Maximal Parabolic Regularity & Consistent Space-Time Schemes

Ulrich Langer

Johannes Kepler University & RICAM, Linz, Austria

AANMPDE, St. Wolfgang / Strobl, 1 - 5 July 2019

Der Wissenschaftsfonds.

- General Linear Parabolic Initial-Boundary Value Problems
- Special Problem Classes
- 3d Eddy Current Problems
- Space-Time Book

- Special Problem Classes
- □ 3d Eddy Current Problems
- □ Space-Time Book

Classical results: Space-Time VF in Sobolev spaces on ${\boldsymbol{Q}}$

Let $Q = Q_T := \Omega \times (0, T)$ be the space-time cylinder, $\Omega \subset \mathbb{R}^d$ - b. & Lip, and $\Sigma := \partial \Omega \times (0, T)$, $\Sigma_0 := \overline{\Omega} \times \{0\}$ and $\Sigma_T := \overline{\Omega} \times \{T\}$.

[Ladyzhenskaya, 1954 / 1973] considered the parabolic IBVP: $\partial_t u - \partial_{x_i}(a_{ij}(x,t)\partial_{x_j}u + a_i(x.t)u) + b_i(x,t)\partial_{x_i}u + a(x,t)u$ $= f + \partial_{x_i}f_i \qquad \text{in } Q,$

$$u(x,t) = g_D := 0 \qquad \qquad \text{on } \Sigma,$$

$$u(x,0) = u_0$$
 on $\overline{\Sigma}_0$.

and showed, that under the conditions

$$a_{ij} = a_{ji}, \quad \mu_1 \xi^2 \le a_{ij}(x, t) \xi_i \xi_j \le \mu_2 \xi^2,$$
 (1)

$$\sum a_i^2, \ \sum b_i^2, \ |a|^2 \le \mu^2,$$
 (2)

$$u_0 \in L_2(\Omega), \ f \in L_{2,1}(Q), \ f_i \in L_2(Q),$$
 (3)

U. Langer	JKU Linz	3 / 14

Classical results: Space-Time VF in Sobolev spaces on \boldsymbol{Q}

the Space-Time VF: find $u\in H^{1,0}_0(Q)=\mathbf{W}^{1,0}_2(Q)$ such that

$$\int_{Q} (-u\partial_t v + a_{ij}\partial_{x_i} u\partial_{x_j} v + \dots) = \int_{Q} (fv - f_i\partial_{x_i} v) + \int_{\Sigma_0} u_0 v$$
 (4)

for all $v \in H^{1,1}_{0,\overline{0}}(Q)$, has a unique solution u in $H^{1,0}_0(Q)$ that even belongs to $V^{1,0}_{2,0}(Q) := V^{1,0}_2(Q) \cap H^{1,0}_0(Q)$, i.e. $\|u(\cdot,t)\|_{L_2(\Omega)}$ cont.

Moreover, if $u_0 \in H_0^1(\Omega)$, $f \in L_2(Q)$, $\partial_{x_i} f_i \in L_2(Q)$, $a_{ij} = \delta_{ij}$, and $a_i = b_i = a = 0$, then the generalized solution $u \in H_0^{1,0}(Q)$ belongs to the space

$$H_0^{\Delta,1}(Q) = \{ v \in H_0^1(Q) : \Delta_x v \in L_2(Q) \},\$$

and continuously depends on t in the norm of the space $H_0^1(\Omega)$. \Rightarrow Maximal Parabolic Regularity: $\partial_t u - \Delta_x u = f - \partial_{x_i} f_i$ in $L_2(Q)$

Special Problem Classes

□ 3d Eddy Current Problems

Space-Time Book

2D eddy current: Electric Motor (Cross Section)

U. Langer	JKU Linz	5/14

2D eddy current: Electric Motor (Space-Time Cylinder)

A non-autonomous, non-linear parabolic model problem

Let $Q = Q_T := \Omega \times (0, T)$ be the space-time cylinder, $\Omega \subset \mathbb{R}^d$, and $\Sigma := \partial \Omega \times (0, T)$, $\Sigma_0 := \overline{\Omega} \times \{0\}$ and $\Sigma_T := \overline{\Omega} \times \{T\}$.

