FFT-BASED HOMOGENISATION ACCELERATED BY LOW-RANK APPROXIMATIONS

Jaroslav Vondřejc ${ }^{1}$, Dishi Liu ${ }^{1}$, Martin Ladecký ${ }^{2}$ and Hermann G. Matthies ${ }^{1}$

${ }^{1}$ Institute of Scientific Computing, Technische Universität Braunschweig
${ }^{2}$ Department of Mathematics, Faculty of Civil Engineering, Czech Technical University in Prague

AANMPDE 12, Strobl, Austria

Outline

(1) Introduction to FFT-based Homogenisation

- Homogenisation problem
- Fourier-Galerkin method
(2) Low-Rank Tensor Approximations
- Idea of low-rank tensor Approximation
- Low-rank tensor formats
- Linear system with low-rank tensors
(3) Numerical Experiments and Results
(4) Conclusion

Outline

(1) Introduction to FFT-based Homogenisation

- Homogenisation problem
- Fourier-Galerkin method
(2) Low-Rank Tensor Approximations
- Idea of low-rank tensor Approximation
- Low-rank tensor formats
- Linear system with low-rank tensors
(3) Numerical Experiments and Results
- Conclusion

Purpose of homogenisation

- Analysis of heterogeneous (composite) materials (HeM).
- Homogeneously describe HeM constitutive behavior.
- Materials with periodic microstructure.

Figure 1: Representative volume elements of periodic heterogeneous microstructure in 3D.

A model problem in homogenization

- Input: Heterogeneous material property

$$
\boldsymbol{A}(\boldsymbol{x}): \mathcal{Y} \rightarrow \mathbb{R}^{d \times d} \quad \text { in } \quad \mathcal{Y}=\left(-\frac{1}{2}, \frac{1}{2}\right)^{d}, \quad d=2,3
$$

- Output: Homogenized (constant) material property

$$
\boldsymbol{A}_{\mathrm{H}} \in \mathbb{R}^{d \times d}
$$

- Integral over domain

$$
A_{H} E_{\alpha}=\frac{1}{|\mathcal{V}|} \int_{\mathcal{V}} A(x)\left(E_{\alpha}+\nabla u_{\alpha}\right) d x, \quad \alpha=1, \ldots, d
$$

- Elliptic PDE with periodic b.c. on rectangular domain

A model problem in homogenization

- Input: Heterogeneous material property

$$
\boldsymbol{A}(\boldsymbol{x}): \mathcal{Y} \rightarrow \mathbb{R}^{d \times d} \quad \text { in } \quad \mathcal{Y}=\left(-\frac{1}{2}, \frac{1}{2}\right)^{d}, \quad d=2,3
$$

- Output: Homogenized (constant) material property

$$
\boldsymbol{A}_{\mathrm{H}} \in \mathbb{R}^{d \times d}
$$

- Integral over domain

$$
A_{H} E_{\alpha}=\frac{1}{|\mathcal{V}|} \int_{\mathcal{V}} A(x)\left(E_{\alpha}+\nabla u_{\alpha}\right) d x, \quad \alpha=1, \ldots, d
$$

- Elliptic PDE with periodic b.c. on rectangular domain

A MODEL PROBLEM IN HOMOGENIZATION

- Input: Heterogeneous material property

$$
\boldsymbol{A}(\boldsymbol{x}): \mathcal{Y} \rightarrow \mathbb{R}^{d \times d} \quad \text { in } \quad \mathcal{Y}=\left(-\frac{1}{2}, \frac{1}{2}\right)^{d}, \quad d=2,3
$$

- Output: Homogenized (constant) material property

$$
\boldsymbol{A}_{\mathrm{H}} \in \mathbb{R}^{d \times d}
$$

- Integral over domain

$$
\boldsymbol{A}_{\mathrm{H}} \boldsymbol{E}_{\alpha}=\frac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}} \boldsymbol{A}(\boldsymbol{x})\left(\boldsymbol{E}_{\alpha}+\nabla u_{\alpha}\right) \mathrm{d} \boldsymbol{x}, \quad \alpha=1, \ldots, d
$$

