Convergence analysis of the Adini element on a

 Shishkin mesh for a singularly perturbed fourth-order problem in two dimensionsXiangyun Meng

Joint work with: Martin Stynes

Beijing Computational Science Research Center
AANMPDE12, 2 July 2019

Talk overview

Plate bending problem
A fourth-order problem
A fourth-order singularly perturbed problem

Finite element method
Conforming finite element method
Nonconforming finite element method

Adini element for a fourth-order singularly perturbed problem
Boundary-layer structure of typical solutions
Convergence results
Numerical results

Outline

Plate bending problem
A fourth-order problem
A fourth-order singularly perturbed problem

Finite element method
Conforming finite element method
Nonconforming finite element method

Adini element for a fourth-order singularly perturbed problem
Boundary-layer structure of typical solutions
Convergence results
Numerical results

A fourth-order problem: plate bending problem

Boundary value problem:

$$
\begin{gathered}
\Delta^{2} u(x, y)=f(x, y) \quad \text { in } \Omega:=(0,1)^{2}, \\
u(x, y)=\frac{\partial u(x, y)}{\partial n}=0 \quad \text { on } \partial \Omega,
\end{gathered}
$$

A linear model for a clamped thin elastic plate. $u(x, y)$: displacement of the plate. $f(x, y)$: transverse loading.

A fourth-order singularly perturbed problem

Boundary value problem:

$$
\begin{array}{cl}
\varepsilon^{2} \Delta^{2} u(x, y)-\Delta u(x, y)=f(x, y) & \text { in } \Omega:=(0,1)^{2}, \\
u(x, y)=\frac{\partial u(x, y)}{\partial n}=0 & \text { on } \partial \Omega,
\end{array}
$$

where $0<\varepsilon \ll 1$ and $f(x, y) \in L^{2}(\Omega)$ is a smooth function.
ε^{2} is the ratio of bending rigidity to tensile stiffness in the plate.

Aim and difficulty

- Aim: solve the problem by robust numerical method that work for all values of the singular perturbation parameter ε, even it is very small.
- Difficulty: layers in derivative of typical solution (1D graph, $\varepsilon=10^{-2}$)

Weak form of the boundary value problem

Weak form: Find $u \in H_{0}^{2}(\Omega)$, such that

$$
a(u, v)=(f, v) \quad \forall v \in H_{0}^{2}(\Omega)
$$

Bilinear form $a(w, v)$ defined as:
$a(w, v):=\varepsilon^{2} \sum_{i, j=1}^{2}\left(\frac{\partial^{2} w}{\partial x_{i} \partial x_{j}}, \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}\right)+(\nabla w, \nabla v) \quad \forall w, v \in H^{2}(\Omega)$.
The following semi-norm is naturally associated with the problem:

$$
\|v\|_{\varepsilon}:=\left(\varepsilon^{2}|v|_{2}^{2}+|v|_{1}^{2}\right)^{1 / 2} \quad \forall v \in H_{0}^{2}(\Omega)
$$

by the Poincaré inequality it is a norm on $H_{0}^{2}(\Omega)$.

Outline

Plate bending problem
A fourth-order problem
A fourth-order singularly perturbed problem

Finite element method
Conforming finite element method
Nonconforming finite element method

Adini element for a fourth-order singularly perturbed problem
 Boundary-layer structure of typical solutions
 Convergence results
 Numerical results

Conforming finite element method

- For fourth order problems, conforming finite element space $V_{h} \subseteq H^{2}$, which means $V_{h} \subseteq C^{1}$.
- For triangular mesh, Argyris element, 21 parameters, polynomials of degree 5 .
- For tetrahedral mesh, Zenicek element, 220 parameters, polynomials of degree 9 .
- We are interested in decreasing the number of nodal parameters and the degree of polynomials.

Nonconforming finite element method

- For fourth order problems, nonconforming finite element space $V_{h} \nsubseteq H^{2}$, which means $V_{h} \nsubseteq C^{1}$.
- Do not introduce new variables.
- Decrease the number of nodal parameters and the degree of polynomials.
- We need to analysis more items (consistency error).

