On Abstract Friedrichs Systems and Some of their Applications. AANMPDE 12, 2019

Rainer Picard

Department of Mathematics
TU Dresden, Germany
Strobl 2019, Austria

Introduction

We consider problems of the following normal form

$$
\left(\partial_{\mathrm{t}} \mathscr{M}+A\right) U=F,
$$

where A is maximal accretive in a real Hilbert space H, \mathscr{M} a space-time operator referred to as "material law operator", such that $\partial_{t} \mathscr{M}$ is positive definit. We focus here on a special case: A skew-selfadjoint and

$$
\mathscr{M}=M_{0}+\partial_{t}^{-1} M_{1}
$$

where $M_{k}, k=0,1$, is a continuous linear operator in H. Key idea to make sense of ∂_{t}^{-1} : exponential weight function $t \mapsto \exp (-\rho t), \rho \in \mathbb{R}$, generates a weighted L^{2}-type solution space $H_{\rho, 0}(\mathbb{R}, H)$ (inner product $\langle\cdot \mid \cdot\rangle_{\rho, 0,0}$, norm: $|\cdot|_{\rho, 0,0}$), H a real Hilbert space,

$$
(\varphi, \psi) \mapsto \int_{\mathbb{R}}\langle\varphi(t) \mid \psi(t)\rangle_{H} \exp (-2 \rho t) d t
$$

Time-differentiation ∂_{t} as the maximal operator in $H_{\rho, 0}(\mathbb{R}, H)$ induced by the usual derivative.

Introduction

Time-differentiation ∂_{t} is a normal operator in $H_{\rho, 0}(\mathbb{R}, H)$

$$
\partial_{\mathrm{t}}=\mathfrak{s y m}\left(\partial_{\mathrm{t}}\right)+\mathfrak{s k e w}\left(\partial_{\mathrm{t}}\right)=\frac{1}{2}\left(\partial_{\mathrm{t}}+\partial_{\mathrm{t}}^{*}\right)+\frac{1}{2}\left(\partial_{\mathrm{t}}-\partial_{\mathrm{t}}^{*}\right)
$$

with $\mathfrak{s y m}\left(\partial_{\mathrm{t}}\right)$ self-adjoint and, $\mathfrak{s k e w}\left(\partial_{\mathrm{t}}\right)$ skew-selfadjoint and commuting resolvents:

$$
\mathfrak{s y m}\left(\partial_{\mathrm{t}}\right)=\rho
$$

For $\rho \in \mathbb{R} \backslash\{0\}$: continuous invertibility of ∂_{t}. In particular, for $\rho \in] 0, \infty[:$

$$
\mathfrak{s y m}\left(\partial_{\mathrm{t}}\right)=\rho>0 .
$$

Well-Posedness Condition (WPC): M_{0} selfadjoint and

$$
\rho M_{0}+\mathfrak{s y m}\left(M_{1}\right) \geq c_{0}>0
$$

for all sufficiently large $\rho \in] 0, \infty[$.

Introduction

Dynamic abstract Friedrichs system (Friedrichs 1954,1958):

$$
\left(\partial_{\mathrm{t}} \mathscr{M}+A\right) U=\left(\partial_{\mathrm{t}} M_{0}+M_{1}+A\right) U=F
$$

$$
\begin{aligned}
& \partial_{\mathrm{t}} M_{0}+M_{1}+A= \\
& =\left(\rho M_{0}+\mathfrak{s y m}\left(M_{1}\right)\right)+\left(\left(\partial_{t}-\rho\right) M_{0}+\mathfrak{s k e w}\left(M_{1}\right)+A\right) \\
& =E_{0}+\mathscr{A}
\end{aligned}
$$

E_{0} symmetric strictly positive definite, \mathscr{A} skew-selfadjoint in $H_{\rho, 0}(\mathbb{R}, H)$. W.l.o.g. $E_{0}=1$, since we have the congruence

$$
\sqrt{E_{0}}\left(1+\sqrt{E_{0}^{-1}} \mathscr{A} \sqrt{E_{0}^{-1}}\right) \sqrt{E_{0}}=E_{0}+\mathscr{A}
$$

and note that

$$
\sqrt{E_{0}^{-1}} \mathscr{A} \sqrt{E_{0}^{-1}}
$$

remains skew-selfadjoint.