- Elliptic PDE with periodic b.c. on rectangular domain

A MODEL PROBLEM IN HOMOGENIZATION

- Input: Heterogeneous material property

$$
\boldsymbol{A}(\boldsymbol{x}): \mathcal{Y} \rightarrow \mathbb{R}^{d \times d} \quad \text { in } \quad \mathcal{Y}=\left(-\frac{1}{2}, \frac{1}{2}\right)^{d}, \quad d=2,3
$$

- Output: Homogenized (constant) material property

$$
\boldsymbol{A}_{\mathrm{H}} \in \mathbb{R}^{d \times d}
$$

- Integral over domain

$$
\boldsymbol{A}_{\mathrm{H}} \boldsymbol{E}_{\alpha}=\frac{1}{|\mathcal{Y}|} \int_{\mathcal{Y}} \boldsymbol{A}(\boldsymbol{x})\left(\boldsymbol{E}_{\alpha}+\nabla u_{\alpha}\right) \mathrm{d} \boldsymbol{x}, \quad \alpha=1, \ldots, d
$$

- Elliptic PDE with periodic b.c. on rectangular domain

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=-\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

A model problem in homogenization

- Input: Heterogeneous material property

- Output: Homogenized (constant) material property

- Integral over domain

$$
A_{H} E_{\alpha}=\frac{1}{|\mathcal{\nu}|} \int_{\mathcal{V}} A(x)\left(E_{\alpha}+\nabla u_{\alpha}\right) d x, \quad \alpha=1, \ldots, d
$$

- Elliptic PDE with periodic b.c. on rectangular domain

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=-\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

Fourier-Galerkin method

- Elliptic PDE with periodic boundary conditions

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=-\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

- A uniform grid discretization $\boldsymbol{N}=\left[N_{1}, \ldots, N_{d}\right] \in \mathbb{R}^{d}$.
- Approximation with trigonometric polynomials ${ }^{1}$,

where $\varphi^{\boldsymbol{k}}(\boldsymbol{x})=\exp (2 \pi i \boldsymbol{k} \cdot \boldsymbol{x})$ and

where \mathcal{F}_{N} is Fourier transform.

[^0]
Fourier-Galerkin method

- Elliptic PDE with periodic boundary conditions

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=-\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

- A uniform grid discretization $\boldsymbol{N}=\left[N_{1}, \ldots, N_{d}\right] \in \mathbb{R}^{d}$.
- Approximation with trigonometric polynomials ${ }^{1}$,

where $\varphi^{\boldsymbol{k}}(\boldsymbol{x})=\exp (2 \pi i \boldsymbol{k} \cdot \boldsymbol{x})$ and

where \mathcal{F}_{N} is Fourier transform.
「Jan Zeman, Jaroslav Vondřejc, Jan Novák, Ivo Marek, 2010, Accelerating a FFT-based solver for numerical

Fourier-Galerkin method

- Elliptic PDE with periodic boundary conditions

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=-\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

- A uniform grid discretization $\boldsymbol{N}=\left[N_{1}, \ldots, N_{d}\right] \in \mathbb{R}^{d}$.
- Approximation with trigonometric polynomials ${ }^{1}$,

$$
u(x) \approx \sum_{\boldsymbol{k} \in \mathbb{Z}_{N}} \mathrm{u}\left(\boldsymbol{x}_{N}^{\boldsymbol{k}}\right) \varphi_{N}^{\boldsymbol{k}}(\boldsymbol{x})=\sum_{\boldsymbol{k} \in \mathbb{Z}_{N}} \widehat{\mathrm{u}}[\boldsymbol{k}] \varphi^{\boldsymbol{k}}(\boldsymbol{x})
$$

where $\varphi^{\boldsymbol{k}}(\boldsymbol{x})=\exp (2 \pi \mathrm{i} \boldsymbol{k} \cdot \boldsymbol{x})$ and

$$
\mathcal{F}_{N} \mathbf{u}=\widehat{\mathbf{u}}
$$

where \mathcal{F}_{N} is Fourier transform.