A nonconforming element: Adini element

- element K is a rectangle.
- shape function space is

$$
\begin{aligned}
P_{K} & =Q_{1}(K) \oplus x^{2} Q_{1}(K) \oplus y^{2} Q_{1}(K) \\
& =P_{3}(K) \oplus\left\{x y^{3}, x^{3} y\right\},
\end{aligned}
$$

where $Q_{1}=\left\{x^{i} y^{j} \mid i, j \leq 1\right\}$ and $P_{3}=\left\{x^{i} y^{j} \mid i+j \leq 3\right\}$.

- degrees of freedom are

$$
\mathbf{D}_{K}(v)=\left\{v\left(a_{i}\right), \frac{\partial v\left(a_{i}\right)}{\partial x}, \frac{\partial v\left(a_{i}\right)}{\partial y}, i=1,2,3,4\right\} .
$$

Anisotropic interpolation error estimates

Lemma

Let Π_{N} be the interpolation operator using the degrees of freedom of Adini element, $K=2 h_{1} \times 2 h_{2}, \phi \in H^{3}(K)$. Not only

$$
\left|\phi-\Pi_{N} \phi\right|_{1, K} \leq C h^{2}|\phi|_{3, K},
$$

but also we have

$$
\left\|\frac{\partial\left(\phi-\Pi_{N} \phi\right)}{\partial x}\right\|_{0, K} \leq C\left(h_{1}^{2}\left\|\frac{\partial^{3} \phi}{\partial x^{3}}\right\|_{0, K}+h_{1} h_{2}\left\|\frac{\partial^{3} \phi}{\partial x^{2} \partial y}\right\|_{0, K}+h_{2}^{2}\left\|\frac{\partial^{3} \phi}{\partial x \partial y^{2}}\right\|_{0, K}\right) .
$$

Stability of the Adini interpolation operator

Define

$$
\|f\|_{1, \infty, K}:=\max _{|\alpha| \leq 1}\left\|D_{w}^{\alpha} f\right\|_{L^{\infty}(K)} .
$$

Lemma
There exists a constant C, which is independent of K and ϕ, such that

$$
\left\|\Pi_{N} \phi\right\|_{1, \infty, K} \leq C\|\phi\|_{1, \infty, K}
$$

for each mesh rectangle K and each $\phi \in C^{1}(K)$.
Thanks to the Adini element's symmetrical nature.

Outline

Plate bending problem
A fourth-order problem
A fourth-order singularly perturbed problem

Finite element method
Conforming finite element method
Nonconforming finite element method

Adini element for a fourth-order singularly perturbed problem
Boundary-layer structure of typical solutions
Convergence results
Numerical results

Behaviour of the solution

Theorem

There is a constant C, independent of ε and f, such that

$$
|u|_{2} \leq C \varepsilon^{-1 / 2}\|f\|_{0} \quad \text { and } \quad|u|_{3} \leq C \varepsilon^{-3 / 2}\|f\|_{0}
$$

for all $f \in L^{2}$.
To give a sketch of proof, we need the following reduced problems: The reduced equation:

$$
\begin{aligned}
-\Delta u^{0}(x, y)=f(x, y) & \text { in } \Omega:=(0,1)^{2} \\
u^{0}(x, y)=0 & \text { on } \partial \Omega
\end{aligned}
$$

The reduced weak form: Find $u^{0} \in H_{0}^{1}(\Omega)$, such that

$$
\left(\nabla u^{0}, \nabla v\right)=(f, v) \quad \forall v \in H_{0}^{1}(\Omega)
$$