Theorem

Let A be skew－selfadjoint and M_{0}, M_{1} satisfy Assumption（WPC）． Then we have for all sufficiently large $\rho \in] 0, \infty[$ that for every $f \in H_{\rho, 0}(\mathbb{R}, H)$ there is a unique solution $U \in H_{\rho, 0}(\mathbb{R}, H)$ of the problem

$$
\overline{\left(\partial_{t} M_{0}+M_{1}+A\right)} U=f .
$$

The solution operator $\left(\overline{\partial_{t} M_{0}+M_{1}+A}\right)^{-1}$ is continuous and causal on $H_{\rho, 0}(\mathbb{R}, H)$ ．

Causal？For every $a \in \mathbb{R}$ we have：If $F \in H_{\rho, 0}(\mathbb{R}, H)$ vanishes on the time interval $]-\infty, a\left[\right.$ ，then so does $\left(\overline{\partial_{t} M_{0}+M_{1}+A}\right)$ Causality follows from（WPC）and the observation that for all $a \in \mathbb{R}$ $\left[\chi_{J-\infty, a]}, \partial_{t}\right]=\delta_{\{a\}} \geq 0$,

Theorem

Let A be skew－selfadjoint and M_{0}, M_{1} satisfy Assumption（WPC）． Then we have for all sufficiently large $\rho \in] 0, \infty[$ that for every $f \in H_{\rho, 0}(\mathbb{R}, H)$ there is a unique solution $U \in H_{\rho, 0}(\mathbb{R}, H)$ of the problem

$$
\overline{\left(\partial_{t} M_{0}+M_{1}+A\right)} U=f .
$$

The solution operator $\left(\overline{\partial_{t} M_{0}+M_{1}+A}\right)^{-1}$ is continuous and causal on $H_{\rho, 0}(\mathbb{R}, H)$ ．

Causal？For every $a \in \mathbb{R}$ we have：If $F \in H_{\rho, 0}(\mathbb{R}, H)$ vanishes on the time interval $]-\infty, a\left[\right.$ ，then so does $\left(\overline{\partial_{t} M_{0}+M_{1}+A}\right)$ Causality follows from（WPC）and the observation that for all $a \in \mathbb{R}$ $\left[\chi_{J-\infty, a]}, \partial_{t}\right]=\delta_{\{a\}} \geq 0$,

Theorem

Let A be skew-selfadjoint and M_{0}, M_{1} satisfy Assumption (WPC). Then we have for all sufficiently large $\rho \in] 0, \infty[$ that for every $f \in H_{\rho, 0}(\mathbb{R}, H)$ there is a unique solution $U \in H_{\rho, 0}(\mathbb{R}, H)$ of the problem

$$
\overline{\left(\partial_{t} M_{0}+M_{1}+A\right)} U=f .
$$

The solution operator $\left(\overline{\partial_{t} M_{0}+M_{1}+A}\right)^{-1}$ is continuous and causal on $H_{\rho, 0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have: If $F \in H_{\rho, 0}(\mathbb{R}, H)$ vanishes on the time interval $]-\infty, a\left[\right.$, then so does $\left(\overline{\partial_{t} M_{0}+M_{1}+A}\right)^{-1} F$.
Causality follows from (WPC) and the observation that for all $a \in \mathbb{R}$

Theorem

Let A be skew-selfadjoint and M_{0}, M_{1} satisfy Assumption (WPC). Then we have for all sufficiently large $\rho \in] 0, \infty[$ that for every $f \in H_{\rho, 0}(\mathbb{R}, H)$ there is a unique solution $U \in H_{\rho, 0}(\mathbb{R}, H)$ of the problem

$$
\overline{\left(\partial_{t} M_{0}+M_{1}+A\right)} U=f
$$

The solution operator $\left(\overline{\partial_{t} M_{0}+M_{1}+A}\right)^{-1}$ is continuous and causal on $H_{\rho, 0}(\mathbb{R}, H)$.

Causal? For every $a \in \mathbb{R}$ we have: If $F \in H_{\rho, 0}(\mathbb{R}, H)$ vanishes on the time interval $]-\infty, a\left[\right.$, then so does $\left(\overline{\partial_{t} M_{0}+M_{1}+A}\right)^{-1} F$.
Causality follows from (WPC) and the observation that for all $a \in \mathbb{R}$

$$
\left[\chi_{1-\infty, a]}, \partial_{t}\right]=\delta_{\{a\}} \geq 0
$$

where $\delta_{\{a\}} u=u(a) \delta_{\{a\}}$.

