LOCAL THB-MULTIGRID

Fast solvers for large-scale locally refined IgA-systems.

Clemens Hofreither Ludwig Mitter Hendrik Speleers 2019/07/04
Institute of Computational Mathematics

THB-SPLINES

Discretization based on B-splines

Hierarchical meshes

Hierarchical meshes

THB-splines: Dropping the tensor product structure

THB-splines: Dropping the tensor product structure

THB-splines: Important properties

non-negative

THB-splines: Important properties

■ non-negative
\square linearly independent

THB-splines: Important properties

■ non-negative
■ linearly independent

- form a partition of unity

THB-splines: Important properties

■ non-negative
■ linearly independent

- form a partition of unity

■ nested enlargement

THB-splines: Important properties

■ non-negative

- linearly independent
- form a partition of unity
- nested enlargement
- strongly stable with respect to the $\underline{L^{\infty}}$-norm

The model problem

■ Let $V=H_{0}^{1}(D), D=(0,1)^{2}$.
Variational problem
Find $u \in V$ such that

$$
a(u, v)=\langle F, v\rangle, \quad \forall v \in V
$$

The model problem

■ Let $V=H_{0}^{1}(D), D=(0,1)^{2}$.
Variational problem
Find $u \in V$ such that

$$
a(u, v)=\langle F, v\rangle, \quad \forall v \in V
$$

- Assume $F \in V^{*}$ and $a(.,):. V \times V \rightarrow \mathbb{R}$ is bilinear, symmetric, continuous and coercive \Longrightarrow well-posedness

The model scheme

\square Let $\mathbb{T} \subset V$ be a conforming THB-discretization.

THB-scheme

Find $u \in \mathbb{T}$ such that

$$
a(u, v)=\langle F, v\rangle, \quad \forall v \in \mathbb{T}
$$

LOCAL THB-MULTIGRID

THB-MULTIGRID

SUBSPACE CORRECTION METHODS FOR THB-SPLINES

Iterative solving

Iterative procedure to solve THB-scheme for some initial guess $u^{0} \in \mathbb{T}$.

Successive corrections

If $u^{l-1} \in \mathbb{T}$ is given then we can define $u^{l}=u^{l-1}+\hat{e}$ where $\hat{e} \in \mathbb{T}$ is an approximate solution of the residual equation

$$
a(e, v)=\langle F, v\rangle-a\left(u^{l-1}, v\right\rangle, \quad \forall v \in \mathbb{T} .
$$

Iterative solving

Iterative procedure to solve THB-scheme for some initial guess $u^{0} \in \mathbb{T}$.

Successive corrections

If $u^{l-1} \in \mathbb{T}$ is given then we can define $u^{l}=u^{l-1}+\hat{e}$ where $\hat{e} \in \mathbb{T}$ is an approximate solution of the residual equation

$$
a(e, v)=\langle F, v\rangle-a\left(u^{l-1}, v\right\rangle, \quad \forall v \in \mathbb{T} .
$$

- Residual equation in general as difficult to solve as the original problem.

Divide and conquer.

■ Let $\mathbb{T}_{i} \subseteq \mathbb{T}, i=1,2, \ldots, J$ be subspaces with

$$
\mathbb{T}=\sum_{i=1}^{J} \mathbb{T}_{i}
$$

Divide and conquer.

■ Let $\mathbb{T}_{i} \subseteq \mathbb{T}, i=1,2, \ldots, J$ be subspaces with

$$
\mathbb{T}=\sum_{i=1}^{J} \mathbb{T}_{i}
$$

■ Let $a_{i}(.,$.$) be continuous and coercive approximations of a(.,$.$) restricted on$ $\mathbb{T}_{i} \Longrightarrow$ well-posedness of the subspace problems

