduction to Advanced Electronic Structure Theory, Dover Publications, 2015.

Outlook

Problem (Violation of the Aufbau principle)

There are several examples in the literature where a violation of the Aufbau principle is $known^{1,2}$. The computation results yield some filled obitals with a higher energy then some unfilled ones in the total ground state.

¹A. Makmal, S. Kümmel and L. Kronik, Dissociation of diatomic molecules and the exact exchange Kohn–Sham potential: The case of LiF, Phys. Rev. A83, 062512, 2011.

²E. Scerri, The trouble with the aufbau principle, published in Education in Chemistry, 07.11.2013.

Outlook

Problem (Violation of the Aufbau principle)

There are several examples in the literature where a violation of the Aufbau principle is known^{1,2}. The computation results yield some filled obitals with a higher energy then some unfilled ones in the total ground state.

With a mathematical concept of the Aufbau principle we can address the problems by investigating the following properties

- Finite dimensional basis sets for numerical calculations
- Separability of self-adjoint operators³
- Extentions of the constrained domains⁴
- ...

¹A. Makmal, S. Kümmel and L. Kronik, Dissociation of diatomic molecules and the exact exchange Kohn–Sham potential: The case of LiF, Phys. Rev. A83, 062512, 2011.

²E. Scerri, The trouble with the aufbau principle, published in Education in Chemistry, 07.11.2013.

³S. Huzinaga and A.A Cantu, *Theory of Separability of Many-Electron Systems*, J. Chem. Phys. **55**, 5543 (1971).

⁴C. Li, J. Lu and W. Yang, On extending Kohn-Sham density functionals to systems with fractional number of electrons, J. Chem. Phys. 146, 214109 (2017). 4日本4個本4日本4日本 日

Acknowledgments

Special Thanks to my working group and to Prof. Martin Gander and Prof. Tomasz Wesolowski!

Thank you for your attention!