An Illustrative Example

Frequently,

$$
A=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right)
$$

where G is a closed densely defined linear operator.
We recall that we will here consider only simple material laws

$$
\mathscr{M}=M_{0}+\partial_{t}^{-1} M_{1},
$$

i.e. on the case associated with abstract Friedrichs systems:

$$
\left(\partial_{t} M_{0}+M_{1}+A\right) U=F .
$$

An Illustrative Example

Consider a material law with

$$
\mathscr{M}=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right)+\partial_{t}^{-1}\left(\begin{array}{cc}
\left(1-\varepsilon_{1}\right) & 0 \\
0 & \left(1-\varepsilon_{2}\right)
\end{array}\right), \varepsilon_{1}, \varepsilon_{2} \in\{0,1\} .
$$

－$\varepsilon_{1}=1, \varepsilon_{2}=1:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & \partial_{t}\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}^{2}+G^{*} G & 0 \\ G & \partial_{t}\end{array}\right)$ by a formal row operation（＂hyperbolic＂）．

An Illustrative Example

Consider a material law with

$$
\mathscr{M}=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right)+\partial_{t}^{-1}\left(\begin{array}{cc}
\left(1-\varepsilon_{1}\right) & 0 \\
0 & \left(1-\varepsilon_{2}\right)
\end{array}\right), \varepsilon_{1}, \varepsilon_{2} \in\{0,1\} .
$$

－$\varepsilon_{1}=1, \varepsilon_{2}=1:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & \partial_{t}\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}^{2}+G^{*} G & 0 \\ G & \partial_{t}\end{array}\right)$ by a formal row operation（＂hyperbolic＂）．

An Illustrative Example

Consider a material law with

$$
\mathscr{M}=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right)+\partial_{t}^{-1}\left(\begin{array}{cc}
\left(1-\varepsilon_{1}\right) & 0 \\
0 & \left(1-\varepsilon_{2}\right)
\end{array}\right), \varepsilon_{1}, \varepsilon_{2} \in\{0,1\} .
$$

- $\varepsilon_{1}=1, \varepsilon_{2}=1:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & \partial_{t}\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}^{2}+G^{*} G & 0 \\ G & \partial_{t}\end{array}\right)$ by a formal row operation ("hyperbolic").
- $\varepsilon_{1}=1, \varepsilon_{2}=0:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & 1\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}+G^{*} & G \\ G & 1\end{array}\right)$ by a formal row operation ("parabolic"). Note that $\varepsilon_{1}=0, \varepsilon_{2}=1$ is analogous.

An Illustrative Example

Consider a material law with

$$
\mathscr{M}=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right)+\partial_{t}^{-1}\left(\begin{array}{cc}
\left(1-\varepsilon_{1}\right) & 0 \\
0 & \left(1-\varepsilon_{2}\right)
\end{array}\right), \varepsilon_{1}, \varepsilon_{2} \in\{0,1\} .
$$

- $\varepsilon_{1}=1, \varepsilon_{2}=1:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & \partial_{t}\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}^{2}+G^{*} G & 0 \\ G & \partial_{t}\end{array}\right)$ by a formal row operation ("hyperbolic").
- $\varepsilon_{1}=1, \varepsilon_{2}=0:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & 1\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}+G^{*} & G \\ G & 1\end{array}\right)$ by a formal row operation ("parabolic"). Note that $\varepsilon_{1}=0, \varepsilon_{2}=1$ is analogous.

An Illustrative Example

Consider a material law with

$$
\mathscr{M}=\left(\begin{array}{cc}
\varepsilon_{1} & 0 \\
0 & \varepsilon_{2}
\end{array}\right)+\partial_{t}^{-1}\left(\begin{array}{cc}
\left(1-\varepsilon_{1}\right) & 0 \\
0 & \left(1-\varepsilon_{2}\right)
\end{array}\right), \varepsilon_{1}, \varepsilon_{2} \in\{0,1\} .
$$

- $\varepsilon_{1}=1, \varepsilon_{2}=1:\left(\begin{array}{cc}\partial_{t} & -G^{*} \\ G & \partial_{t}\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}^{2}+G^{*} G & 0 \\ G & \partial_{t}\end{array}\right)$ by a formal row operation ("hyperbolic").
- $\varepsilon_{1}=1, \varepsilon_{2}=0:\left(\begin{array}{cc}\partial_{t}-G^{*} \\ G & 1\end{array}\right) \sim\left(\begin{array}{cc}\partial_{t}+G^{*} & G \\ G & 1\end{array}\right)$ by a formal row operation ("parabolic"). Note that $\varepsilon_{1}=0, \varepsilon_{2}=1$ is analogous.
- $\varepsilon_{1}=0, \varepsilon_{2}=0:\left(\begin{array}{cc}1 & -G^{*} \\ G & 1\end{array}\right) \sim\left(\begin{array}{cc}1+G^{*} & G \\ G & 1\end{array}\right)$ by a formal row operation ("elliptic").

