Introduction Solution Theory Skew-Selfadjointness of A

On Abstract Friedrichs Systems and Some of their Applications. AANMPDE 12, 2019

Rainer Picard Department of Mathematics TU Dresden, Germany

Strobl 2019, Austria

イロト イヨト イヨト イヨト

Introduction

We consider problems of the following *normal form*

$$(\partial_t \mathcal{M} + A) U = F,$$

where A is maximal accretive in a real Hilbert space H, \mathcal{M} a space-time operator referred to as "material law operator", such that $\partial_t \mathcal{M}$ is positive definit. We focus here on a special case: A skew-selfadjoint and

$$\mathscr{M} = M_0 + \partial_t^{-1} M_1,$$

where M_k , k = 0, 1, is a continuous linear operator in H. Key idea to make sense of ∂_t^{-1} : exponential weight function $t \mapsto \exp(-\rho t)$, $\rho \in \mathbb{R}$, generates a weighted L^2 -type solution space $H_{\rho,0}(\mathbb{R}, H)$ (inner product $\langle \cdot | \cdot \rangle_{\rho,0,0}$, norm: $| \cdot |_{\rho,0,0}$), H a real Hilbert space,

$$(\varphi, \psi) \mapsto \int_{\mathbb{R}} \langle \varphi(t) | \psi(t) \rangle_H \exp(-2\rho t) dt.$$

Time-differentiation ∂_t as the maximal operator in $H_{\rho,0}(\mathbb{R},H)$ induced by the usual derivative.

Introduction

Time-differentiation ∂_t is a *normal* operator in $H_{
ho,0}\left(\mathbb{R},H
ight)$

$$\partial_{\mathrm{t}} = \mathfrak{sym}\left(\partial_{\mathrm{t}}
ight) + \mathfrak{stew}(\partial_{\mathrm{t}}) = rac{1}{2}\left(\partial_{\mathrm{t}} + \partial_{\mathrm{t}}^{*}
ight) + rac{1}{2}\left(\partial_{\mathrm{t}} - \partial_{\mathrm{t}}^{*}
ight)$$

with $\mathfrak{sym}(\partial_t)$ self-adjoint and , $\mathfrak{stew}(\partial_t)$ skew-selfadjoint and commuting resolvents: $\mathfrak{sym}(\partial_t) = \rho$.

For $\rho \in \mathbb{R} \setminus \{0\}$: continuous invertibility of ∂_t . In particular, for $\rho \in]0,\infty[:$ $\mathfrak{sym}(\partial_t) = \rho > 0.$

Well-Posedness Condition (WPC): M₀ selfadjoint and

$$ho M_0 + \mathfrak{sym}(M_1) \geq c_0 > 0$$

for all sufficiently large $ho\in]0,\infty[$.

Introduction

Dynamic abstract Friedrichs system (Friedrichs 1954, 1958):

$$(\partial_t \mathcal{M} + A) U = (\partial_t M_0 + M_1 + A) U = F$$

$$\partial_t M_0 + M_1 + A =$$

= $(\rho M_0 + \mathfrak{sym}(M_1)) + ((\partial_t - \rho) M_0 + \mathfrak{stew}(M_1) + A)$
= $E_0 + \mathscr{A}$.

 E_0 symmetric strictly positive definite, \mathscr{A} skew-selfadjoint in $H_{\rho,0}(\mathbb{R}, H)$. W.l.o.g. $E_0 = 1$, since we have the congruence

$$\sqrt{E_0}\left(1+\sqrt{E_0^{-1}}\mathscr{A}\sqrt{E_0^{-1}}\right)\sqrt{E_0}=E_0+\mathscr{A},$$

and note that

$$\sqrt{E_0^{-1}} \mathscr{A} \sqrt{E_0^{-1}}$$

remains skew-selfadjoint.

