LOCAL THB-MULTIGRID

Fast solvers for large-scale locally refined IgA-systems.

Clemens Hofreither Ludwig Mitter Hendrik Speleers 2019/07/04 Institute of Computational Mathematics

THB-SPLINES

Discretization based on B-splines

Hierarchical meshes

Hierarchical meshes

_						

THB-splines: Dropping the tensor product structure

THB-splines: Dropping the tensor product structure

non-negative

linearly independent

non-negative

- linearly independent
- form a partition of unity

- non-negative
- linearly independent
- form a partition of unity
- nested enlargement

non-negative

- linearly independent
- form a partition of unity
- nested enlargement
- **strongly stable** with respect to the <u> L^{∞} -norm</u>

The model problem

• Let
$$V = H_0^1(D), D = (0, 1)^2$$
.

Variational problem

Find $u \in V$ such that

$$a(u,v) = \langle F, v \rangle, \qquad \forall v \in V.$$

The model problem

• Let
$$V = H_0^1(D), D = (0, 1)^2$$
.

Variational problem

Find $u \in V$ such that

$$a(u,v) = \langle F, v \rangle, \qquad \forall v \in V.$$

Assume $F \in V^*$ and $a(.,.) : V \times V \to \mathbb{R}$ is bilinear, symmetric, continuous and coercive \implies well-posedness

The model scheme

Let $\mathbb{T} \subset V$ be a conforming THB-discretization.

THB-scheme

Find $u \in \mathbb{T}$ such that

$$a(u,v) = \langle F, v \rangle, \qquad \forall v \in \mathbb{T}.$$

LOCAL THB-MULTIGRID

THB-MULTIGRID

SUBSPACE CORRECTION METHODS FOR THB-SPLINES

Iterative solving

Iterative procedure to solve **THB-scheme** for some initial guess $u^0 \in \mathbb{T}$.

Successive corrections

If $u^{l-1} \in \mathbb{T}$ is given then we can define $u^l = u^{l-1} + \hat{e}$ where $\hat{e} \in \mathbb{T}$ is an **approximate solution** of the residual equation

$$a(e,v) = \langle F, v \rangle - a(u^{l-1}, v), \qquad \forall v \in \mathbb{T}.$$

Iterative solving

Iterative procedure to solve **THB-scheme** for some initial guess $u^0 \in \mathbb{T}$.

Successive corrections

If $u^{l-1} \in \mathbb{T}$ is given then we can define $u^l = u^{l-1} + \hat{e}$ where $\hat{e} \in \mathbb{T}$ is an **approximate solution** of the residual equation

$$a(e,v) = \langle F, v \rangle - a(u^{l-1}, v), \qquad \forall v \in \mathbb{T}.$$

Residual equation in general <u>as difficult to solve</u> as the original problem.

Divide and conquer.

• Let $\mathbb{T}_i \subseteq \mathbb{T}, i = 1, 2, \dots, J$ be subspaces with

Divide and conquer.

Let $\mathbb{T}_i \subseteq \mathbb{T}, i = 1, 2, \dots, J$ be subspaces with

$$\mathbb{T} = \sum_{i=1}^{J} \mathbb{T}_i.$$

Let $a_i(.,.)$ be **continuous and coercive** approximations of a(.,.) restricted on $\mathbb{T}_i \implies$ well-posedness of the subspace problems

SSC: Successive subspace corrections

Algorithm SSC INPUT: $u^0 \in \mathbb{T}$ for l = 1, 2, ... $u_0^{l-1} = u^{l-1}$ for $i = 1, \ldots, J$ Let $e_i \in \mathbb{T}_i$ solve $a_i(e_i, v_i) = \langle F, v_i \rangle - a(u_{i-1}^{l-1}, v_i) \qquad \forall v_i \in \mathbb{T}_i$ $u_i^{l-1} = u_i^{l-1} + e_i$ endfor $u^{l} = u^{l-1}$ endfor

