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THB-SPLINES



Discretization based on B-splines
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Hierarchical meshes
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THB-splines: Dropping the tensor product structure
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THB-splines: Important properties

� non-negative

� linearly independent

� form a partition of unity

� nested enlargement

� strongly stable with respect to the L∞-norm
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The model problem

� Let V = H1
0 (D), D = (0, 1)2.

Variational problem
Find u ∈ V such that

a(u, v) = 〈F, v〉, ∀v ∈ V.

� Assume F ∈ V ∗ and a(., .) : V × V → R is bilinear, symmetric, continuous
and coercive =⇒ well-posedness
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The model scheme

� Let T ⊂ V be a conforming THB-discretization.

THB-scheme
Find u ∈ T such that

a(u, v) = 〈F, v〉, ∀v ∈ T.
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SUBSPACE CORRECTION METHODS
FOR THB-SPLINES



Iterative solving

� Iterative procedure to solve THB-scheme for some initial guess u0 ∈ T.

Successive corrections
If ul−1 ∈ T is given then we can define ul = ul−1 + ê where ê ∈ T is an approxi-
mate solution of the residual equation

a(e, v) = 〈F, v〉 − a(ul−1, v〉, ∀v ∈ T.

� Residual equation in general as difficult to solve as the original problem.
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Divide and conquer.

� Let Ti ⊆ T, i = 1, 2, . . . , J be subspaces with

T =

J∑
i=1

Ti.

� Let ai(., .) be continuous and coercive approximations of a(., .) restricted on
Ti =⇒ well-posedness of the subspace problems
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SSC: Successive subspace corrections

Algorithm SSC INPUT: u0 ∈ T

for l = 1, 2, . . .

ul−10 = ul−1

for i = 1, . . . , J

Let ei ∈ Ti solve
ai(ei, vi) = 〈F, vi〉 − a(ul−1i−1, vi) ∀vi ∈ Ti

ul−1i = ul−1i−1 + ei

endfor
ul = ul−1J

endfor
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Algorithm Symmetric SSC INPUT: u0 ∈ T

for l = 1, 2, . . .

ul−1
0 = ul−1

for i = 1, . . . , J

Let ei ∈ Ti solve
ai(ei, vi) = 〈F, vi〉 − a(ul−1

i−1, vi) ∀vi ∈ Ti

ul−1
i = ul−1

i−1 + ei
endfor
ul−1
0 = ul−1

J

for i = J, . . . , 1

Let ei ∈ Ti solve
ai(ei, vi) = 〈F, vi〉 − a(ul−1

i−1, vi) ∀vi ∈ Ti

ul−1
i = ul−1

i−1 + ei
endfor
ul = ul−1

J

endfor
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Equivalence of Symmetric SSC and Multigrid V-cycle

Theorem ((Xu, 1992))

The Symmetric SSC method and the multigrid V-cycle (eg. ref. (Hackbusch,
1985)) are equivalent.

Ie., the error propagation operator (EPO) of the Multigrid V-cycle coincides with
the EPO of the symmetric SSC method.

Theorem ((Xu, 1992))

The EPO of the Symmetric SSC is self-adjoint (wrt. a(., .)) and is the product of
the EPO of the SSC method and its adjoint (wrt. a(., .))
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Error propagation operators

� Let Ti : T→ Ti be defined by

ai(Tiv, vi) = a(v, vi), ∀vi ∈ Ti.

� From the definition of SSC it follows, that u− ul−1i = (I − Ti)(u− ul−1i−1), hence,

u− ul = E(u− ul−1) = . . . = El(u− u0), E = (I − TJ)(I − TJ−1) · · · (I − T1),

ie. SSC is the multiplicative Schwarz method.
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Assumptions for proving uniform convergence

By the symmetry of a(., .) we have the energy norm ‖.‖a := a(., .)1/2.

Contraction of subspace error operators

∃ρ < 1∀i ∈ {1, . . . , J} : ‖I − Ti‖ai ≤ ρ where ‖.‖2ai := ai(., .).

This assumption admits the application of the Xu-Zikatanov identity (Xu and
Zikatanov, 2002).
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Stable decomposition

For any v ∈ T there exists a decomposition v =
∑J

i=1 vi, vi ∈ Ti such that

J∑
i=1

‖vi‖2a ≤ K1‖v‖2a with ‖.‖2a := a(., .).

Strengthened Cauchy-Schwarz (SCS) inequality

For any ui, vi ∈ Ti

|
J∑
i=1

J∑
j=i+1

a(ui, vj)| ≤ K2

( J∑
i=1

‖ui‖2a
)1/2( J∑

j=1

‖vi‖2a
)1/2

.
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Convergence of SSC

Theorem (Chen et al., 2012)

Let T =
∑

T̃i be a space decomposition that is stable and satisfies the SCS
inequality and let the subspace error operators Ti : T → T̃i be contractions.
Then one has

‖E‖2a ≤ 1− 1− ρ2

2K1(1 + (1 + ρ)2K2
2 )
.