・ロト ・行 ト ・ヨト ・ヨト

-

Theorem

Let A be skew-selfadjoint and M_0, M_1 satisfy Assumption (WPC). Then we have for all sufficiently large $\rho \in]0,\infty[$ that for every $f \in H_{\rho,0}(\mathbb{R},H)$ there is a unique solution $U \in H_{\rho,0}(\mathbb{R},H)$ of the problem

$$\overline{(\partial_t M_0 + M_1 + A)} U = f.$$

The solution operator $\left(\overline{\partial_t M_0 + M_1 + A}\right)^{-1}$ is continuous and causal on $H_{\rho,0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have: If $F \in H_{\rho,0}(\mathbb{R}, H)$ vanishes on the time interval $] -\infty$, a[, then so does $\left(\overline{\partial_t M_0 + M_1 + A}\right)^{-1} F$. Causality follows from (**WPC**) and the observation that for all $a \in \mathbb{R}$ $\left[\chi_{]-\infty,a]}, \partial_t\right] = \delta_{\{a\}} \ge 0$, where $\delta_{(-)} \mu = \mu(a) \delta_{(-)}$

Theorem

Let A be skew-selfadjoint and M_0, M_1 satisfy Assumption (WPC). Then we have for all sufficiently large $\rho \in]0,\infty[$ that for every $f \in H_{\rho,0}(\mathbb{R},H)$ there is a unique solution $U \in H_{\rho,0}(\mathbb{R},H)$ of the problem

$$\overline{(\partial_t M_0 + M_1 + A)} U = f.$$

The solution operator $\left(\overline{\partial_t M_0 + M_1 + A}\right)^{-1}$ is continuous and causal on $H_{\rho,0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have: If $F \in H_{\rho,0}(\mathbb{R}, H)$ vanishes on the time interval $] -\infty$, a[, then so does $\left(\overline{\partial_t M_0 + M_1 + A}\right)^{-1} F$. Causality follows from (**WPC**) and the observation that for all $a \in \mathbb{R}$ $\left[\chi_{]-\infty,a]}, \partial_t\right] = \delta_{\{a\}} \ge 0$, where $\delta_{(-)} \mu = \mu(a) \delta_{(-)}$

Theorem

Let A be skew-selfadjoint and M_0, M_1 satisfy Assumption (WPC). Then we have for all sufficiently large $\rho \in]0,\infty[$ that for every $f \in H_{\rho,0}(\mathbb{R},H)$ there is a unique solution $U \in H_{\rho,0}(\mathbb{R},H)$ of the problem

$$\overline{(\partial_t M_0 + M_1 + A)} U = f.$$

The solution operator $\left(\overline{\partial_t M_0 + M_1 + A}\right)^{-1}$ is continuous and causal on $H_{\rho,0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have: If $F \in H_{\rho,0}(\mathbb{R}, H)$ vanishes on the time interval $]-\infty$, a[, then so does $\left(\overline{\partial_t M_0 + M_1 + A}\right)^{-1} F$.

Causality follows from (\mathbf{WPC}) and the observation that for all $a \in \mathbb{R}$

$$\left[\chi_{]_{-\infty,a]}},\partial_{t}
ight]=\delta_{\{a\}}\geq0,$$

where $\delta_{\{a\}} u = u(a) \, \delta_{\{a\}}.$

Theorem

Let A be skew-selfadjoint and M_0, M_1 satisfy Assumption (WPC). Then we have for all sufficiently large $\rho \in]0,\infty[$ that for every $f \in H_{\rho,0}(\mathbb{R},H)$ there is a unique solution $U \in H_{\rho,0}(\mathbb{R},H)$ of the problem

$$\overline{(\partial_t M_0 + M_1 + A)} U = f.$$

The solution operator $\left(\overline{\partial_t M_0 + M_1 + A}\right)^{-1}$ is continuous and causal on $H_{\rho,0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have: If $F \in H_{\rho,0}(\mathbb{R}, H)$ vanishes on the time interval $] -\infty$, a[, then so does $\left(\overline{\partial_t M_0 + M_1 + A}\right)^{-1} F$. Causality follows from (WPC) and the observation that for all $a \in \mathbb{R}$ $\left[\chi_{1-\infty,a]}, \partial_t\right] = \delta_{\{a\}} \ge 0$,

where $\delta_{\{a\}}u=u\left(a
ight)\delta_{\{a\}}.$

Frequently,

$$A = \left(\begin{array}{cc} 0 & -G^* \\ G & 0 \end{array}\right),$$

where G is a closed densely defined linear operator.