Given data f , $\mathbf{f}=(f_1,...,f_d)^T$, g_D , σ , ν , and u_0 , find u such that

$$\begin{split} \partial_t(\sigma(x,t)u) - \operatorname{div}_x(\nu(x,t,|\nabla_x u|)\nabla_x u) =& f + \operatorname{div}_x(\mathbf{f}) & \text{ in } Q, \\ u(x,t) =& g_D & \text{ on } \Sigma, \\ u(x,0) =& u_0 & \text{ on } \overline{\Sigma}_0. \end{split}$$

where σ and ν are uniformly positive and bounded coefficients.

A non-autonomous parabolic model problem

Let $Q = Q_T := \Omega \times (0, T)$ be the space-time cylinder, $\Omega \subset \mathbb{R}^d$, and $\Sigma := \partial \Omega \times (0, T)$, $\Sigma_0 := \overline{\Omega} \times \{0\}$ and $\Sigma_T := \overline{\Omega} \times \{T\}$.

Given data f, $\mathbf{f} = (f_1, ..., f_d)^T$, g_D , σ , ν , and u_0 , find u such that

$$\begin{array}{ll} \partial_t(\sigma(x,t)u) - \operatorname{div}_x(\nu(x,t)\nabla_x u) = f + \operatorname{div}_x(\mathbf{f}) & \quad \text{in } Q, \\ u(x,t) = g_D & \quad \text{on } \Sigma, \\ u(x,0) = u_0 & \quad \text{on } \overline{\Sigma}_0. \end{array}$$

where σ and ν are uniformly positive and bounded coefficients.

A simplified non-autonomous parabolic model problem

Let $Q = Q_T := \Omega \times (0,T)$ be the space-time cylinder, $\Omega \subset \mathbb{R}^d$, and $\Sigma := \partial \Omega \times (0,T)$, $\Sigma_0 := \overline{\Omega} \times \{0\}$ and $\Sigma_T := \overline{\Omega} \times \{T\}$.

Given $f \in L_2(Q)$, $\mathbf{f} = \mathbf{0}$, $g_D = 0$, $\sigma = 1$, ν , and $u_0 = 0$, find u:

$$\begin{array}{ll} \partial_t u - \operatorname{div}_x(\nu(x,t)\nabla_x u) = f & \text{in } Q, \\ u(x,t) = 0 & \text{on } \Sigma, \\ u(x,0) = 0 & \text{on } \overline{\Sigma}_0, \end{array}$$

where $\nu(x,t)$ is a uniformly positive and bounded coefficient.

Under which additional assumptions on u, we get mpr in $L_2(Q)$, i.e.

$$\partial_t u, \operatorname{div}_x(\nu(x,t)\nabla_x u) \in L_2(Q)$$

implying $\partial_t u - \operatorname{div}_x(\nu(x,t)\nabla_x u) = f$ in $L_2(Q)$ that is the starting point for getting consistent space-time schemes.

U. Langer	JKU Linz	9/14

Distributional sources

Given data f, $\mathbf{f} = (f_1, ..., f_d)^T$, and ν , find u such that

$$\begin{split} \partial_t u - \operatorname{div}_x(\nu(x,t)\nabla_x u) =& f + \operatorname{div}_x(\mathbf{f}) & \text{ in } Q, \\ u(x,t) =& g_D := 0 & \text{ on } \Sigma, \\ u(x,0) =& u_0 := 0 & \text{ on } \overline{\Sigma}_0. \end{split}$$

Assume that

 $\begin{array}{l} \triangleright \ \nu(x,t) \text{ is a uniformly positive and bounded coefficient,} \\ \hline f \in L_2(Q), \\ \hline \mathbf{f} \in H^1(Q_i) \text{ for all } Q_i: \ \overline{Q} = \bigcup \overline{Q}_i, \ \dots \end{array}$

Distributional sources (cond.)