SSC: Successive subspace corrections

```
Algorithm SSC \(\quad\) INPUT: \(u^{0} \in \mathbb{T}\)
for \(l=1,2, \ldots\)
\(u_{0}^{l-1}=u^{l-1}\)
    for \(i=1, \ldots, J\)
        Let \(e_{i} \in \mathbb{T}_{i}\) solve
            \(a_{i}\left(e_{i}, v_{i}\right)=\left\langle F, v_{i}\right\rangle-a\left(u_{i-1}^{l-1}, v_{i}\right) \quad \forall v_{i} \in \mathbb{T}_{i}\)
            \(u_{i}^{l-1}=u_{i-1}^{l-1}+e_{i}\)
    endfor
    \(u^{l}=u_{J}^{l-1}\)
    endfor
```


Algorithm Symmetric SSC \quad INPUT: $u^{0} \in \mathbb{T}$

$$
\begin{aligned}
& \text { for } l=1,2, \ldots \\
& \begin{array}{l}
u_{0}^{l-1}=u^{l-1} \\
\text { for } i=1, \ldots, J \\
\\
\text { Let } e_{i} \in \mathbb{T}_{i} \text { solve } \\
\quad a_{i}\left(e_{i}, v_{i}\right)=\left\langle F, v_{i}\right\rangle-a\left(u_{i-1}^{l-1}, v_{i}\right) \quad \forall v_{i} \in \mathbb{T}_{i} \\
\quad u_{i}^{l-1}=u_{i-1}^{l-1}+e_{i} \\
\text { endfor } \\
u_{0}^{l-1}=u_{J}^{l-1} \\
\text { for } i=J, \ldots, 1 \\
\\
\text { Let } e_{i} \in \mathbb{T}_{i} \text { solve } \\
\quad a_{i}\left(e_{i}, v_{i}\right)=\left\langle F, v_{i}\right\rangle-a\left(u_{i-1}^{l-1}, v_{i}\right) \quad \forall v_{i} \in \mathbb{T}_{i} \\
\quad u_{i}^{l-1}=u_{i-1}^{l-1}+e_{i} \\
\text { endfor } \\
u^{l}=u_{J}^{l-1}
\end{array} \\
& \text { endfor }
\end{aligned}
$$

Equivalence of Symmetric SSC and Multigrid V-cycle

Theorem ((Xu, 1992))

The Symmetric SSC method and the multigrid V-cycle (eg. ref. (Hackbusch, 1985)) are equivalent.
le., the error propagation operator (EPO) of the Multigrid V-cycle coincides with the EPO of the symmetric SSC method.

Theorem ((Xu, 1992))
The EPO of the Symmetric SSC is self-adjoint (wrt. a(...)) and is the product of the EPO of the SSC method and its adjoint (wrt. a(., .))

Error propagation operators

■ Let $T_{i}: \mathbb{T} \rightarrow \mathbb{T}_{i}$ be defined by

$$
a_{i}\left(T_{i} v, v_{i}\right)=a\left(v, v_{i}\right), \quad \forall v_{i} \in \mathbb{T}_{i} .
$$

Error propagation operators

■ Let $T_{i}: \mathbb{T} \rightarrow \mathbb{T}_{i}$ be defined by

$$
a_{i}\left(T_{i} v, v_{i}\right)=a\left(v, v_{i}\right), \quad \forall v_{i} \in \mathbb{T}_{i} .
$$

■ By the well-posedness of the subspace problems one sees, that $\left.T_{i}\right|_{\mathbb{T}_{i}}: \mathbb{T}_{i} \rightarrow \mathbb{T}_{i}$ is isomorphic.
■ If $a_{i}(.,)=.a(.,$.$) one has T_{i}=P_{i}$, where P_{i} is the energy projection,

$$
a\left(P_{i} v, v_{i}\right)=a\left(v, v_{i}\right), \quad v \in \mathbb{T}, v_{i} \in \mathbb{T}_{i}
$$

Error propagation operators

■ Let $T_{i}: \mathbb{T} \rightarrow \mathbb{T}_{i}$ be defined by

$$
a_{i}\left(T_{i} v, v_{i}\right)=a\left(v, v_{i}\right), \quad \forall v_{i} \in \mathbb{T}_{i} .
$$

