LOCAL THB-MULTIGRID

Fast solvers for large-scale locally refined IgA-systems.
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THB-SPLINES
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Discretization based on B-splines
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Hierarchical meshes
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THB-splines: Dropping the tensor product structure
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THB-splines: Important properties

H non-negative

4/27



THB-splines: Important properties

H non-negative

B linearly independent

4/27



THB-splines: Important properties

H non-negative
B linearly independent
B form a partition of unity

4/27



THB-splines: Important properties

B non-negative

B linearly independent

B form a partition of unity
B nested enlargement

4/27



THB-splines: Important properties

H non-negative

B linearly independent

B form a partition of unity

B nested enlargement

B strongly stable with respect to the L>°-norm
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The model problem

B LetV = H}(D),D = (0,1)%

Variational problem

Find » € V such that
a(u,v) = (F,v), Yv e V.
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The model problem

B LetV = H}(D),D = (0,1)%

Variational problem

Find » € V such that
a(u,v) = (F,v), Yv e V.

B Assume F' € V*and a(.,.) : V x V — R is bilinear, symmetric, continuous

and coercive — well-posedness
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The model scheme

B Let T C V be a conforming THB-discretization.

THB-scheme

Find v € T such that
a(u,v) = (F,v), Vv e T.
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SUBSPACE CORRECTION METHODS
FOR THB-SPLINES
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Iterative solving

B lterative procedure to solve THB-scheme for some initial guess u° € T.

Successive corrections

If u'=1 € T is given then we can define u! = u!~! + ¢ where é € T is an approxi-
mate solution of the residual equation

ale,v) = (F,v) — a(u!~1,v), Vv e T.
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Iterative solving

B lterative procedure to solve THB-scheme for some initial guess u° € T.

Successive corrections

If u'=1 € T is given then we can define u! = u!~! + ¢ where é € T is an approxi-
mate solution of the residual equation

ale,v) = (F,v) — a(u!~1,v), Vv e T.

B Residual equation in general as difficult to solve as the original problem.
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Divide and conquer.

BLletT; CT,i=1,2,...,J be subspaces with

J
T = Zm.
=1
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Divide and conquer.

BLletT; CT,i=1,2,...,J be subspaces with

B Let q,(.,.) be continuous and coercive approximations of (., .) restricted on
T, = well-posedness of the subspace problems
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SSC: Successive subspace corrections

Algorithm SSC INPUT: u° € T

fori=1,2,...
ué—l — -1
fori=1,...,J
Let e; € T, solve
ai(ei,v;) = (F,v;) — a(uﬁj,vi) Yv; € T,
ulm =] +e
endfor
ul = uffl

endfor
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Algorithm Symmetric SSC

INPUT: u® € T

fori=1,2,...
ué_lzulfl
fori=1,....J

Lete; € T, solve

ai(ei,vi) = <F‘7 Ui> — a(ui:%,uz)

ué_l = uij +e;
endfor
up L=l
fori=J,...,1

Let e; € T; solve

ai(e'hvi) = <F7 ’Ui> - G(Ué:},ﬂi)

-1 -1
Uy = u_g e
endfor
-1
u = ’LLJ

endfor

Yv; € T;

Yv; € T;
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Equivalence of Symmetric SSC and Multigrid V-cycle

Theorem ((Xu, 1992))

The Symmetric SSC method and the multigrid V-cycle (eg. ref. (Hackbusch,
1985)) are equivalent.

le., the error propagation operator (EPO) of the Multigrid V-cycle coincides with
the EPO of the symmetric SSC method.

Theorem ((Xu, 1992))

The EPO of the Symmetric SSC is self-adjoint (wrt. a(.,.)) and is the product of
the EPO of the SSC method and its adjoint (wrt. a(.,.))
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Error propagation operators

B LetT;: T — T, be defined by

a;(Tiv,v;) = a(v,v;), Yu; € T;.
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Error propagation operators

B LetT;: T — T, be defined by

a;(Tiv,v;) = a(v,v;), Yo, € T;.