Algorithm Symmetric SSC INPUT: $u^0 \in \mathbb{T}$

for l = 1, 2, ... $u_{0}^{l-1} = u^{l-1}$ for i = 1, ..., JLet $e_i \in \mathbb{T}_i$ solve $a_i(e_i, v_i) = \langle F, v_i \rangle - a(u_{i-1}^{l-1}, v_i) \qquad \forall v_i \in \mathbb{T}_i$ $u_i^{l-1} = u_i^{l-1} + e_i$ endfor $u_0^{l-1} = u_1^{l-1}$ for $i = J_{1}, ..., 1$ Let $e_i \in \mathbb{T}_i$ solve $a_i(e_i, v_i) = \langle F, v_i \rangle - a(u_{i-1}^{l-1}, v_i) \qquad \forall v_i \in \mathbb{T}_i$ $u_{i}^{l-1} = u_{i-1}^{l-1} + e_{i}$ endfor $u^{l} = u^{l-1}$ endfor

Equivalence of Symmetric SSC and Multigrid V-cycle

Theorem ((Xu, 1992))

The **Symmetric SSC method** and the **multigrid V-cycle** (eg. ref. (Hackbusch, 1985)) are equivalent.

Ie., the error propagation operator (EPO) of the Multigrid V-cycle coincides with the EPO of the symmetric SSC method.

Theorem ((Xu, 1992))

The EPO of the Symmetric SSC is self-adjoint (wrt. a(.,.)) and is the product of the EPO of the SSC method and its adjoint (wrt. a(.,.))

Error propagation operators

• Let $T_i : \mathbb{T} \to \mathbb{T}_i$ be defined by

$$a_i(T_iv, v_i) = a(v, v_i), \quad \forall v_i \in \mathbb{T}_i.$$

Error propagation operators

• Let $T_i : \mathbb{T} \to \mathbb{T}_i$ be defined by

$$a_i(T_iv, v_i) = a(v, v_i), \quad \forall v_i \in \mathbb{T}_i.$$

By the well-posedness of the subspace problems one sees, that $T_i|_{\mathbb{T}_i}: \mathbb{T}_i \to \mathbb{T}_i$ is **isomorphic**.

If $a_i(.,.) = a(.,.)$ one has $T_i = P_i$, where P_i is the energy projection,

 $a(P_iv, v_i) = a(v, v_i), \qquad v \in \mathbb{T}, v_i \in \mathbb{T}_i.$

Error propagation operators

• Let $T_i : \mathbb{T} \to \mathbb{T}_i$ be defined by

$$a_i(T_iv, v_i) = a(v, v_i), \quad \forall v_i \in \mathbb{T}_i.$$

From the definition of SSC it follows, that $u - u_i^{l-1} = (I - T_i)(u - u_{i-1}^{l-1})$, hence,

 $u - u^{l} = E(u - u^{l-1}) = \dots = E^{l}(u - u^{0}), \qquad E = (I - T_{J})(I - T_{J-1})\cdots(I - T_{1}),$

ie. SSC is the multiplicative Schwarz method.

Assumptions for proving uniform convergence

By the symmetry of a(.,.) we have the **energy norm** $\|.\|_a := a(.,.)^{1/2}$.

Assumptions for proving uniform convergence

By the symmetry of a(.,.) we have the **energy norm** $\|.\|_a := a(.,.)^{1/2}$.

Contraction of subspace error operators

$$\exists \rho < 1 \forall i \in \{1, \dots, J\} : \|I - T_i\|_{a_i} \le \rho \text{ where } \|.\|_{a_i}^2 := a_i(.,.).$$

Assumptions for proving uniform convergence

By the symmetry of a(.,.) we have the **energy norm** $\|.\|_a := a(.,.)^{1/2}$.

Contraction of subspace error operators

$$\exists \rho < 1 \forall i \in \{1, \dots, J\} : \|I - T_i\|_{a_i} \le \rho \text{ where } \|.\|_{a_i}^2 := a_i(.,.).$$

This assumption admits the application of the **Xu-Zikatanov identity** (Xu and Zikatanov, 2002).