■ From the definition of SSC it follows, that $u-u_{i}^{l-1}=\left(I-T_{i}\right)\left(u-u_{i-1}^{l-1}\right)$, hence,
$u-u^{l}=E\left(u-u^{l-1}\right)=\ldots=E^{l}\left(u-u^{0}\right), \quad E=\left(I-T_{J}\right)\left(I-T_{J-1}\right) \cdots\left(I-T_{1}\right)$,
ie. SSC is the multiplicative Schwarz method.

Assumptions for proving uniform convergence

By the symmetry of $a(.,$.$) we have the energy norm \|.\|_{a}:=a(., .)^{1 / 2}$.

Assumptions for proving uniform convergence

By the symmetry of $a(.,$.$) we have the energy norm \|.\|_{a}:=a(., .)^{1 / 2}$.
Contraction of subspace error operators

$$
\exists \rho<1 \forall i \in\{1, \ldots, J\}:\left\|I-T_{i}\right\|_{a_{i}} \leq \rho \quad \text { where } \quad\|.\|_{a_{i}}^{2}:=a_{i}(., .)
$$

Assumptions for proving uniform convergence

By the symmetry of $a(.,$.$) we have the energy norm \|.\|_{a}:=a(., .)^{1 / 2}$.

Contraction of subspace error operators

$$
\exists \rho<1 \forall i \in\{1, \ldots, J\}:\left\|I-T_{i}\right\|_{a_{i}} \leq \rho \quad \text { where } \quad\|\cdot\|_{a_{i}}^{2}:=a_{i}(., .)
$$

This assumption admits the application of the Xu-Zikatanov identity (Xu and Zikatanov, 2002).

Stable decomposition

For any $v \in \mathbb{T}$ there exists a decomposition $v=\sum_{i=1}^{J} v_{i}, v_{i} \in \mathbb{T}_{i}$ such that

$$
\sum_{i=1}^{J}\left\|v_{i}\right\|_{a}^{2} \leq K_{1}\|v\|_{a}^{2} \quad \text { with } \quad\|\cdot\|_{a}^{2}:=a(., .)
$$

Stable decomposition

For any $v \in \mathbb{T}$ there exists a decomposition $v=\sum_{i=1}^{J} v_{i}, v_{i} \in \mathbb{T}_{i}$ such that

$$
\sum_{i=1}^{J}\left\|v_{i}\right\|_{a}^{2} \leq K_{1}\|v\|_{a}^{2} \quad \text { with } \quad\|\cdot\|_{a}^{2}:=a(., .)
$$

Strengthened Cauchy-Schwarz (SCS) inequality

For any $u_{i}, v_{i} \in \mathbb{T}_{i}$

$$
\left|\sum_{i=1}^{J} \sum_{j=i+1}^{J} a\left(u_{i}, v_{j}\right)\right| \leq K_{2}\left(\sum_{i=1}^{J}\left\|u_{i}\right\|_{a}^{2}\right)^{1 / 2}\left(\sum_{j=1}^{J}\left\|v_{i}\right\|_{a}^{2}\right)^{1 / 2} .
$$

Convergence of SSC

Theorem (Chen et al., 2012)

Let $\mathbb{T}=\sum \widetilde{\mathbb{T}}_{i}$ be a space decomposition that is stable and satisfies the SCS inequality and let the subspace error operators $T_{i}: \mathbb{T} \rightarrow \widetilde{\mathbb{T}}_{i}$ be contractions.
Then one has

$$
\|E\|_{a}^{2} \leq 1-\frac{1-\rho^{2}}{2 K_{1}\left(1+(1+\rho)^{2} K_{2}^{2}\right)} .
$$

Convergence of SSC

Theorem (Chen et al., 2012)