We recall that we will here consider only simple material laws

$$\mathscr{M}=M_0+\partial_t^{-1}M_1,$$

i.e. on the case associated with abstract Friedrichs systems:

$$(\partial_t M_0 + M_1 + A) U = F.$$

イロト イボト イヨト イヨト

э.

Consider a material law with

$$\mathscr{M}=\left(egin{array}{cc} arepsilon_1 & 0 \ 0 & arepsilon_2 \end{array}
ight)+\partial_t^{-1}\left(egin{array}{cc} (1-arepsilon_1) & 0 \ 0 & (1-arepsilon_2) \end{array}
ight),\ arepsilon_1,arepsilon_2\in\{0,1\}.$$

•
$$\varepsilon_1 = 1, \varepsilon_2 = 1: \begin{pmatrix} \partial_t & -G^* \\ G & \partial_t \end{pmatrix} \sim \begin{pmatrix} \partial_t^2 + G^*G & 0 \\ G & \partial_t \end{pmatrix}$$
 by a formal row operation ("hyperbolic").

• $\varepsilon_1 = 1, \varepsilon_2 = 0$: $\begin{pmatrix} \partial_t & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} \partial_t + G^* G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("parabolic"). Note that $\varepsilon_1 = 0, \varepsilon_2 = 1$ is analogous.

•
$$\varepsilon_1 = 0, \varepsilon_2 = 0$$
: $\begin{pmatrix} 1 & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} 1+G^*G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("elliptic").

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 7/12

Consider a material law with

$$\mathscr{M}=\left(egin{array}{cc} arepsilon_1 & 0 \ 0 & arepsilon_2 \end{array}
ight)+\partial_t^{-1}\left(egin{array}{cc} (1-arepsilon_1) & 0 \ 0 & (1-arepsilon_2) \end{array}
ight),\ arepsilon_1,arepsilon_2\in\{0,1\}.$$

•
$$\varepsilon_1 = 1, \varepsilon_2 = 1: \begin{pmatrix} \partial_t & -G^* \\ G & \partial_t \end{pmatrix} \sim \begin{pmatrix} \partial_t^2 + G^*G & 0 \\ G & \partial_t \end{pmatrix}$$
 by a formal row operation ("hyperbolic").

• $\varepsilon_1 = 1, \varepsilon_2 = 0$: $\begin{pmatrix} \partial_t & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} \partial_t + G^* G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("parabolic"). Note that $\varepsilon_1 = 0, \varepsilon_2 = 1$ is analogous.

•
$$\varepsilon_1 = 0, \varepsilon_2 = 0$$
: $\begin{pmatrix} 1 & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} 1+G^*G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("elliptic").

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで 7/12

Consider a material law with

$$\mathscr{M}=\left(egin{array}{cc} arepsilon_1 & 0 \ 0 & arepsilon_2 \end{array}
ight)+\partial_t^{-1}\left(egin{array}{cc} (1-arepsilon_1) & 0 \ 0 & (1-arepsilon_2) \end{array}
ight),\ arepsilon_1,arepsilon_2\in\{0,1\}.$$

•
$$\varepsilon_1 = 1, \varepsilon_2 = 1: \begin{pmatrix} \partial_t & -G^* \\ G & \partial_t \end{pmatrix} \sim \begin{pmatrix} \partial_t^2 + G^*G & 0 \\ G & \partial_t \end{pmatrix}$$
 by a formal row operation ("hyperbolic").

•
$$\varepsilon_1 = 1, \varepsilon_2 = 0$$
: $\begin{pmatrix} \partial_t & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} \partial_t + G^*G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("parabolic"). Note that $\varepsilon_1 = 0, \varepsilon_2 = 1$ is analogous.

•
$$\varepsilon_1 = 0, \varepsilon_2 = 0$$
: $\begin{pmatrix} 1 & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} 1+G^*G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("elliptic").