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$
A=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right),
$$

where G is a closed densely defined operator.
For example:

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$
A=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right),
$$

where G is a closed densely defined operator.
For example:

- $G=$ grad, curl, div, grad, curl, div, $l_{\left(\dot{H}_{1}, L^{2}\right)}^{-1}\left(=" 1^{\prime \prime}\right)$,

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$
A=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right),
$$

where G is a closed densely defined operator.
For example:

- $G=$ grad, curl, div, grad, curl, div, $l_{\left(\dot{H}_{1}, L^{2}\right)}^{-1}\left(=" 1^{\prime \prime}\right)$,

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$
A=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right)
$$

where G is a closed densely defined operator.
For example:

- $G=$ grad, currl, div, grad, curl, div, $l_{\left(\dot{H}_{1}, L^{2}\right)}^{-1}\left(=" 1^{\prime \prime}\right)$,
- $G=\binom{\mathrm{grad}}{\gamma_{D}}, \gamma_{D}: \operatorname{dom}(\mathrm{grad}) \subseteq L^{2}(\partial \Omega) \rightarrow L^{2}(\partial \Omega)$ the

Dirichlet boundary trace map,

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$
A=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right)
$$

where G is a closed densely defined operator.
For example:

- $G=$ grad, currl, div, grad, curl, div, $l_{\left(\dot{H}_{1}, L^{2}\right)}^{-1}\left(=" 1^{\prime \prime}\right)$,
- $G=\binom{\mathrm{grad}}{\gamma_{D}}, \gamma_{D}: \operatorname{dom}(\mathrm{grad}) \subseteq L^{2}(\partial \Omega) \rightarrow L^{2}(\partial \Omega)$ the

Dirichlet boundary trace map,

The Basic Case

As mentioned earlier, the skew-selfadjointness frequently stems from the form

$$
A=\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right),
$$

where G is a closed densely defined operator.
For example:

- $G=$ grad, currl, div, grad, curl, div, $\imath_{\left(\dot{H}_{1}, L^{2}\right)}^{-1}\left(=" 1^{\prime \prime}\right)$,
- $G=\binom{\mathrm{grad}}{\gamma_{D}}, \gamma_{D}: \operatorname{dom}(\operatorname{grad}) \subseteq L^{2}(\partial \Omega) \rightarrow L^{2}(\partial \Omega)$ the

Dirichlet boundary trace map,

- $G=\left(\begin{array}{cc}\text { grad } & 0 \\ 0 & \text { Grad }\end{array}\right)$ or $G=\left(\frac{\overline{i_{\Omega_{1}}^{*} \text { grad }}}{\overline{l_{\Omega \backslash \overline{\Omega_{1}}}^{*} \mathrm{Grad}}}\right)$ used for coupling
acoustics and elasticity

Skew-Selfadjointness: Weak = Strong

More generally

$$
A=\left(\begin{array}{cc}
X & -G^{*} \\
G & Y
\end{array}\right)=\left(\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right)+\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right)
$$

with X, Y skew-selfadjoint yields a skew-Hermitean A. When is A skew-selfadjoint?
Tools:

- Transmutator: L, R continuous linear operators, C closed linear operator

$$
[L, C, R]:=L C-C R
$$

assumed to be defined on $\operatorname{dom}(C)$.

Skew-Selfadjointness: Weak = Strong

More generally

$$
A=\left(\begin{array}{cc}
X & -G^{*} \\
G & Y
\end{array}\right)=\left(\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right)+\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right)
$$

with X, Y skew-selfadjoint yields a skew-Hermitean A. When is A skew-selfadjoint?
Tools:

- Transmutator: L, R continuous linear operators, C closed linear operator

$$
[L, C, R]:=L C-C R
$$

assumed to be defined on $\operatorname{dom}(C)$.

Skew-Selfadjointness: Weak = Strong

More generally

$$
A=\left(\begin{array}{cc}
X & -G^{*} \\
G & Y
\end{array}\right)=\left(\begin{array}{cc}
X & 0 \\
0 & Y
\end{array}\right)+\left(\begin{array}{cc}
0 & -G^{*} \\
G & 0
\end{array}\right)
$$

with X, Y skew-selfadjoint yields a skew-Hermitean A. When is A skew-selfadjoint?
Tools:

- Transmutator: L, R continuous linear operators, C closed linear operator

$$
[L, C, R]:=L C-C R
$$

assumed to be defined on $\operatorname{dom}(C)$.