Stable decomposition

For any $v \in \mathbb{T}$ there exists a decomposition $v = \sum_{i=1}^{J} v_i, v_i \in \mathbb{T}_i$ such that

$$\sum_{i=1}^{J} \|v_i\|_a^2 \le K_1 \|v\|_a^2 \quad \text{with} \quad \|.\|_a^2 := a(.,.).$$

Stable decomposition

For any $v \in \mathbb{T}$ there exists a decomposition $v = \sum_{i=1}^{J} v_i, v_i \in \mathbb{T}_i$ such that

$$\sum_{i=1}^{J} \|v_i\|_a^2 \le K_1 \|v\|_a^2 \quad \text{with} \quad \|.\|_a^2 := a(.,.).$$

Strengthened Cauchy-Schwarz (SCS) inequality

For any $u_i, v_i \in \mathbb{T}_i$

$$\left|\sum_{i=1}^{J}\sum_{j=i+1}^{J}a(u_i, v_j)\right| \le K_2 \left(\sum_{i=1}^{J} \|u_i\|_a^2\right)^{1/2} \left(\sum_{j=1}^{J} \|v_i\|_a^2\right)^{1/2}$$

Convergence of SSC

Theorem (Chen et al., 2012)

Let $\mathbb{T} = \sum \widetilde{\mathbb{T}}_i$ be a space decomposition that is **stable** and satisfies the **SCS** inequality and let the subspace error operators $T_i : \mathbb{T} \to \widetilde{\mathbb{T}}_i$ be contractions. Then one has

$$||E||_a^2 \le 1 - \frac{1 - \rho^2}{2K_1(1 + (1 + \rho)^2 K_2^2)}.$$

Convergence of SSC

Theorem (Chen et al., 2012)

Let $\mathbb{T} = \sum \widetilde{\mathbb{T}}_i$ be a space decomposition that is **stable** and satisfies the **SCS** inequality and let the subspace error operators $T_i : \mathbb{T} \to \widetilde{\mathbb{T}}_i$ be contractions. Then one has

$$||E||_a^2 \le 1 - \frac{1 - \rho^2}{2K_1(1 + (1 + \rho)^2 K_2^2)}.$$

This means, that SSC converges uniformly with a constant that is independent of J. In other words, a symmetrized SSC-preconditioned conjugate gradient method is <u>*h*-robust</u>.

FINDING A SUITABLE DECOMPOSITION

Admissible grids

Definition

For each point $x \in D$ in the **computational domain** $D = (0,1)^d$, let δ_x be the largest difference between the levels of THB-basis functions that are non-zero in x. The **mesh level disparity** δ is defined as

$$\delta := \max_{\boldsymbol{x} \in D} \delta_{\boldsymbol{x}}.$$

Admissible grids

Definition

For each point $x \in D$ in the **computational domain** $D = (0,1)^d$, let δ_x be the largest difference between the levels of THB-basis functions that are non-zero in x. The **mesh level disparity** δ is defined as

$$\delta := \max_{\boldsymbol{x} \in D} \delta_{\boldsymbol{x}}.$$

Fixing the mesh level disparity yields so-called admissible THB-spline spaces:

■ The number of non-zero basis functions in any x ∈ D is uniformly bounded.
■ The (non-empty) measures of the supports of two THB-basis functions is uniformly equivalent to the measure of their intersection.

■ Stability and the SCS inequality for an arbitrary THB-spline space T does not hold for any decomposition

$$\mathbb{T} = \sum_{i=1}^{J} \mathbb{T}_i.$$

■ Stability and the SCS inequality for an arbitrary THB-spline space T does not hold for any decomposition

$$\mathbb{T} = \sum_{i=1}^{J} \mathbb{T}_i.$$

- "Uniformly relate" measures of supports between basis functions in \mathbb{T}_i supported in any $x \in D$ (ie. by uniformly bounding δ).
- "Uniformly relate" measures of supports of basis functions in " $\mathbb{T}_{i+1} \setminus \mathbb{T}_i$ " (which cannot be guaranteed by the adaptive method).

