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Introduction

We consider problems of the following normal form�� ��(∂tM +A)U = F ,

where A is maximal accretive in a real Hilbert space H, M a

space-time operator referred to as �material law operator�, such

that ∂tM is positive de�nit. We focus here on a special case: A
skew-selfadjoint and�� ��M =M0+∂

−1
t M1,

where Mk , k = 0,1, is a continuous linear operator in H.

Key idea to make sense of ∂
−1
t : exponential weight function

t 7→ exp(−ρ t), ρ ∈ R, generates a weighted L2-type solution space

Hρ,0 (R,H) (inner product 〈 · | · 〉
ρ,0,0, norm: | · |

ρ,0,0), H a real

Hilbert space,

(ϕ,ψ) 7→
∫
R
〈ϕ (t) |ψ (t)〉H exp(−2ρt)dt.

Time-di�erentiation ∂t as the maximal operator in Hρ,0 (R,H)
induced by the usual derivative.
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Time-di�erentiation ∂t is a normal operator in Hρ,0 (R,H)

∂t = sym(∂t)+ skew(∂t) =
1

2
(∂t +∂

∗
t )+

1

2
(∂t −∂

∗
t )

with sym(∂t) self-adjoint and , skew(∂t) skew-selfadjoint and
commuting resolvents: sym(∂t) = ρ.

For ρ ∈ R\{0}: continuous invertibility of ∂t. In particular, for

ρ ∈]0,∞[ : sym(∂t) = ρ > 0.

Well-Posedness Condition (WPC): M0 selfadjoint and�� ��ρM0+ sym(M1)≥ c0 > 0

for all su�ciently large ρ ∈]0,∞[ .
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Dynamic abstract Friedrichs system (Friedrichs 1954,1958):�� ��(∂tM +A)U = (∂tM0+M1+A)U = F

∂tM0+M1+A=

= (ρM0+ sym(M1))+((∂t −ρ)M0+ skew(M1)+A)

= E0+A .

E0 symmetric strictly positive de�nite, A skew-selfadjoint in

Hρ,0 (R,H). W.l.o.g. E0 = 1, since we have the congruence√
E0

(
1+
√
E−1
0 A

√
E−1
0

)√
E0 = E0+A ,

and note that √
E−1
0 A

√
E−1
0

remains skew-selfadjoint.
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The Basic Solution Theorem

Theorem

Let A be skew-selfadjoint and M0,M1 satisfy Assumption (WPC).
Then we have for all su�ciently large ρ ∈]0,∞[ that for every

f ∈ Hρ,0 (R,H) there is a unique solution U ∈ Hρ,0 (R,H) of the

problem
(∂tM0+M1+A)U = f .

The solution operator
(

∂tM0+M1+A
)−1

is continuous and causal

on Hρ,0 (R,H).

Causal? For every a ∈ R we have: If F ∈ Hρ,0 (R, H) vanishes on

the time interval ]−∞, a[, then so does
(

∂tM0+M1+A
)−1

F .

Causality follows from (WPC) and the observation that for all a ∈R[
χ

]−∞,a]
,∂t

]
= δ{a} ≥ 0,

where δ{a}u = u (a)δ{a}.
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An Illustrative Example

Frequently,

A=

(
0 −G ∗

G 0

)
,

where G is a closed densely de�ned linear operator.

We recall that we will here consider only simple material laws

M =M0+∂
−1
t M1,

i.e. on the case associated with abstract Friedrichs systems:

�� ��(∂tM0+M1+A)U = F .
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An Illustrative Example

Consider a material law with

M =

(
ε1 0

0 ε2

)
+∂

−1
t

(
(1− ε1) 0

0 (1− ε2)

)
, ε1,ε2 ∈ {0,1} .

ε1 = 1,ε2 = 1:

(
∂t −G ∗

G ∂t

)
∼
(

∂ 2
t +G ∗G 0

G ∂t

)
by a formal

row operation (�hyperbolic�).