Consider a material law with

$$\mathscr{M}=\left(egin{array}{cc} arepsilon_1 & 0 \ 0 & arepsilon_2 \end{array}
ight)+\partial_t^{-1}\left(egin{array}{cc} (1-arepsilon_1) & 0 \ 0 & (1-arepsilon_2) \end{array}
ight),\ arepsilon_1,arepsilon_2\in\{0,1\}.$$

•
$$\varepsilon_1 = 1, \varepsilon_2 = 1: \begin{pmatrix} \partial_t & -G^* \\ G & \partial_t \end{pmatrix} \sim \begin{pmatrix} \partial_t^2 + G^*G & 0 \\ G & \partial_t \end{pmatrix}$$
 by a formal row operation ("hyperbolic").

•
$$\varepsilon_1 = 1, \varepsilon_2 = 0$$
: $\begin{pmatrix} \partial_t & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} \partial_t + G^*G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("parabolic"). Note that $\varepsilon_1 = 0, \varepsilon_2 = 1$ is analogous.

•
$$\varepsilon_1 = 0, \varepsilon_2 = 0$$
: $\begin{pmatrix} 1 & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} 1+G^*G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("elliptic").

Consider a material law with

$$\mathscr{M}=\left(egin{array}{cc} arepsilon_1 & 0 \ 0 & arepsilon_2 \end{array}
ight)+\partial_t^{-1}\left(egin{array}{cc} (1-arepsilon_1) & 0 \ 0 & (1-arepsilon_2) \end{array}
ight),\ arepsilon_1,arepsilon_2\in\{0,1\}.$$

•
$$\varepsilon_1 = 1, \varepsilon_2 = 1$$
: $\begin{pmatrix} \partial_t & -G^* \\ G & \partial_t \end{pmatrix} \sim \begin{pmatrix} \partial_t^2 + G^*G & 0 \\ G & \partial_t \end{pmatrix}$ by a formal row operation ("hyperbolic").

•
$$\varepsilon_1 = 1, \varepsilon_2 = 0$$
: $\begin{pmatrix} \partial_t & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} \partial_t + G^*G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("parabolic"). Note that $\varepsilon_1 = 0, \varepsilon_2 = 1$ is analogous.

•
$$\varepsilon_1 = 0, \varepsilon_2 = 0$$
: $\begin{pmatrix} 1 & -G^* \\ G & 1 \end{pmatrix} \sim \begin{pmatrix} 1+G^*G & 0 \\ G & 1 \end{pmatrix}$ by a formal row operation ("elliptic").

<□▶ <□▶ < 臣▶ < 臣▶ 臣 の Q @ 7/12

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$A = \left(\begin{array}{cc} 0 & -G^* \\ G & 0 \end{array}\right),$$

where G is a closed densely defined operator.

For example:

• $G = \text{grad}, \text{curl}, \text{div}, \text{grad}, \text{curl}, \text{div}, t_{(\hat{\mu}, \mu_2)}^{-1} (= "1"),$

• $G = \begin{pmatrix} \text{grad} \\ \gamma_D \end{pmatrix}$, γ_D : dom (grad) $\subseteq L^2(\partial \Omega) \rightarrow L^2(\partial \Omega)$ the Dirichlet boundary trace map,

•
$$G = \begin{pmatrix} grad & 0 \\ 0 & Grad \end{pmatrix}$$
 or $G = \begin{pmatrix} I_{\Omega_1} grad \\ I_{\Omega_1 \overline{\Omega_1}} Grad \end{pmatrix}$ used for coupling
acoustics and elasticity $(\Box \triangleright \langle \overline{\Box} \rangle \langle \overline{\Box} \rangle \langle \overline{\Xi} Z Z Z \langle \overline{\Xi} Z Z \langle \overline{\Xi} Z Z \langle \overline{\Xi} Z Z Z \langle \overline{\Xi} Z Z Z$

8/12

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$A = \left(\begin{array}{cc} 0 & -G^* \\ G & 0 \end{array}\right),$$

where *G* is a closed densely defined operator. For example:

•
$$G = \text{grad}, \text{curl}, \text{div}, \text{grad}, \text{curl}, \text{div}, \iota^{-1}_{\left(\mathring{H}_1, L^2\right)} (= "1"),$$