Taking in Ladyzhenskaya's space-time variational formulation, find $u\in H^{1,0}_0(Q)$ such that

$$a(u,v) = \langle F, v \rangle \quad \forall v \in H^{1,1}_{0,\overline{0}}(Q), \quad \text{with}$$

$$a(u,v) = -\int_{Q} u(x,t)\partial_{t}v(x,t)d(x,t) + \int_{Q} \nu(x,t)\nabla_{x}u \cdot \nabla_{x}v \, d(x,t),$$

$$\langle F, v \rangle = \int_{Q} f \, v \, d(x,t) - \int_{Q} \mathbf{f} \cdot \nabla_{x}v \, d(x,t),$$
(5)

test functions $v\in H^{1,1}_{0,\overline{0}}(Q)$ with compact support in $Q_i,$ we get

$$\operatorname{div}(-\nu(x,t)\nabla_x u, u) = f + \operatorname{div}_x \mathbf{f} \text{ in } L_2(Q_i)$$

and

$$\sum \int_{\partial Q_i} (-\nu \nabla_x u, u) \cdot \mathbf{n} \, v \, ds(x, t) = -\sum \int_{\partial Q_i} \mathbf{f} \cdot \mathbf{n}_x \, v \, ds(x, t)$$

Special Problem Classes :

Distributional sources (cond.)

The equations

$$\mathsf{div}(-\nu(x,t)\nabla_x u, u) = f + \mathsf{div}_x \mathbf{f} \text{ in } L_2(Q_i)$$

and

$$\sum \int_{\partial Q_i} (-\nu \nabla_x u, u) \cdot \mathbf{n} \, v \, ds(x, t) = -\sum \int_{\partial Q_i} \mathbf{f} \cdot \mathbf{n}_x \, v \, ds(x, t)$$

can be used as starting point for constructing consistent, coercive, and bounded space-time scheme, see next talk by A. Schafelner.

But under which assumptions we have at least $\partial_t u$ and ${\rm div}_x(\nu(x,t)\nabla_x u)$ in $L_2(Q_i)$?

- Special Problem Classes
- 3d Eddy Current Problems
- □ Space-Time Book

A non-autonomous, non-linear parabolic model problem

Let $Q = Q_T := \Omega \times (0, T)$ be the space-time cylinder, $\Omega \subset \mathbb{R}^d$, and $\Sigma := \partial \Omega \times (0, T)$, $\Sigma_0 := \overline{\Omega} \times \{0\}$ and $\Sigma_T := \overline{\Omega} \times \{T\}$.

Given data f , $\mathbf{f}=(f_1,...,f_d)^T$, g_D , $\sigma,\,\nu,$ and $u_0,$ find u such that

$$\begin{split} \partial_t(\sigma(x,t)u) + \operatorname{curl}_x(\nu(x,t,|\operatorname{curl}_x u|)\operatorname{curl}_x u) =& f + \operatorname{curl}_x(\mathbf{f}) & \text{in } Q, \\ u(x,t) =& g_D & \text{on } \Sigma, \\ u(x,0) =& u_0 & \text{on } \overline{\Sigma}_0. \end{split}$$

where σ and ν are uniformly positive and bounded coefficients.

Question: maximal eddy current regularity ?

- Special Problem Classes
- □ 3d Eddy Current Problems
- □ Space-Time Book

Space-Time Book

Dörfler, Findeisen, Wieners, Ziegler: Parallel adaptive dG in space and time for waves.

Dohr, Niino, Steinbach: Space-time BEM for the heat equation.

Ernesti, Wieners: A space-time dPG method for acoustic waves.

Gopalakrishnan, Sepulveda: Space-time dPG for the wave equation.

Langer, Matculevich, Repin: Adaptive space-time IgA for parabolic problems.

Steinbach, Yang: Overview paper.

Karabelas, Neumüller: Space-time meshes.