B By the well-posedness of the subspace problems one sees, that
Ti|t, : T; — T; is isomorphic.
B Ifa;(.,.) =a(.,.) one has T; = P;, where P; is the energy projection,

a(P,v;) = a(v,v;), veT v eT,;.
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Error propagation operators

B LetT;: T — T, be defined by

a;(Tiv,v;) = a(v,v;), Yu; € T;.

B From the definition of SSC it follows, that u — u!~! = (I — T;)(u — ul~1), hence,
u—u=Fu—-uY)=...=E@w-u), E=1-T)I-Ty.)---(I-T),

ie. SSC is the multiplicative Schwarz method.
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Assumptions for proving uniform convergence

By the symmetry of a(.,.) we have the energy norm |||, := a(.,.)/2.
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Assumptions for proving uniform convergence

By the symmetry of a(.,.) we have the energy norm |||, := a(.,.)/2.

Contraction of subspace error operators

Ip<Wie{l,...,J}: | I =T, <p where |.|I2. :=ai(,.).

This assumption admits the application of the Xu-Zikatanov identity (Xu and
Zikatanov, 2002).
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Stable decomposition

For any v € T there exists a decomposition v = Z;le vi,v; € T; such that

J
> llvillz < Kallollz - with [L.|2 := a(.,.).

i=1
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Stable decomposition

For any v € T there exists a decomposition v = Z;le vi,v; € T; such that

J
> llvillz < Kallollz - with [L.|2 := a(.,.).

i=1

Strengthened Cauchy-Schwarz (SCS) inequality

For any u;,v; € T;

J o J J 12 J AL/
3> vl < Ko Y luil2) (S lwll2)
i=1 j=i+1 i=1 j=1
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Convergence of SSC

Theorem (Chen et al., 2012)

LetT = > T; be a space decomposition that is stable and satisfies the SCS

inequality and let the subspace error operators T; : T — T; be contractions.
Then one has
1—p?

ElI’<1- :
1l < 2K1(1+ (1+ p)2K3)
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Convergence of SSC

Theorem (Chen et al., 2012)

LetT = > T; be a space decomposition that is stable and satisfies the SCS
inequality and let the subspace error operators T; : T — T, be contractions.
Then one has

1—p?

ElI’<1- :
1l < 2K1(1+ (1+ p)2K3)

This means, that SSC converges uniformly with a constant that is independent
of J. In other words, a symmetrized SSC-preconditioned conjugate gradient
method is h-robust.
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FINDING A SUITABLE DECOMPOSITION
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Admissible grids

For each point = € D in the computational domain D = (0,1)?, let ¢, be the
largest difference between the levels of THB-basis functions that are non-zero in
x. The mesh level disparity ¢ is defined as

0 := max p.
xeD
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Admissible grids

For each point = € D in the computational domain D = (0,1)?, let ¢, be the
largest difference between the levels of THB-basis functions that are non-zero in
x. The mesh level disparity ¢ is defined as

0 := max p.
xeD

Fixing the mesh level disparity yields so-called admissible THB-spline spaces:

B The number of non-zero basis functions in any x € D is uniformly bounded.
B The (non-empty) measures of the supports of two THB-basis functions is

uniformly equivalent to the measure of their intersection.
16/27



B Stability and the SCS inequality for an arbitrary THB-spline space T
does not hold for any decomposition
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B Stability and the SCS inequality for an arbitrary THB-spline space T
does not hold for any decomposition

B “Uniformly relate” measures of supports between basis functions in T;
supported in any « € D (ie. by uniformly bounding §).

B “Uniformly relate” measures of supports of basis functions in “T;; \ T;"
(which cannot be guaranteed by the adaptive method).
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Virtual hierarchy

The virtual decomposition of T is defined as

where T; is obtained from T,;_; only by refining one level.
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Virtual hierarchy

The virtual decomposition of T is defined as

where T; is obtained from T,;_; only by refining one level.

This construction preserves the mesh level disparity of T for all T,.
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Tnew
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Enforcing locality

B Roughly speaking, taking the step from T,_; to T; only adds B-splines of a
single level i.

20/27



Enforcing locality

B Roughly speaking, taking the step from T,_; to T; only adds B-splines of a
single level i.