Behaviour of the solution: sketch of proof

Subtract reduced equation from fourth order singularly perturbed equation:

$$
\Delta^{2} u(x, y)=\varepsilon^{-2} \Delta\left(u-u^{0}\right)
$$

then

$$
\|u\|_{3} \leq C \varepsilon^{-2}\left|u-u^{0}\right|_{1} .
$$

Subtract reduced weak form from fourth order singularly perturbed weak form:
$\varepsilon^{2}(\Delta u, \Delta u)+\left(\nabla\left(u-u^{0}\right), \nabla\left(u-u^{0}\right)\right)=-\varepsilon^{2} \int_{\partial \Omega} \Delta u \frac{\partial u^{0}}{\partial n} \mathrm{~d} s-\varepsilon^{2}(\Delta u, f)$,
then

$$
\varepsilon^{2}|u|_{2}^{2}+\left|u-u^{0}\right|_{1}^{2} \leq C \varepsilon\|f\|_{0}^{2}
$$

Above all

$$
|u|_{2}+\varepsilon|u|_{3} \leq C \varepsilon^{-1 / 2}\|f\|_{0}
$$

Solution decomposition

The boundary value problem has a solution u which can be decomposed as

$$
u=S+\sum_{i=1}^{4} E_{i}+E_{12}+E_{23}+E_{34}+E_{41}
$$

S : smooth part;
E_{i} : boundary layer part along side i of $\bar{\Omega}$;
$E_{i j}$: corner layer part at the corner (i, j).

Remark

We will assume the pointwise bounds from our experience with second-order singularly perturbed problems.
The pointwise bounds of Assumption are reasonable, because they are consistent with the Sobolev-norm global estimates.

Solution decomposition

There exists a constant C such that

$$
\left\|\frac{\partial^{i+j} S}{\partial x^{i} \partial y^{j}}\right\|_{0, \Omega} \leq C
$$

and for all $(x, y) \in \bar{\Omega}$ one has

$$
\begin{aligned}
& \left|\frac{\partial^{i+j} E_{1}(x, y)}{\partial x^{i} \partial y^{j}}\right| \leq C \varepsilon^{1-j} e^{-y / \varepsilon} \\
& \left|\frac{\partial^{i+j} E_{2}(x, y)}{\partial x^{i} \partial y^{j}}\right| \leq C \varepsilon^{1-i} e^{-x / \varepsilon} \\
& \left|\frac{\partial^{i+j} E_{12}(x, y)}{\partial x^{i} \partial y^{j}}\right| \leq C \varepsilon^{1-i-j} e^{-x / \varepsilon} e^{-y / \varepsilon}
\end{aligned}
$$

for $0 \leq i+j \leq 4$ and similarly for the remaining components of the decomposition.

Shishkin mesh

Define the transition point parameter (positive constant α will be chosen later):

$$
\lambda=\alpha \varepsilon \ln N .
$$

Figure: A rectangular Shishkin mesh with $N=8$

Finite element problem

Adini finite element discretisation is: find $u_{N} \in V_{N O}$ such that

$$
a_{N}\left(u_{N}, v_{N}\right)=\left(f, v_{N}\right) \quad \forall v_{N} \in V_{N 0}
$$

where we define

$$
a_{N}\left(w_{N}, v_{N}\right):=\sum_{K \in \mathcal{T}_{N}}\left[\varepsilon^{2} \sum_{i, j=1}^{2}\left(\frac{\partial^{2} w_{N}}{\partial x_{i} \partial x_{j}}, \frac{\partial^{2} v_{N}}{\partial x_{i} \partial x_{j}}\right)_{K}+\left(\nabla w_{N}, \nabla v_{N}\right)_{K}\right] .
$$

For any function v defined on Ω that lies in $H^{2}(K)$ for all $K \in \mathcal{T}_{N}$, define "broken" semi-norms by

$$
|v|_{1, N}^{2}:=\sum_{K \in \mathcal{T}_{N}}|v|_{1, K}^{2} \quad \text { and } \quad|v|_{2, N}^{2}:=\sum_{K \in \mathcal{T}_{N}}|v|_{2, K}^{2},
$$

and

$$
\|v\|_{\varepsilon, N}:=\left(\sum_{K \in \mathcal{T}_{N}}\|v\|_{\varepsilon, K}^{2}\right)^{1 / 2} \text { where }\|v\|_{\varepsilon, K}^{2}:=\varepsilon^{2}|v|_{2, K}^{2}+|v|_{1, K}^{2}
$$