Virtual hierarchy

Definition

The virtual decomposition of $\mathbb T$ is defined as

$$\Gamma = \sum_{i=1}^{J} \mathbb{T}_i,$$

where \mathbb{T}_i is obtained from \mathbb{T}_{i-1} only by **refining one level**.

Virtual hierarchy

Definition

The virtual decomposition of ${\mathbb T}$ is defined as

$$\Gamma = \sum_{i=1}^{J} \mathbb{T}_i,$$

where T_i is obtained from T_{i-1} only by **refining one level**.

This construction **preserves the mesh level disparity** of \mathbb{T} for all \mathbb{T}_i .

■ Roughly speaking, taking the step from \mathbb{T}_{i-1} to \mathbb{T}_i only adds **B-splines of a** single level *i*.

- Roughly speaking, taking the step from T_{i-1} to T_i only adds B-splines of a single level *i*.
- In order to obtain optimal computational complexity it is necessary to reduce redundant overlaps to a minimum. This motivates the introduction of T̃_i as the span of the newly added THB-basis functions (and, roughly speaking, some of their neighbours) compared to T_{i-1}.

- Roughly speaking, taking the step from T_{i-1} to T_i only adds B-splines of a single level *i*.
- In order to obtain optimal computational complexity it is necessary to reduce redundant overlaps to a minimum. This motivates the introduction of T̃_i as the span of the newly added THB-basis functions (and, roughly speaking, some of their neighbours) compared to T_{i-1}.

One can easily show, that

$$\mathbb{T} = \sum_{i=1}^{J} \widetilde{\mathbb{T}}_i.$$

- Roughly speaking, taking the step from T_{i-1} to T_i only adds B-splines of a single level *i*.
- In order to obtain optimal computational complexity it is necessary to reduce redundant overlaps to a minimum. This motivates the introduction of T̃_i as the span of the newly added THB-basis functions (and, roughly speaking, some of their neighbours) compared to T_{i-1}.

One can easily show, that

$$\mathbb{T} = \sum_{i=1}^{J} \widetilde{\mathbb{T}}_i.$$

In order to obtain stability and SCS for this decomposition the ordering of the subspaces T_i is important.

Stability of the decomposition

Theorem

For any
$$v \in \mathbb{T}$$
 there exist $v_i \in \widetilde{\mathbb{T}}_i$ such that $v = \sum_{i=1}^J v_i$ and

$$\sum_{i=1}^{J} \|v_i\|_a^2 \le C \|v\|_a^2,$$

with C independent of J.

Stability of the decomposition

Theorem

For any
$$v \in \mathbb{T}$$
 there exist $v_i \in \widetilde{\mathbb{T}}_i$ such that $v = \sum_{i=1}^J v_i$ and

$$\sum_{i=1}^{J} \|v_i\|_a^2 \le C \|v\|_a^2,$$

with C independent of J.

Proof.

Based on the result for B-splines (Buffa et al., 2013), the mentioned properties of the **hierarchical QI** and the **discrete Hardy-inequality**.

SCS inequality

Theorem

Let $u_i, v_i \in \widetilde{\mathbb{T}}_i$. Then we have

$$\sum_{i=1}^{J} \sum_{j=i+1}^{J} a(u_i, v_j) | \le C \Big(\sum_{i=1}^{J} ||u_i||_a^2 \Big)^{1/2} \Big(\sum_{j=1}^{J} ||v_j||_a^2 \Big)^{1/2},$$

with C independent of J.

SCS inequality

Theorem

Let $u_i, v_i \in \widetilde{\mathbb{T}}_i$. Then we have

$$\sum_{i=1}^{J} \sum_{j=i+1}^{J} a(u_i, v_j) | \le C \Big(\sum_{i=1}^{J} ||u_i||_a^2 \Big)^{1/2} \Big(\sum_{j=1}^{J} ||v_j||_a^2 \Big)^{1/2},$$

with C independent of J.