- The commutator

$$
\begin{aligned}
& {[L, C]:=[L, C, L]} \\
& {[C, L]:=-[L, C]}
\end{aligned}
$$

is a special case.

Skew-Selfadjointness: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Skew-Selfadjointness: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$.

Skew-Selfadjointness: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$.

Skew－Selfadjointness：Weak＝Strong

Let $A_{k}, k=1,2$ ，be closed densely defined operators from H to K ， $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H ．

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H ，respectively，and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$ ． Moreover，
－$L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$ ，

Skew-Selfadjointness: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$. Moreover,

- $L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$,
- $L_{\varepsilon}^{*} \underset{\varepsilon \rightarrow 0+}{s} 1, R_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1$ and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 0$.

Skew-Selfadjointness: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$. Moreover,

- $L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$,
- $L_{\varepsilon}^{*} \underset{\varepsilon \rightarrow 0+}{s} 1, R_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1$ and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 0$.

Skew-Selfadjointness: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$. Moreover,

- $L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$,
- $L_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1, R_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1$ and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 0$.

Then

$$
\left(A_{1}+A_{2}\right)^{*}=\overline{A_{1}^{*}+A_{2}^{*}} .
$$

Skew-Selfadjointness: Weak = Strong

Let $A_{k}, k=1,2$, be closed densely defined operators from H to K, $\operatorname{dom}\left(A_{1}+A_{2}\right)=\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ dense in H.

Theorem

Let $\left(L_{\varepsilon}\right)_{\varepsilon \in] 0,1[},\left(R_{\varepsilon}\right)_{\varepsilon \in] 0,1[}$ be bounded families of continuous linear mappings in K and H, respectively, and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]$ defined on $\operatorname{dom}\left(A_{1}\right) \cap \operatorname{dom}\left(A_{2}\right)$ such that $\overline{\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]} \in \mathscr{L}(H, K)$. Moreover,

- $L_{\varepsilon}^{*}\left[\operatorname{dom}\left(\left(A_{1}+A_{2}\right)^{*}\right)\right] \subseteq \operatorname{dom}\left(A_{1}^{*}+A_{2}^{*}\right)$,
- $L_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1, R_{\varepsilon}^{*} \xrightarrow[\varepsilon \rightarrow 0+]{s} 1$ and $\left[L_{\varepsilon}, A_{1}+A_{2}, R_{\varepsilon}\right]^{*} \xrightarrow[\varepsilon \rightarrow 0+]{\stackrel{s}{\rightarrow}} 0$.

Then

$$
\left(A_{1}+A_{2}\right)^{*}=\overline{A_{1}^{*}+A_{2}^{*}} .
$$

Corollary

Let A_{1}, A_{2} be skew-selfadjoint, then under the assumptions of the previous theorem we have

$$
\overline{A_{1}+A_{2}} \text { skew-selfadjoint. }
$$

Skew-Selfadjointness: Weak = Strong

An application: (acoustics in moving media; inspired by discussions with Martin Berggren and Linus Hägg; joint work with Sascha Trostorff and Marcus Waurick) assuming that
$\mathfrak{s y m}\left(\alpha \partial_{3}\left(\begin{array}{cc}\rho_{*} & 0 \\ 0 & \kappa^{-1}\end{array}\right)\right)$ is continuous

$$
\begin{aligned}
& \partial_{t}\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)+\alpha \partial_{3}\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)+\left(\begin{array}{cc}
0 & \text { grad } \\
\text { div } & 0
\end{array}\right)= \\
& =\partial_{t}\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)+\frac{1}{2} \mathfrak{s y m}\left(\alpha \partial_{3}\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)\right)+A_{1}+A_{2}
\end{aligned}
$$

with

$$
\begin{aligned}
& A_{1}=\mathfrak{s k e w} \overline{\left(\partial_{3} \alpha\left(\begin{array}{cc}
\rho_{*} & 0 \\
0 & \kappa^{-1}
\end{array}\right)\right)},(\text { skew-selfadjoint for suitable } \alpha, \Omega) \\
& A_{2}=\left(\begin{array}{cc}
0 & \text { grad } \\
\text { div } & 0
\end{array}\right), \\
& R_{\varepsilon}=L_{\varepsilon}=\left(1+\varepsilon \partial_{3}\right)^{-1} .
\end{aligned}
$$

Thank You for Your Attention!