• $G = \begin{pmatrix} \text{grad} \\ \gamma_D \end{pmatrix}$, γ_D : dom (grad) $\subseteq L^2(\partial\Omega) \to L^2(\partial\Omega)$ the Dirichlet boundary trace map,

8/12

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$A = \left(\begin{array}{cc} 0 & -G^* \\ G & 0 \end{array}\right),$$

where *G* is a closed densely defined operator. For example:

•
$$G = \text{grad}, \text{curl}, \text{div}, \text{grad}, \text{curl}, \text{div}, \iota^{-1}_{\left(\mathring{H}_1, L^2\right)} (= "1"),$$

• $G = \begin{pmatrix} \text{grad} \\ \gamma_D \end{pmatrix}$, γ_D : dom (grad) $\subseteq L^2(\partial\Omega) \to L^2(\partial\Omega)$ the Dirichlet boundary trace map,

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$A = \left(\begin{array}{cc} 0 & -G^* \\ G & 0 \end{array}\right),$$

where G is a closed densely defined operator. For example:

•
$$G = \text{grad}, \text{curl}, \text{div}, \text{grad}, \text{curl}, \text{div}, \iota^{-1}_{\left(\mathring{H}_1, L^2\right)} (= "1"),$$

•
$$G = \begin{pmatrix} \text{grad} \\ \gamma_D \end{pmatrix}$$
, γ_D : dom (grad) $\subseteq L^2(\partial\Omega) \rightarrow L^2(\partial\Omega)$ the Dirichlet boundary trace map,

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$A = \left(\begin{array}{cc} 0 & -G^* \\ G & 0 \end{array}\right),$$

where G is a closed densely defined operator. For example:

•
$$G = \text{grad}, \text{curl}, \text{div}, \text{grad}, \text{curl}, \text{div}, \iota^{-1}_{\left(\mathring{H}_1, L^2\right)} (= "1"),$$

•
$$G = \begin{pmatrix} \text{grad} \\ \gamma_D \end{pmatrix}$$
, γ_D : dom (grad) $\subseteq L^2(\partial\Omega) \rightarrow L^2(\partial\Omega)$ the Dirichlet boundary trace map,

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$A = \left(\begin{array}{cc} 0 & -G^* \\ G & 0 \end{array}\right),$$

where G is a closed densely defined operator. For example:

•
$$G = \text{grad}, \text{curl}, \text{div}, \text{grad}, \text{curl}, \text{div}, \iota_{\left(\mathring{\mathcal{H}}_{1}, L^{2}\right)}^{-1} (= "1"),$$

•
$$G = \begin{pmatrix} \text{grad} \\ \gamma_D \end{pmatrix}$$
, γ_D : dom (grad) $\subseteq L^2(\partial\Omega) \to L^2(\partial\Omega)$ the Dirichlet boundary trace map

Dirichlet boundary trace map,

•
$$G = \begin{pmatrix} \ddot{grad} & 0 \\ 0 & \ddot{Grad} \end{pmatrix}$$
 or $G = \begin{pmatrix} \overline{\iota_{\Omega_1}^* grad} \\ \overline{\iota_{\Omega\setminus\overline{\Omega_1}}^* Grad} \end{pmatrix}$ used for coupling
acoustics and elasticity
Rainer Picard Abstract Friedrichs Systems

More generally

$$A = \begin{pmatrix} X & -G^* \\ G & Y \end{pmatrix} = \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} + \begin{pmatrix} 0 & -G^* \\ G & 0 \end{pmatrix},$$

with X, Y skew-selfadjoint yields a skew-Hermitean A. When is A skew-selfadjoint?

Tools:

• Transmutator: *L*, *R* continuous linear operators, *C* closed linear operator

 $[L, C, R] \coloneqq LC - CR$

assumed to be defined on dom (C).

 $[L, C] \coloneqq [L, C, [C, L] \coloneqq -[L, C]$

is a special case

э

More generally

$$A = \begin{pmatrix} X & -G^* \\ G & Y \end{pmatrix} = \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} + \begin{pmatrix} 0 & -G^* \\ G & 0 \end{pmatrix},$$

with X, Y skew-selfadjoint yields a skew-Hermitean A. When is A skew-selfadjoint?