[^1]
Differential operator

- Applied in Fourier space:
- The gradient: $\hat{\nabla}_{\boldsymbol{N}}: \mathbb{C}^{\boldsymbol{N}} \rightarrow \mathbb{C}^{d \times \boldsymbol{N}}$

$$
\nabla u(\boldsymbol{x})=\sum_{\boldsymbol{k} \in \mathbb{Z}_{N}} \widehat{\mathrm{u}}[\boldsymbol{k}] \nabla \varphi^{\boldsymbol{k}}(\boldsymbol{x})=\sum_{\boldsymbol{k} \in \mathbb{Z}_{N}} 2 \pi \mathrm{i} \boldsymbol{k} \widehat{\mathrm{u}}[\boldsymbol{k}] \varphi^{\boldsymbol{k}}(\boldsymbol{x})
$$

which corresponds to $\left(\widehat{\nabla}_{\boldsymbol{N}} \widehat{\mathbf{u}}\right)[\alpha, \boldsymbol{k}]=2 \pi \mathrm{i} k_{\alpha} \widehat{\mathbf{u}}[\boldsymbol{k}]$.

- The divergence: $\widehat{\nabla}_{N}^{*}: \mathbb{C}^{d \times \boldsymbol{N}} \rightarrow \mathbb{C}^{\boldsymbol{N}}$

$$
\left(\widehat{\nabla}_{N}^{*} \widehat{\mathbf{w}}\right)[\boldsymbol{k}]=\sum_{\alpha=1}^{d} 2 \pi \mathrm{i} k_{\alpha} \widehat{\mathbf{w}}[\alpha, \boldsymbol{k}] .
$$

LINEAR SYSTEM

- PDE

$$
\nabla \cdot(\boldsymbol{A}(\boldsymbol{x}) \nabla u)=-\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E} \quad \text { in } \quad \mathcal{Y}
$$

- The linear system

$$
\underbrace{\mathcal{F}_{N}^{-1} \widehat{\nabla}_{N}^{*} \mathcal{F}_{N} \tilde{\mathbf{A}}_{\boldsymbol{F}}^{-1} \widehat{\nabla}_{\boldsymbol{N}} \mathcal{F}_{N}}_{\mathbf{C}} \mathbf{u}=\underbrace{-\mathcal{F}_{N}^{-1} \widehat{\nabla}_{N}^{*} \mathcal{F}_{N} \tilde{\mathbf{A} E}}_{\mathbf{d}}, \quad \mathbf{u} \in \mathbb{R}^{N_{1} \times \cdots \times N_{d}} .
$$

- The system $\mathbf{C u}=\mathbf{d}$, solved with Richardson iteration

$$
\left.u_{(i+1)}=\Gamma_{(i)}+\omega\left(d-C u_{(i)}\right)\right] .
$$

LINEAR SYSTEM

- PDE

$$
\nabla \cdot(\boldsymbol{A}(\boldsymbol{x}) \nabla u)=-\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E} \quad \text { in } \quad \mathcal{Y}
$$

- The linear system

$$
\underbrace{\mathcal{F}_{\boldsymbol{N}}^{-1} \widehat{\nabla}_{\boldsymbol{N}}^{*} \mathcal{F}_{\boldsymbol{N}} \tilde{\mathbf{A}}_{\boldsymbol{\mathcal { F }}}^{\boldsymbol{N}}-1 \widehat{\nabla}_{\boldsymbol{N}} \mathcal{F}_{\boldsymbol{N}}}_{\mathbf{C}} \mathbf{u}=\underbrace{-\mathcal{F}_{\boldsymbol{N}}^{-1} \widehat{\nabla}_{\boldsymbol{N}}^{*} \mathcal{F}_{\boldsymbol{N}} \tilde{\mathbf{A} E}}_{\mathbf{d}}, \quad \mathbf{u} \in \mathbb{R}^{N_{1} \times \cdots \times N_{d}}
$$