ε1 = 1,ε2 = 0:

(
∂t −G ∗

G 1

)
∼
(

∂t +G ∗G 0

G 1

)
by a formal row

operation (�parabolic�). Note that ε1 = 0,ε2 = 1 is analogous.

ε1 = 0,ε2 = 0:

(
1 −G ∗

G 1

)
∼
(
1+G ∗G 0

G 1

)
by a formal row

operation (�elliptic�).
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Basic Structure of Typical Systems.
Sums of Operators: Weak = Strong

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems

from the form

A=

(
0 −G ∗

G 0

)
,

where G is a closed densely de�ned operator.

For example:

G = ˚grad, ˚curl, d̊iv, grad, curl, div, ι
−1(
H̊1,L2

)(= ”1”),

G =

(
grad

γD

)
, γD : dom(grad)⊆ L2 (∂Ω)→ L2 (∂Ω) the

Dirichlet boundary trace map,

G =

(
˚grad 0

0 ˚Grad

)
or G =

 ι∗Ω1

˚grad

ι∗
Ω\Ω1

˚Grad

 used for coupling

acoustics and elasticity
Rainer Picard Abstract Friedrichs Systems



8/12

Introduction
Solution Theory

Skew-Selfadjointness of A

Basic Structure of Typical Systems.
Sums of Operators: Weak = Strong

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems

from the form

A=

(
0 −G ∗

G 0

)
,

where G is a closed densely de�ned operator.

For example:

G = ˚grad, ˚curl, d̊iv, grad, curl, div, ι
−1(
H̊1,L2

)(= ”1”),

G =

(
grad

γD

)
, γD : dom(grad)⊆ L2 (∂Ω)→ L2 (∂Ω) the

Dirichlet boundary trace map,

G =

(
˚grad 0

0 ˚Grad

)
or G =

 ι∗Ω1

˚grad

ι∗
Ω\Ω1

˚Grad

 used for coupling

acoustics and elasticity
Rainer Picard Abstract Friedrichs Systems



8/12

Introduction
Solution Theory

Skew-Selfadjointness of A

Basic Structure of Typical Systems.
Sums of Operators: Weak = Strong

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems

from the form

A=

(
0 −G ∗

G 0

)
,

where G is a closed densely de�ned operator.

For example:

G = ˚grad, ˚curl, d̊iv, grad, curl, div, ι
−1(
H̊1,L2

)(= ”1”),

G =

(
grad

γD

)
, γD : dom(grad)⊆ L2 (∂Ω)→ L2 (∂Ω) the

Dirichlet boundary trace map,

G =

(
˚grad 0

0 ˚Grad

)
or G =

 ι∗Ω1

˚grad

ι∗
Ω\Ω1

˚Grad

 used for coupling

acoustics and elasticity
Rainer Picard Abstract Friedrichs Systems



8/12

Introduction
Solution Theory

Skew-Selfadjointness of A

Basic Structure of Typical Systems.
Sums of Operators: Weak = Strong

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems

from the form

A=

(
0 −G ∗

G 0

)
,

where G is a closed densely de�ned operator.

For example:

G = ˚grad, ˚curl, d̊iv, grad, curl, div, ι
−1(
H̊1,L2

)(= ”1”),

G =

(
grad

γD

)
, γD : dom(grad)⊆ L2 (∂Ω)→ L2 (∂Ω) the

Dirichlet boundary trace map,

G =

(
˚grad 0

0 ˚Grad

)
or G =

 ι∗Ω1

˚grad

ι∗
Ω\Ω1

˚Grad

 used for coupling

acoustics and elasticity
Rainer Picard Abstract Friedrichs Systems



8/12

Introduction
Solution Theory

Skew-Selfadjointness of A

Basic Structure of Typical Systems.
Sums of Operators: Weak = Strong

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems

from the form

A=

(
0 −G ∗

G 0

)
,

where G is a closed densely de�ned operator.