The second Strang Lemma

Lemma

There exists a constant C such that

$$
\left\|u-u_{N}\right\|_{\varepsilon, N} \leq C\left(\inf _{v_{N} \in V_{N 0}}\left\|u-v_{N}\right\|_{\varepsilon, N}+\sup _{w_{N} \in V_{N 0}} \frac{\left|F_{N}\left(u, w_{N}\right)\right|}{\left\|w_{N}\right\|_{\varepsilon, N}}\right)
$$

where

$$
F_{N}\left(u, w_{N}\right):=\varepsilon^{2} \sum_{K \in \mathcal{T}_{N}} \int_{\partial K} \frac{\partial^{2} u}{\partial n_{K}^{2}} \frac{\partial w_{N}}{\partial n_{K}} \mathrm{~d} s
$$

with t_{K}, n_{K} denote unit tangential and normal vectors on ∂K.

Approximation error estimate

Theorem
There exists a constant C, which is independent of ε and N, such that

$$
\begin{aligned}
\inf _{v_{N} \in V_{N 0}}\left\|u-v_{N}\right\|_{\varepsilon, N} & \leq\left\|u-\Pi_{N} u\right\|_{\varepsilon, N} \\
& \leq C\left[\varepsilon^{1 / 2}\left(N^{-1} \ln N\right)^{2}+\varepsilon N^{1-\alpha}+N^{-\alpha}+N^{-3}\right]
\end{aligned}
$$

choose $\alpha \geq 3$ then

$$
\inf _{v_{N} \in V_{N 0}}\left\|u-v_{N}\right\|_{\varepsilon, N} \leq C\left[\varepsilon^{1 / 2}\left(N^{-1} \ln N\right)^{2}+N^{-3}\right]
$$

Approximation error estimate: sketch of proof

$$
\left\|E_{1}-\Pi_{N} E_{1}\right\|_{\varepsilon, N}^{2}=\left\|E_{1}-\Pi_{N} E_{1}\right\|_{\varepsilon, N, \Omega_{1}}^{2}+\left\|E_{1}-\Pi_{N} E_{1}\right\|_{\varepsilon, N, \Omega_{2}}^{2}
$$

- $\left\|E_{1}-\Pi_{N} E_{1}\right\|_{\varepsilon, N, \Omega_{1}}^{2}$: Anisotropic interpolation error estimates of the Adini interpolation operator.
- $\left\|E_{1}-\Pi_{N} E_{1}\right\|_{\varepsilon, N, \Omega_{2}}^{2} \leq\left\|E_{1}\right\|_{\varepsilon, \Omega_{1}}^{2}+\left\|\Pi_{N} E_{1}\right\|_{\varepsilon, N, \Omega_{1}}^{2}$: Stability of the Adini interpolation operator.

Consistency error estimate

Theorem
There exists a constant C, which is independent of ε and N, such that

$$
\sup _{w_{N} \in V_{N 0}} \frac{\left|F_{N}\left(u, w_{N}\right)\right|}{\left\|w_{N}\right\|_{\varepsilon, N}} \leq C \min \left\{\varepsilon^{1 / 2}, \varepsilon^{-3 / 2} N^{-2}\right\}
$$

Consistency error estimate: sketch of proof

Use the properties of Adini element (weak continuous and symmetry), we have second order convergence rate:

$$
\begin{aligned}
F_{N}\left(u, w_{N}\right)= & \varepsilon^{2} \sum_{K \in \mathcal{T}_{N}} \int_{\partial K} \frac{\partial^{2} u}{\partial n_{K}^{2}} \frac{\partial w_{N}}{\partial n_{K}} \mathrm{~d} s \\
\leq & C \varepsilon^{2} \sum_{K \in \mathcal{T}_{N}}\left(h_{1}^{2}\left\|\frac{\partial^{4} u}{\partial y^{4}}\right\|_{0, K}\left\|\frac{\partial^{2} w_{N}}{\partial x^{2}}\right\|_{0, K}+h_{1}^{2}\left\|\frac{\partial^{3} u}{\partial x \partial y^{3}}\right\|_{0, K}\left\|\frac{\partial w_{N}}{\partial x \partial y}\right\|_{0, K}\right. \\
& \left.+h_{2}^{2}\left\|\frac{\partial^{4} u}{\partial x^{4}}\right\|_{0, K}\left\|\frac{\partial^{2} w_{N}}{\partial y^{2}}\right\|_{0, K}+h_{2}^{2}\left\|\frac{\partial^{3} u}{\partial x^{3} \partial y}\right\|_{0, K}\left\|\frac{\partial^{2} w_{N}}{\partial x \partial y}\right\|_{0, K}\right) .
\end{aligned}
$$

Then for singularly perturbed problem on Shishkin mesh, we have:

$$
\begin{aligned}
\frac{\left|F_{N}\left(u, w_{N}\right)\right|}{\left\|w_{N}\right\|_{\varepsilon, N}} \leq & C \varepsilon\left[\sum _ { K \in \mathcal { T } _ { N } } \left(h_{1}^{4}\left\|\frac{\partial^{4} u}{\partial y^{4}}\right\|_{0, K}^{2}+h_{1}^{4}\left\|\frac{\partial^{4} u}{\partial x \partial y^{3}}\right\|_{0, K}^{2}\right.\right. \\
& \left.\left.+h_{2}^{4}\left\|\frac{\partial^{4} u}{\partial x^{4}}\right\|_{0, K}^{2}+h_{2}^{4}\left\|\frac{\partial^{4} u}{\partial x^{3} \partial y}\right\|_{0, K}^{2}\right)\right]^{1 / 2} \\
\leq & C \varepsilon^{-3 / 2} N^{-2}
\end{aligned}
$$

In standard estimate, $\varepsilon^{-3 / 2} \gg 1$ when $\varepsilon \ll 1$.

Consistency error estimate: sketch of proof

Use inverse estimates, to make the bound don't have $\varepsilon^{-3 / 2}$:

$$
\begin{aligned}
& F_{N}\left(u, w_{N}\right) \\
&= \varepsilon^{2} \sum_{K \in \mathcal{T}_{N}} \sum_{i=1}^{2} \int_{K} \frac{\partial}{\partial x_{i}}\left[\left(\frac{\partial^{2} u}{\partial n_{K}^{2}}-\pi_{0} \frac{\partial^{2} u}{\partial n_{K}^{2}}\right)\left(\frac{\partial w_{N}}{\partial x_{i}}-\pi_{K} \frac{\partial w_{N}}{\partial x_{i}}\right)\right] \mathrm{d} x_{1} \mathrm{~d} x_{2} \\
& \leq C \varepsilon^{2} \sum_{K \in \mathcal{T}_{N}} \sum_{i=1}^{2} \sum_{j=1}^{2} h_{j}\left(\left\|\frac{\partial^{3} u}{\partial x_{i}^{3}}\right\|_{0, K}\left\|\frac{\partial^{2} w_{N}}{\partial x_{i} \partial x_{j}}\right\|_{0, K}+\left\|\frac{\partial^{3} u}{\partial x_{i}^{2} \partial x_{j}}\right\|_{0, K}\left\|\frac{\partial^{2} w_{N}}{\partial x_{i}^{2}}\right\|_{0, K}\right) \\
& \leq C \varepsilon^{2} \sum_{K \in \mathcal{T}_{N}}\left(\left\|\frac{\partial^{3} u}{\partial x^{3}}\right\|_{0, K}\left\|\frac{\partial w_{N}}{\partial x}\right\|_{0, K}+\left\|\frac{\partial^{3} u}{\partial y^{3}}\right\|_{0, K}\left\|\frac{\partial w_{N}}{\partial y}\right\|_{0, K}\right. \\
&\left.+h_{1}\left\|\frac{\partial^{3} u}{\partial y^{2} \partial x}\right\|_{0, K}\left\|\frac{\partial^{2} w_{N}}{\partial y^{2}}\right\|_{0, K}+h_{2}\left\|\frac{\partial^{3} u}{\partial x^{2} \partial y}\right\|_{0, K}\left\|\frac{\partial^{2} w_{N}}{\partial x^{2}}\right\|_{0, K}\right)
\end{aligned}
$$