Tools:

• Transmutator: *L*, *R* continuous linear operators, *C* closed linear operator

 $[L, C, R] \coloneqq LC - CR$

assumed to be defined on dom (C).

 $[L, C] \coloneqq [L, C, [C, L] \coloneqq -[L, C]$

is a special case

э

More generally

$$A = \begin{pmatrix} X & -G^* \\ G & Y \end{pmatrix} = \begin{pmatrix} X & 0 \\ 0 & Y \end{pmatrix} + \begin{pmatrix} 0 & -G^* \\ G & 0 \end{pmatrix},$$

with X, Y skew-selfadjoint yields a skew-Hermitean A. When is A skew-selfadjoint?

Tools:

• Transmutator: *L*, *R* continuous linear operators, *C* closed linear operator

 $[L, C, R] \coloneqq LC - CR$

assumed to be defined on dom (C).

The commutator

$$[L, C] \coloneqq [L, C, L]$$
$$[C, L] \coloneqq -[L, C]$$

is a special case.

イロト イヨト イヨト

э

Let A_k , k = 1, 2, be closed densely defined operators from H to K, dom $(A_1 + A_2) = dom(A_1) \cap dom(A_2)$ dense in H.

Theorem

Let $(L_{\varepsilon})_{\varepsilon \in]0,1[}$, $(R_{\varepsilon})_{\varepsilon \in]0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]$ defined on dom $(A_1) \cap$ dom (A_2) such that $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}] \in \mathscr{L}(H, K)$. Moreover,

•
$$L^*_{\varepsilon} \left[\operatorname{dom} \left((A_1 + A_2)^* \right) \right] \subseteq \operatorname{dom} \left(A_1^* + A_2^* \right),$$

• $L_{\varepsilon}^* \xrightarrow{s}_{\varepsilon \to 0+} 1$, $R_{\varepsilon}^* \xrightarrow{s}_{\varepsilon \to 0+} 1$ and $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]^* \xrightarrow{s}_{\varepsilon \to 0+} 0$. Then $(A_1 + A_2)^* = \overline{A_1^* + A_2^*}$.

Corollary

Let A_1 , A_2 be skew-selfadjoint, then under the assumptions of the previous theorem we have

Let A_k , k = 1, 2, be closed densely defined operators from H to K, dom $(A_1 + A_2) = dom(A_1) \cap dom(A_2)$ dense in H.

Theorem

Let $(L_{\varepsilon})_{\varepsilon \in]0,1[}$, $(R_{\varepsilon})_{\varepsilon \in]0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]$ defined on dom $(A_1) \cap \text{dom}(A_2)$ such that $\overline{[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]} \in \mathscr{L}(H, K)$. Moreover,

•
$$L_{\varepsilon}^{*} \xrightarrow{s}_{\epsilon \to 0+} 1, R_{\varepsilon}^{*} \xrightarrow{s}_{\epsilon \to 0+} 1 \text{ and } [L_{\varepsilon}, A_{1} + A_{2}, R_{\varepsilon}]^{*} \xrightarrow{s}_{\epsilon \to 0-} 1$$

$$(A_1 + A_2)^* = \overline{A_1^* + A_2^*}$$

Corollary

Let A_1 , A_2 be skew-selfadjoint, then under the assumptions of the previous theorem we have

Let A_k , k = 1, 2, be closed densely defined operators from H to K, dom $(A_1 + A_2) = dom(A_1) \cap dom(A_2)$ dense in H.

Theorem

Let $(L_{\varepsilon})_{\varepsilon \in]0,1[}$, $(R_{\varepsilon})_{\varepsilon \in]0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]$ defined on dom $(A_1) \cap \text{dom}(A_2)$ such that $\overline{[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]} \in \mathscr{L}(H, K)$. Moreover,

•
$$L_{\varepsilon}^{*} \xrightarrow{s}_{\epsilon \to 0+} 1, R_{\varepsilon}^{*} \xrightarrow{s}_{\epsilon \to 0+} 1 \text{ and } [L_{\varepsilon}, A_{1} + A_{2}, R_{\varepsilon}]^{*} \xrightarrow{s}_{\epsilon \to 0-} 1$$

$$(A_1 + A_2)^* = \overline{A_1^* + A_2^*}$$

Corollary

Let A_1 , A_2 be skew-selfadjoint, then under the assumptions of the previous theorem we have

Let A_k , k = 1, 2, be closed densely defined operators from H to K, dom $(A_1 + A_2) = dom (A_1) \cap dom (A_2)$ dense in H.