For example:

G = ˚grad, ˚curl, d̊iv, grad, curl, div, ι
−1(
H̊1,L2

)(= ”1”),

G =

(
grad

γD

)
, γD : dom(grad)⊆ L2 (∂Ω)→ L2 (∂Ω) the

Dirichlet boundary trace map,

G =

(
˚grad 0

0 ˚Grad

)
or G =

 ι∗Ω1

˚grad

ι∗
Ω\Ω1

˚Grad

 used for coupling

acoustics and elasticity
Rainer Picard Abstract Friedrichs Systems



8/12

Introduction
Solution Theory

Skew-Selfadjointness of A

Basic Structure of Typical Systems.
Sums of Operators: Weak = Strong

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems

from the form

A=

(
0 −G ∗

G 0

)
,

where G is a closed densely de�ned operator.

For example:

G = ˚grad, ˚curl, d̊iv, grad, curl, div, ι
−1(
H̊1,L2

)(= ”1”),

G =

(
grad

γD

)
, γD : dom(grad)⊆ L2 (∂Ω)→ L2 (∂Ω) the

Dirichlet boundary trace map,

G =

(
˚grad 0

0 ˚Grad

)
or G =

 ι∗Ω1

˚grad

ι∗
Ω\Ω1

˚Grad

 used for coupling

acoustics and elasticity
Rainer Picard Abstract Friedrichs Systems



9/12

Introduction
Solution Theory

Skew-Selfadjointness of A

Basic Structure of Typical Systems.
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Skew-Selfadjointness: Weak = Strong

More generally

A=

(
X −G ∗

G Y

)
=

(
X 0

0 Y

)
+

(
0 −G ∗

G 0

)
,

with X ,Y skew-selfadjoint yields a skew-Hermitean A. When is A
skew-selfadjoint?

Tools:

Transmutator: L,R continuous linear operators, C closed

linear operator
[L,C ,R] := LC −CR

assumed to be de�ned on dom(C ).

The commutator
[L,C ] := [L,C ,L]

[C ,L] :=− [L,C ]

is a special case.

Rainer Picard Abstract Friedrichs Systems
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Skew-Selfadjointness: Weak = Strong

Let Ak , k = 1,2, be closed densely de�ned operators from H to K ,

dom(A1+A2) = dom(A1)∩dom(A2) dense in H.

Theorem

Let (Lε)ε∈]0,1[, (Rε)ε∈]0,1[ be bounded families of continuous linear

mappings in K and H, respectively, and [Lε ,A1+A2,Rε ] defined on
dom(A1)∩dom(A2) such that [Lε ,A1+A2,Rε ] ∈ L (H,K ).
Moreover,

L∗ε
[
dom

(
(A1+A2)

∗)]⊆ dom(A∗
1+A∗

2),

L∗ε
s→

ε→0+
1, R∗

ε

s→
ε→0+

1 and [Lε ,A1+A2,Rε ]
∗ s→

ε→0+
0.

Then (A1+A2)
∗ = A∗

1+A∗
2.

Corollary

Let A1, A2 be skew-selfadjoint, then under the assumptions of the

previous theorem we have

A1+A2 skew-selfadjoint.

10/12
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A1+A2 skew-selfadjoint.
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Skew-Selfadjointness: Weak = Strong

An application: (acoustics in moving media; inspired by discus-

sions with Martin Berggren and Linus Hägg; joint work with Sascha

Trostor� and Marcus Waurick) assuming that

sym

(
α∂3

(
ρ∗ 0

0 κ−1

))
is continuous

∂t

(
ρ∗ 0

0 κ−1

)
+α∂3

(
ρ∗ 0

0 κ−1

)
+

(
0 grad

d̊iv 0

)
=

= ∂t

(
ρ∗ 0

0 κ−1

)
+

1

2
sym

(
α∂3

(
ρ∗ 0

0 κ−1

))
+A1+A2

with

A1 = skew

(
∂3α

(
ρ∗ 0

0 κ−1

))
,(skew-selfadjoint for suitable α ,Ω)

A2 =

(
0 grad

d̊iv 0

)
,

Rε = Lε = (1+ ε∂3)
−1.
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Thank You for Your
Attention!

Rainer Picard Abstract Friedrichs Systems
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