Consistency error estimate: sketch of proof

Follow last slide, we have

$$
\begin{aligned}
\frac{\left|F_{N}\left(u, w_{N}\right)\right|}{\left\|w_{N}\right\|_{\varepsilon, N}} \leq & C \varepsilon^{2}\left(\left\|\frac{\partial^{3} u}{\partial x^{3}}\right\|_{0, \Omega}+\left\|\frac{\partial^{3} u}{\partial y^{3}}\right\|_{0, \Omega}\right) \\
& +C \varepsilon\left[\sum_{K \in \mathcal{T}_{N}}\left(h_{1}^{2}\left\|\frac{\partial^{3} u}{\partial y^{2} \partial x}\right\|_{0, K}^{2}+h_{2}^{2}\left\|\frac{\partial^{3} u}{\partial x^{2} \partial y}\right\|_{0, K}^{2}\right)\right]^{1 / 2} \\
\leq & C \varepsilon^{1 / 2}
\end{aligned}
$$

Above all, we have

$$
\sup _{w_{N} \in V_{N 0}} \frac{\left|F_{N}\left(u, w_{N}\right)\right|}{\left\|w_{N}\right\|_{\varepsilon, N}} \leq C \min \left\{\varepsilon^{1 / 2}, \varepsilon^{-3 / 2} N^{-2}\right\} .
$$

Convergence result

Theorem

There exists a constant C, which is independent of ε and N, such that

$$
\begin{gathered}
\left\|u-u_{N}\right\|_{\varepsilon, N} \leq C\left[\varepsilon^{1 / 2}\left(N^{-1} \ln N\right)^{2}+\varepsilon N^{1-\alpha}+\min \left\{\varepsilon^{1 / 2}, \varepsilon^{-3 / 2} N^{-2}\right\}\right. \\
\left.+N^{-\alpha}+N^{-3}\right]
\end{gathered}
$$

Assume that $\alpha \geq 3$. Then there exists a constant C, which is independent of ε and N, such that

$$
\left\|u-u_{N}\right\|_{\varepsilon, N} \leq \begin{cases}C\left(\varepsilon^{1 / 2}+N^{-3}\right) & \text { if } \varepsilon \leq N^{-1} \\ C\left[\varepsilon^{1 / 2}\left(N^{-1} \ln N\right)^{2}+\varepsilon^{-3 / 2} N^{-2}\right] & \text { if } \varepsilon>N^{-1}\end{cases}
$$

Numerical example 1

Let the exact solution of (1.2) is $u(x, y)=g(x) p(y)$, where

$$
\begin{aligned}
& g(x)=\frac{1}{2}\left[\sin (\pi x)+\frac{\pi \varepsilon}{1-e^{-1 / \varepsilon}}\left(e^{-x / \varepsilon}+e^{(x-1) / \varepsilon}-1-e^{-1 / \varepsilon}\right)\right] \\
& p(y)=2 y\left(1-y^{2}\right)+\varepsilon\left[l d(1-2 y)-3 \frac{q}{l}+\left(\frac{3}{I}-d\right) e^{-y / \varepsilon}+\left(\frac{3}{I}+d\right) e^{(y-1) / \varepsilon}\right] \\
& \text { with } I=1-e^{-1 / \varepsilon}, q=2-I \text { and } d=1 /(q-2 \varepsilon I) .
\end{aligned}
$$