Let $\mathbb{T}=\sum \widetilde{\mathbb{T}}_{i}$ be a space decomposition that is stable and satisfies the SCS inequality and let the subspace error operators $T_{i}: \mathbb{T} \rightarrow \widetilde{\mathbb{T}}_{i}$ be contractions. Then one has

$$
\|E\|_{a}^{2} \leq 1-\frac{1-\rho^{2}}{2 K_{1}\left(1+(1+\rho)^{2} K_{2}^{2}\right)} .
$$

This means, that SSC converges uniformly with a constant that is independent of J. In other words, a symmetrized SSC-preconditioned conjugate gradient method is h-robust.

FINDING A SUITABLE DECOMPOSITION

Admissible grids

Definition

For each point $x \in D$ in the computational domain $D=(0,1)^{d}$, let δ_{x} be the largest difference between the levels of THB-basis functions that are non-zero in x. The mesh level disparity δ is defined as

$$
\delta:=\max _{\boldsymbol{x} \in D} \delta_{\boldsymbol{x}}
$$

Admissible grids

Definition

For each point $\boldsymbol{x} \in D$ in the computational domain $D=(0,1)^{d}$, let $\delta_{\boldsymbol{x}}$ be the largest difference between the levels of THB-basis functions that are non-zero in \boldsymbol{x}. The mesh level disparity δ is defined as

$$
\delta:=\max _{\boldsymbol{x} \in D} \delta_{\boldsymbol{x}}
$$

Fixing the mesh level disparity yields so-called admissible THB-spline spaces:

- The number of non-zero basis functions in any $x \in D$ is uniformly bounded.
- The (non-empty) measures of the supports of two THB-basis functions is uniformly equivalent to the measure of their intersection.

■ Stability and the SCS inequality for an arbitrary THB-spline space \mathbb{T} does not hold for any decomposition

$$
\mathbb{T}=\sum_{i=1}^{J} \mathbb{T}_{i}
$$

■ Stability and the SCS inequality for an arbitrary THB-spline space \mathbb{T} does not hold for any decomposition

$$
\mathbb{T}=\sum_{i=1}^{J} \mathbb{T}_{i}
$$

■ "Uniformly relate" measures of supports between basis functions in \mathbb{T}_{i} supported in any $x \in D$ (ie. by uniformly bounding δ).

■ "Uniformly relate" measures of supports of basis functions in " $\mathbb{T}_{i+1} \backslash \mathbb{T}_{i}$ " (which cannot be guaranteed by the adaptive method).

Virtual hierarchy

Definition

The virtual decomposition of \mathbb{T} is defined as

$$
\mathbb{T}=\sum_{i=1}^{J} \mathbb{T}_{i}
$$

where \mathbb{T}_{i} is obtained from \mathbb{T}_{i-1} only by refining one level.

Virtual hierarchy

Definition

The virtual decomposition of \mathbb{T} is defined as

$$
\mathbb{T}=\sum_{i=1}^{J} \mathbb{T}_{i}
$$

where \mathbb{T}_{i} is obtained from \mathbb{T}_{i-1} only by refining one level.

This construction preserves the mesh level disparity of \mathbb{T} for all \mathbb{T}_{i}.

Enforcing locality

■ Roughly speaking, taking the step from \mathbb{T}_{i-1} to \mathbb{T}_{i} only adds \mathbf{B}-splines of a single level i.

Enforcing locality

■ Roughly speaking, taking the step from \mathbb{T}_{i-1} to \mathbb{T}_{i} only adds B-splines of a single level i.

- In order to obtain optimal computational complexity it is necessary to reduce redundant overlaps to a minimum. This motivates the introduction of $\widetilde{\mathbb{T}}_{i}$ as the span of the newly added THB-basis functions (and, roughly speaking, some of their neighbours) compared to \mathbb{T}_{i-1}.

Enforcing locality

■ Roughly speaking, taking the step from \mathbb{T}_{i-1} to \mathbb{T}_{i} only adds B-splines of a single level i.