Theorem

Let $(L_{\varepsilon})_{\varepsilon \in]0,1[}$, $(R_{\varepsilon})_{\varepsilon \in]0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]$ defined on dom $(A_1) \cap dom(A_2)$ such that $\overline{[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]} \in \mathscr{L}(H, K)$. Moreover,

• $L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right]\subseteq\operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$,

• $L_{\varepsilon}^* \xrightarrow{s}_{\varepsilon \to 0+} 1, R_{\varepsilon}^* \xrightarrow{s}_{\varepsilon \to 0+} 1 \text{ and } [L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]^* \xrightarrow{s}_{\varepsilon \to 0+} 0.$ Then $(A_1 + A_2)^* = \overline{A_1^* + A_2^*}.$

Corollary

Let A_1 , A_2 be skew-selfadjoint, then under the assumptions of the previous theorem we have

Let A_k , k = 1, 2, be closed densely defined operators from H to K, dom $(A_1 + A_2) = dom (A_1) \cap dom (A_2)$ dense in H.

Theorem

Let $(L_{\varepsilon})_{\varepsilon \in]0,1['}$ $(R_{\varepsilon})_{\varepsilon \in]0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]$ defined on dom $(A_1) \cap dom(A_2)$ such that $\overline{[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]} \in \mathscr{L}(H, K)$. Moreover,

•
$$L^*_{\varepsilon}\left[\operatorname{dom}\left((A_1+A_2)^*\right)\right] \subseteq \operatorname{dom}\left(A^*_1+A^*_2\right),$$

•
$$L_{\varepsilon}^* \xrightarrow{s}_{\varepsilon \to 0+} 1, R_{\varepsilon}^* \xrightarrow{s}_{\varepsilon \to 0+} 1 \text{ and } [L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]^* \xrightarrow{s}_{\varepsilon \to 0+} 0.$$

then $(A_1 + A_2)^* = \overline{A_1^* + A_2^*}.$

Corollary

Let A_1 , A_2 be skew-selfadjoint, then under the assumptions of the previous theorem we have

Let A_k , k = 1, 2, be closed densely defined operators from H to K, dom $(A_1 + A_2) = dom (A_1) \cap dom (A_2)$ dense in H.

Theorem

Let $(L_{\varepsilon})_{\varepsilon \in]0,1['}$ $(R_{\varepsilon})_{\varepsilon \in]0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]$ defined on dom $(A_1) \cap dom(A_2)$ such that $\overline{[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]} \in \mathscr{L}(H, K)$. Moreover,

•
$$L^*_{\varepsilon}\left[\operatorname{dom}\left((A_1+A_2)^*\right)\right] \subseteq \operatorname{dom}\left(A^*_1+A^*_2\right),$$

•
$$L_{\varepsilon}^* \xrightarrow{s}_{\varepsilon \to 0+} 1, R_{\varepsilon}^* \xrightarrow{s}_{\varepsilon \to 0+} 1 \text{ and } [L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]^* \xrightarrow{s}_{\varepsilon \to 0+} 0.$$

then $(A_1 + A_2)^* = \overline{A_1^* + A_2^*}.$

Corollary

Let A_1 , A_2 be skew-selfadjoint, then under the assumptions of the previous theorem we have

Let A_k , k = 1, 2, be closed densely defined operators from H to K, dom $(A_1 + A_2) = dom (A_1) \cap dom (A_2)$ dense in H.