Numerical example 1

ε	$N=16$	$N=32$	$N=64$	$N=128$
$1.0 \mathrm{e}-01$	$4.62 \mathrm{e}-03$	$1.17 \mathrm{e}-03$	$2.95 \mathrm{e}-04$	$7.38 \mathrm{e}-05$
	1.98	1.99	2.00	
$1.0 \mathrm{e}-02$	$2.49 \mathrm{e}-02$	$9.37 \mathrm{e}-03$	$3.25 . \mathrm{e}-03$	$1.08 \mathrm{e}-03$
	1.41	1.53	1.59	
$1.0 \mathrm{e}-03$	$1.59 \mathrm{e}-02$	$8.49 \mathrm{e}-03$	$3.83 \mathrm{e}-03$	$1.40 \mathrm{e}-03$
	0.90	1.15	1.45	
$1.0 \mathrm{e}-04$	$5.77 \mathrm{e}-03$	$3.05 \mathrm{e}-03$	$1.55 \mathrm{e}-03$	$7.66 \mathrm{e}-04$
	0.92	0.97	1.02	
$1.0 \mathrm{e}-05$	$2.49 \mathrm{e}-03$	$1.01 \mathrm{e}-03$	$5.10 \mathrm{e}-04$	$2.55 \mathrm{e}-04$
	1.30	0.99	1.00	
$1.0 \mathrm{e}-06$	$1.83 \mathrm{e}-03$	$3.86 \mathrm{e}-04$	$1.64 \mathrm{e}-04$	$8.15 \mathrm{e}-05$
	2.25	1.23	1.01	
$1.0 \mathrm{e}-07$	$1.76 \mathrm{e}-03$	$2.47 \mathrm{e}-04$	$5.87 \mathrm{e}-05$	$2.60 \mathrm{e}-05$
	2.83	2.07	1.17	
$1.0 \mathrm{e}-08$	$1.75 \mathrm{e}-03$	$2.28 \mathrm{e}-04$	$3.30 \mathrm{e}-05$	$8.92 \mathrm{e}-06$
	2.94	2.79	1.89	

Numerical example 2

Choose $f=2 \pi^{2}[1-\cos (2 \pi x) \cos (2 \pi y)]$. The exact solution of this problem is unknown (but it is known to contain boundary layers when ε is small), so to estimate errors and rates of convergence we use the double-mesh principle.

Numerical example 2

ε	$N=16$	$N=32$	$N=64$
$1.0 \mathrm{e}-01$	$4.37 \mathrm{e}-02$	$1.12 \mathrm{e}-02$	$2.81 \mathrm{e}-03$
	1.97	1.99	
$1.0 \mathrm{e}-02$	$1.40 \mathrm{e}-01$	$5.11 \mathrm{e}-02$	$1.78 \mathrm{e}-02$
	1.46	1.52	
$1.0 \mathrm{e}-03$	$1.02 \mathrm{e}-01$	$5.42 \mathrm{e}-02$	$2.35 \mathrm{e}-02$
	0.92	1.20	
$1.0 \mathrm{e}-04$	$4.03 \mathrm{e}-02$	$2.03 \mathrm{e}-02$	$1.04 \mathrm{e}-02$
	0.99	0.97	
$1.0 \mathrm{e}-05$	$2.20 \mathrm{e}-02$	$7.07 \mathrm{e}-03$	$3.45 \mathrm{e}-03$
	1.64	1.04	
$1.0 \mathrm{e}-06$	$1.91 \mathrm{e}-02$	$3.30 \mathrm{e}-03$	$1.14 \mathrm{e}-03$
	2.53	1.53	
$1.0 \mathrm{e}-07$	$1.88 \mathrm{e}-02$	$2.64 \mathrm{e}-03$	$4.83 \mathrm{e}-04$
	2.83	2.45	
$1.0 \mathrm{e}-08$	$1.88 \mathrm{e}-02$	$2.28 \mathrm{e}-03$	$3.55 \mathrm{e}-04$
	2.87	2.85	

Reference

Xiangyun Meng, Martin Stynes,
Convergence analysis of the Adini element on a Shishkin mesh for a singularly perturbed fourth-order problem in two dimensions, Advances in Computational Mathematics, 2019, 45(2): 1105-1128.

Thank you!