- In order to obtain optimal computational complexity it is necessary to reduce redundant overlaps to a minimum. This motivates the introduction of \widetilde{T}_{i} as the span of the newly added THB-basis functions (and, roughly speaking, some of their neighbours) compared to \mathbb{T}_{i-1}.
- One can easily show, that

$$
\mathbb{T}=\sum_{i=1}^{J} \widetilde{\mathbb{T}}_{i}
$$

Enforcing locality

■ Roughly speaking, taking the step from \mathbb{T}_{i-1} to \mathbb{T}_{i} only adds \mathbf{B}-splines of a single level i.

- In order to obtain optimal computational complexity it is necessary to reduce redundant overlaps to a minimum. This motivates the introduction of \widetilde{T}_{i} as the span of the newly added THB-basis functions (and, roughly speaking, some of their neighbours) compared to \mathbb{T}_{i-1}.
- One can easily show, that

$$
\mathbb{T}=\sum_{i=1}^{J} \widetilde{\mathbb{T}}_{i}
$$

- In order to obtain stability and SCS for this decomposition the ordering of the subspaces $\widetilde{\mathbb{T}}_{i}$ is important.

Stability of the decomposition

Theorem

For any $v \in \mathbb{T}$ there exist $v_{i} \in \widetilde{\mathbb{T}}_{i}$ such that $v=\sum_{i=1}^{J} v_{i}$ and

$$
\sum_{i=1}^{J}\left\|v_{i}\right\|_{a}^{2} \leq C\|v\|_{a}^{2}
$$

with C independent of J.

Stability of the decomposition

Theorem

For any $v \in \mathbb{T}$ there exist $v_{i} \in \widetilde{\mathbb{T}}_{i}$ such that $v=\sum_{i=1}^{J} v_{i}$ and

$$
\sum_{i=1}^{J}\left\|v_{i}\right\|_{a}^{2} \leq C\|v\|_{a}^{2}
$$

with C independent of J.

Proof.

Based on the result for B-splines (Buffa et al., 2013), the mentioned properties of the hierarchical QI and the discrete Hardy-inequality.

SCS inequality

Theorem

Let $u_{i}, v_{i} \in \widetilde{\mathbb{T}}_{i}$. Then we have

$$
\left|\sum_{i=1}^{J} \sum_{j=i+1}^{J} a\left(u_{i}, v_{j}\right)\right| \leq C\left(\sum_{i=1}^{J}\left\|u_{i}\right\|_{a}^{2}\right)^{1 / 2}\left(\sum_{j=1}^{J}\left\|v_{j}\right\|_{a}^{2}\right)^{1 / 2},
$$

with C independent of J.

SCS inequality

Theorem

Let $u_{i}, v_{i} \in \widetilde{\mathbb{T}}_{i}$. Then we have

$$
\left|\sum_{i=1}^{J} \sum_{j=i+1}^{J} a\left(u_{i}, v_{j}\right)\right| \leq C\left(\sum_{i=1}^{J}\left\|u_{i}\right\|_{a}^{2}\right)^{1 / 2}\left(\sum_{j=1}^{J}\left\|v_{j}\right\|_{a}^{2}\right)^{1 / 2},
$$

with C independent of J.

Proof.

Based on the result for B-splines (Cho and Vazquez, 2018) and lengthy, but elementary manipulations.

Computational complexity

■ governed by the computational complexity of the subspace solvers.
■ Uniform sparsity of subspace systems on $\widetilde{\mathbb{T}}_{i} \Longrightarrow$ using Gauss-Seidel relaxations as "solver" takes $\mathcal{O}\left(\left|\widetilde{\mathbb{T}}_{i}\right|\right)$ iterations.

Computational complexity

■ governed by the computational complexity of the subspace solvers.
■ Uniform sparsity of subspace systems on $\widetilde{\mathbb{T}}_{i} \Longrightarrow$ using Gauss-Seidel relaxations as "solver" takes $\mathcal{O}\left(\left|\widetilde{\mathbb{T}}_{i}\right|\right)$ iterations.