Theorem

Let $(L_{\varepsilon})_{\varepsilon \in]0,1[}$, $(R_{\varepsilon})_{\varepsilon \in]0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]$ defined on dom $(A_1) \cap dom(A_2)$ such that $\overline{[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]} \in \mathscr{L}(H, K)$. Moreover,

•
$$L_{\varepsilon}^{*}\left[\operatorname{dom}\left((A_{1}+A_{2})^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right),$$

• $L_{\varepsilon}^{*} \underset{\varepsilon \to 0+}{\overset{s}{\longrightarrow}} 1, R_{\varepsilon}^{*} \underset{\varepsilon \to 0+}{\overset{s}{\longrightarrow}} 1 \text{ and } [L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}]^{*} \underset{\varepsilon \to 0+}{\overset{s}{\longrightarrow}} 0.$
Then $(A_{1}+A_{2})^{*} = \overline{A_{1}^{*}+A_{2}^{*}}.$

Corollary

Let A_1 , A_2 be skew-selfadjoint, then under the assumptions of the previous theorem we have

 $A_1 + A_2$ skew-selfadjoint.

Let A_k , k = 1, 2, be closed densely defined operators from H to K, dom $(A_1 + A_2) = dom (A_1) \cap dom (A_2)$ dense in H.

Theorem

Let $(L_{\varepsilon})_{\varepsilon \in]0,1[}$, $(R_{\varepsilon})_{\varepsilon \in]0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]$ defined on dom $(A_1) \cap dom(A_2)$ such that $\overline{[L_{\varepsilon}, A_1 + A_2, R_{\varepsilon}]} \in \mathscr{L}(H, K)$. Moreover,

•
$$L_{\varepsilon}^{*} \left[\operatorname{dom} \left((A_{1} + A_{2})^{*} \right) \right] \subseteq \operatorname{dom} (A_{1}^{*} + A_{2}^{*}),$$

• $L_{\varepsilon}^{*} \xrightarrow{s}_{\varepsilon \to 0+} 1, R_{\varepsilon}^{*} \xrightarrow{s}_{\varepsilon \to 0+} 1 \text{ and } [L_{\varepsilon}, A_{1} + A_{2}, R_{\varepsilon}]^{*} \xrightarrow{s}_{\varepsilon \to 0+} 0.$
Then $(A_{1} + A_{2})^{*} = \overline{A_{1}^{*} + A_{2}^{*}}.$

Corollary

Let A_1 , A_2 be skew-selfadjoint, then under the assumptions of the previous theorem we have

An application: (acoustics in moving media; inspired by discussions with Martin Berggren and Linus Hägg; joint work with Sascha Trostorff and Marcus Waurick) assuming that

$$\mathfrak{sym}\left(\alpha\partial_{3}\begin{pmatrix}\rho_{*}&0\\0&\kappa^{-1}\end{pmatrix}\right) \text{ is continuous}$$
$$\partial_{t}\begin{pmatrix}\rho_{*}&0\\0&\kappa^{-1}\end{pmatrix}+\alpha\partial_{3}\begin{pmatrix}\rho_{*}&0\\0&\kappa^{-1}\end{pmatrix}+\begin{pmatrix}0&\text{grad}\\\text{div}&0\end{pmatrix}=$$
$$=\partial_{t}\begin{pmatrix}\rho_{*}&0\\0&\kappa^{-1}\end{pmatrix}+\frac{1}{2}\mathfrak{sym}\left(\alpha\partial_{3}\begin{pmatrix}\rho_{*}&0\\0&\kappa^{-1}\end{pmatrix}\right)+A_{1}+A_{2}$$

with

$$\begin{aligned} A_1 &= \mathfrak{stew}\left(\overline{\partial_3 \alpha \begin{pmatrix} \rho_* & 0\\ 0 & \kappa^{-1} \end{pmatrix}}\right), (\mathfrak{skew-selfadjoint for suitable } \alpha, \Omega) \\ A_2 &= \begin{pmatrix} 0 & \operatorname{grad} \\ \operatorname{div} & 0 \end{pmatrix}, \\ R_\varepsilon &= L_\varepsilon = (1 + \varepsilon \partial_3)^{-1}. \end{aligned}$$

Introduction Solution Theory Skew-Selfadjointness of A

Basic Structure of Typical Systems. Sums of Operators: Weak = Strong

The End

Thank You for Your Attention!

Rainer Picard Abstract Friedrichs Systems

< ロ > (同 > (回 > (回 >)))

э.