Proof.

Based on the result for B-splines (Cho and Vazquez, 2018) and lengthy, but elementary manipulations. $\hfill\square$

Computational complexity

■ governed by the computational complexity of the subspace solvers.
■ Uniform sparsity of subspace systems on T̃_i ⇒ using Gauss-Seidel relaxations as "solver" takes O(|T̃_i|) iterations.

Computational complexity

■ governed by the computational complexity of the subspace solvers.
■ Uniform sparsity of subspace systems on T̃_i ⇒ using Gauss-Seidel relaxations as "solver" takes O(|T̃_i|) iterations.

Can show: $\sum |\widetilde{\mathbb{T}}_i| \leq C |\mathbb{T}|$ with *C* independent of $|\mathbb{T}|$

Computational complexity

■ governed by the computational complexity of the subspace solvers.
■ Uniform sparsity of subspace systems on T̃_i ⇒ using Gauss-Seidel relaxations as "solver" takes O(|T̃_i|) iterations.

- Can show: $\sum |\widetilde{\mathbb{T}}_i| \leq C |\mathbb{T}|$ with *C* independent of $|\mathbb{T}|$
- Optimal complexity

Violation of the subspace error operator contraction assumption

Contraction of subspace error operators

$$\exists \rho < 1 \forall i \in \{1, \dots, J\} : \|I - T_i\|_{a_i} \le \rho \text{ where } \|.\|_{a_i}^2 := a_i(.,.).$$

No uniform bound for Gauss-Seidel relaxations

Violation of the subspace error operator contraction assumption

Contraction of subspace error operators

$$\exists \rho < 1 \forall i \in \{1, \dots, J\} : \|I - T_i\|_{a_i} \le \rho \text{ where } \|.\|_{a_i}^2 := a_i(.,.).$$

No uniform bound for Gauss-Seidel relaxations Xu-Zikatanov formula admits weaker assumption:

Weak contraction assumption

$$\exists \omega \in (0,2) \forall v \in \mathbb{T} : ||T_i v||_a^2 \le \omega a(T_i v, v).$$

Remark: $||I - T_i||_a \le 1 \leftrightarrow a(T_iv, T_iv) \le 2a(T_iv, v), v \in \mathbb{T}$

Gauss-Seidel relaxation satisfies this assumption

■ Gauss-Seidel relaxation satisfies this assumption

Can be written as product of energy-projections on single THB-basis functions.

$$u^{k+1} = u^k + \left(I - \prod_{\tau \in \widetilde{\mathcal{T}}} (I - P_\tau)\right) A^{-1} (f - Au^k).$$

- Gauss-Seidel relaxation satisfies this assumption
- Can be written as product of energy-projections on single THB-basis functions.

$$u^{k+1} = u^k + \left(I - \prod_{\tau \in \widetilde{\mathcal{T}}} (I - P_\tau)\right) A^{-1} (f - Au^k).$$

■ Elementary computations from Xu-Zikatanov formula yield convergence, if one can show *l*²-*L*²-stability of THB-splines

$$\exists c \neq c(|\mathbb{T}|) > 0 \forall w = \sum_{\tau \in \mathcal{T}} c_{\tau}(w) \tau \in \mathbb{T} : \sum_{\tau \in \mathcal{T}} |c_{\tau}(w)|^2 \le c ||w||_0^2.$$

Conclusion and future work

Local THB-Multigrid (optimal computational complexity)

Convergence of subspace correction methods (for spectrally equivalent subspace solvers)

Conclusion and future work

Local THB-Multigrid (optimal computational complexity)

Convergence of subspace correction methods (for spectrally equivalent subspace solvers)

- \blacksquare l^2 - L^2 -stability of THB-splines \implies local multigrid convergence
- Convergence analysis for jumping coefficients
- Nested iteration schemes
- Application to mixed problems