■ Can show: $\sum\left|\widetilde{\mathbb{T}}_{i}\right| \leq C|\mathbb{T}|$ with C independent of $|\mathbb{T}|$

Computational complexity

■ governed by the computational complexity of the subspace solvers.
■ Uniform sparsity of subspace systems on $\widetilde{\mathbb{T}}_{i} \Longrightarrow$ using Gauss-Seidel relaxations as "solver" takes $\mathcal{O}\left(\left|\widetilde{\mathbb{T}}_{i}\right|\right)$ iterations.

■ Can show: $\sum\left|\widetilde{\mathbb{T}}_{i}\right| \leq C|\mathbb{T}|$ with C independent of $|\mathbb{T}|$
■ Optimal complexity

Violation of the subspace error operator contraction assumption

Contraction of subspace error operators

$$
\exists \rho<1 \forall i \in\{1, \ldots, J\}:\left\|I-T_{i}\right\|_{a_{i}} \leq \rho \text { where }\|.\|_{a_{i}}^{2}:=a_{i}(., .) .
$$

■ No uniform bound for Gauss-Seidel relaxations

Violation of the subspace error operator contraction assumption

Contraction of subspace error operators

$$
\exists \rho<1 \forall i \in\{1, \ldots, J\}:\left\|I-T_{i}\right\|_{a_{i}} \leq \rho \quad \text { where } \quad\|\cdot\|_{a_{i}}^{2}:=a_{i}(., .) .
$$

■ No uniform bound for Gauss-Seidel relaxations
■ Xu-Zikatanov formula admits weaker assumption:
Weak contraction assumption

$$
\exists \omega \in(0,2) \forall v \in \mathbb{T}:\left\|T_{i} v\right\|_{a}^{2} \leq \omega a\left(T_{i} v, v\right) .
$$

■ Remark: $\left\|I-T_{i}\right\|_{a} \leq 1 \leftrightarrow a\left(T_{i} v, T_{i} v\right) \leq 2 a\left(T_{i} v, v\right), v \in \mathbb{T}$

■ Gauss-Seidel relaxation satisfies this assumption

■ Gauss-Seidel relaxation satisfies this assumption
■ Can be written as product of energy-projections on single THB-basis functions.

$$
u^{k+1}=u^{k}+\left(I-\prod_{\tau \in \widetilde{\mathcal{T}}}\left(I-P_{\tau}\right)\right) A^{-1}\left(f-A u^{k}\right)
$$

■ Gauss-Seidel relaxation satisfies this assumption
■ Can be written as product of energy-projections on single THB-basis functions.

$$
u^{k+1}=u^{k}+\left(I-\prod_{\tau \in \tilde{\mathcal{T}}}\left(I-P_{\tau}\right)\right) A^{-1}\left(f-A u^{k}\right) .
$$

■ Elementary computations from Xu-Zikatanov formula yield convergence, if one can show $l^{2}-L^{2}$-stability of THB-splines

$$
\exists c \neq c(|\mathbb{T}|)>0 \forall w=\sum_{\tau \in \mathcal{T}} c_{\tau}(w) \tau \in \mathbb{T}: \sum_{\tau \in \mathcal{T}}\left|c_{\tau}(w)\right|^{2} \leq c\|w\|_{0}^{2}
$$

Conclusion and future work

■ Local THB-Multigrid (optimal computational complexity)

- Convergence of subspace correction methods (for spectrally equivalent subspace solvers)

Conclusion and future work

- Local THB-Multigrid (optimal computational complexity)

■ Convergence of subspace correction methods (for spectrally equivalent subspace solvers)

■ l^{2} - L^{2}-stability of THB-splines \Longrightarrow local multigrid convergence

- Convergence analysis for jumping coefficients

■ Nested iteration schemes

- Application to mixed problems