B In order to obtain optimal computational complexity it is necessary to
reduce redundant overlaps to a minimum. This motivates the introduction
of T, as the span of the newly added THB-basis functions (and, roughly
speaking, some of their neighbours) compared to T; ;.
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Enforcing locality

Roughly speaking, taking the step from T;_; to T; only adds B-splines of a
single level i.

In order to obtain optimal computational complexity it is necessary to
reduce redundant overlaps to a minimum. This motivates the introduction
of T, as the span of the newly added THB-basis functions (and, roughly
speaking, some of their neighbours) compared to T; ;.

One can easily show, that

J ~
T = ZTz*
=1

In order to obtain stability and SCS for this decomposition the ordering of
the subspaces T; is important.

20/27



Tnew
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Stability of the decomposition

For any v € T there exist v; € T; such thatv = Y7, v; and

J
> lillz < Clollz,
i=1

with C' independent of J.
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Stability of the decomposition

For any v € T there exist v; € T; such thatv = Y7, v; and

4
> llillz < Cllwllz,
i=1

with C' independent of J.

Based on the result for B-splines (Buffa et al., 2013), the mentioned properties
of the hierarchical Ql and the discrete Hardy-inequality. Ol
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SCS inequality

Letu;,v; € T;. Then we have

J J J N1/ J N1/
> Y atwsvpl < (Y lwil2) T (Xlil2)
i=1 Jj=1

i=1 j=i+1

with C' independent of J.
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SCS inequality

Letu;,v; € T;. Then we have
J J J J
1/2 1/2
Y atwel < o(Plwil2) " (Ylwsl2)
i=1 j=i+1 i=1 j=1

with C' independent of J.

Based on the result for B-splines (Cho and Vazquez, 2018) and lengthy, but
elementary manipulations. O
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Computational complexity

B governed by the computational complexity of the subspace solvers.

B Uniform sparsity of subspace systems on T; = using Gauss-Seidel
relaxations as "solver" takes O(|T;|) iterations.
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Computational complexity

B governed by the computational complexity of the subspace solvers.

B Uniform sparsity of subspace systems on T; = using Gauss-Seidel
relaxations as "solver" takes O(|T;|) iterations.

B Can show: Y|T;| < C|T| with C independent of |T|
B Optimal complexity
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Violation of the subspace error operator contraction
assumption

Contraction of subspace error operators

Fp<1Vie{l,...,J}: I = Tlla, <p where |2 :=a;(.,.).

H No uniform bound for Gauss-Seidel relaxations
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Violation of the subspace error operator contraction
assumption

Contraction of subspace error operators

IPp<Wie{l,...,J}: I =Tllo, <p where |.[7, :=ai(..).

B No uniform bound for Gauss-Seidel relaxations
B Xu-Zikatanov formula admits weaker assumption:

Weak contraction assumption

Jw € (0,2)Vv € T : | Ti||? < wa(Tyv,v).

B Remark: || — T;||, <1< a(Tiv,Tiv) < 2a(Tiv,v),v € T
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B Gauss-Seidel relaxation satisfies this assumption
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B Gauss-Seidel relaxation satisfies this assumption

B Can be written as product of energy-projections on single THB-basis
functions.
W = gk 4 (1 ~J1u- PT))Afl(f — AuP).
7'671
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B Gauss-Seidel relaxation satisfies this assumption

B Can be written as product of energy-projections on single THB-basis
functions.

WL = ok 4 (1 ~J1u- PT))Afl(f — AuP).
7'671

B Elementary computations from Xu-Zikatanov formula yield convergence,
if one can show /2-L2-stability of THB-splines

Je # (|T)) > 0w = Y er(w)T € T2 Y |er(w)]? < ef|w][5.

TET TET
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Conclusion and future work

B Local THB-Multigrid (optimal computational complexity)

B Convergence of subspace correction methods (for spectrally equivalent
subspace solvers)
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Conclusion and future work

B Local THB-Multigrid (optimal computational complexity)

B Convergence of subspace correction methods (for spectrally equivalent
subspace solvers)

B [2-L%-stability of THB-splines —> local multigrid convergence
B Convergence analysis for jumping coefficients

B Nested iteration schemes

B Application to mixed problems
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