This means, that SSC converges uniformly with a constant that is independent
of J . In other words, a symmetrized SSC-preconditioned conjugate gradient
method is h-robust.
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FINDING A SUITABLE DECOMPOSITION



Admissible grids

Definition

For each point x ∈ D in the computational domain D = (0, 1)d, let δx be the
largest difference between the levels of THB-basis functions that are non-zero in
x. The mesh level disparity δ is defined as

δ := max
x∈D

δx.

Fixing the mesh level disparity yields so-called admissible THB-spline spaces:

� The number of non-zero basis functions in any x ∈ D is uniformly bounded.
� The (non-empty) measures of the supports of two THB-basis functions is

uniformly equivalent to the measure of their intersection.
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� Stability and the SCS inequality for an arbitrary THB-spline space T
does not hold for any decomposition

T =

J∑
i=1

Ti.

� “Uniformly relate” measures of supports between basis functions in Ti
supported in any x ∈ D (ie. by uniformly bounding δ).

� “Uniformly relate” measures of supports of basis functions in “Ti+1 \ Ti“
(which cannot be guaranteed by the adaptive method).
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Virtual hierarchy

Definition

The virtual decomposition of T is defined as

T =

J∑
i=1

Ti,

where Ti is obtained from Ti−1 only by refining one level.

This construction preserves the mesh level disparity of T for all Ti.
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Tnew = T1 + T2 + T3

19/27



Enforcing locality

� Roughly speaking, taking the step from Ti−1 to Ti only adds B-splines of a
single level i.

� In order to obtain optimal computational complexity it is necessary to
reduce redundant overlaps to a minimum. This motivates the introduction
of T̃i as the span of the newly added THB-basis functions (and, roughly
speaking, some of their neighbours) compared to Ti−1.

� One can easily show, that

T =
J∑
i=1

T̃i.

� In order to obtain stability and SCS for this decomposition the ordering of
the subspaces T̃i is important.
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Tnew = T̃1 + T̃2 + T̃3
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Stability of the decomposition

Theorem

For any v ∈ T there exist vi ∈ T̃i such that v =
∑J

i=1 vi and

J∑
i=1

‖vi‖2a ≤ C‖v‖2a,

with C independent of J .

Proof.

Based on the result for B-splines (Buffa et al., 2013), the mentioned properties
of the hierarchical QI and the discrete Hardy-inequality.
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SCS inequality

Theorem

Let ui, vi ∈ T̃i. Then we have

|
J∑
i=1

J∑
j=i+1

a(ui, vj)| ≤ C
( J∑
i=1

‖ui‖2a
)1/2( J∑

j=1

‖vj‖2a
)1/2

,

with C independent of J .

Proof.

Based on the result for B-splines (Cho and Vazquez, 2018) and lengthy, but
elementary manipulations.
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Computational complexity

� governed by the computational complexity of the subspace solvers.

� Uniform sparsity of subspace systems on T̃i =⇒ using Gauss-Seidel
relaxations as "solver" takes O(|T̃i|) iterations.

� Can show:
∑
|T̃i| ≤ C|T| with C independent of |T|

� Optimal complexity
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Violation of the subspace error operator contraction
assumption

Contraction of subspace error operators

∃ρ < 1∀i ∈ {1, . . . , J} : ‖I − Ti‖ai ≤ ρ where ‖.‖2ai := ai(., .).

� No uniform bound for Gauss-Seidel relaxations

� Xu-Zikatanov formula admits weaker assumption:

Weak contraction assumption

∃ω ∈ (0, 2)∀v ∈ T : ‖Tiv‖2a ≤ ωa(Tiv, v).

� Remark: ‖I − Ti‖a ≤ 1↔ a(Tiv, Tiv) ≤ 2a(Tiv, v), v ∈ T
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� Gauss-Seidel relaxation satisfies this assumption

� Can be written as product of energy-projections on single THB-basis
functions.

uk+1 = uk +
(
I −

∏
τ∈T̃

(I − Pτ )
)
A−1(f −Auk).

� Elementary computations from Xu-Zikatanov formula yield convergence,
if one can show l2-L2-stability of THB-splines

∃c 6= c(|T|) > 0∀w =
∑
τ∈T

cτ (w)τ ∈ T :
∑
τ∈T
|cτ (w)|2 ≤ c‖w‖20.
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Conclusion and future work

� Local THB-Multigrid (optimal computational complexity)

� Convergence of subspace correction methods (for spectrally equivalent
subspace solvers)

� l2-L2-stability of THB-splines =⇒ local multigrid convergence

� Convergence analysis for jumping coefficients

� Nested iteration schemes

� Application to mixed problems
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