- The system $\mathbf{C u}=\mathbf{d}$, solved with Richardson iteration

$$
\mathbf{u}_{(i+1)}=\left[\mathbf{u}_{(i)}+\omega\left(\mathbf{d}-\mathbf{C} \mathbf{u}_{(i)}\right)\right] .
$$

Outline

© Introduction to FFT-based Homogenisation

- Homogenisation problem
- Fourier-Galerkin method

(2) Low-Rank Tensor Approximations

- Idea of low-rank tensor Approximation
- Low-rank tensor formats
- Linear system with low-rank tensors

3 Numerical Experiments and Results

(4) Conclusion

IDEA OF LOW-RANK TENSOR APPROXIMATION

Figure 2: Low-rank decomposition of a second-order tensor (matrix) (top), and a third-order tensor (bottom).

[^2]
Idea of low-rank tensor approximation

- In 2D we can express tensor(matrix) $\mathbf{v} \in \mathbb{C}^{N \times N}$ in the form

$$
\mathbf{v}=\sum_{i=1}^{N} c[i] \mathbf{b}_{i}^{(1)} \otimes \mathbf{b}_{i}^{(2)},
$$

where $\mathbf{b}_{i}^{\alpha} \in \mathbb{C}^{N}$ is i-th basis vectors in spatial direction α.

- Strongly decreasing sequence of coefficients c[i]
- Approximation with r "significant" vectors

- Memory requirement of full format is N^{d} and low-rank is $d N r$.

Idea of low-rank tensor approximation

- In 2D we can express tensor(matrix) $\mathbf{v} \in \mathbb{C}^{N \times N}$ in the form

$$
\mathbf{v}=\sum_{i=1}^{N} c[i] \mathbf{b}_{i}^{(1)} \otimes \mathbf{b}_{i}^{(2)},
$$

where $\mathbf{b}_{i}^{\alpha} \in \mathbb{C}^{N}$ is i-th basis vectors in spatial direction α.

- Strongly decreasing sequence of coefficients c[i].
- Approximation with r "significant" vectors

- Memory requirement of full format is N^{d} and low-rank is $d N r$.

Idea of low-rank tensor approximation

- In 2D we can express tensor(matrix) $\mathbf{v} \in \mathbb{C}^{N \times N}$ in the form

$$
\mathbf{v}=\sum_{i=1}^{N} c[i] \mathbf{b}_{i}^{(1)} \otimes \mathbf{b}_{i}^{(2)}
$$

where $\mathbf{b}_{i}^{\alpha} \in \mathbb{C}^{N}$ is i-th basis vectors in spatial direction α.

- Strongly decreasing sequence of coefficients c[i].
- Approximation with r "significant" vectors

$$
\mathbf{v} \approx \widetilde{\mathbf{v}}=\sum_{i=1}^{r} c[i] \mathbf{b}_{i}^{(1)} \otimes \mathbf{b}_{i}^{(2)}
$$

- Memory requirement of full format is N^{d} and low-rank is $d N r$.

Idea of Low-Rank tensor approximation

- In 2D we can express tensor(matrix) $\mathbf{v} \in \mathbb{C}^{N \times N}$ in the form

$$
\mathbf{v}=\sum_{i=1}^{N} c[i] \mathbf{b}_{i}^{(1)} \otimes \mathbf{b}_{i}^{(2)}
$$

where $\mathbf{b}_{i}^{\alpha} \in \mathbb{C}^{N}$ is i-th basis vectors in spatial direction α.

- Strongly decreasing sequence of coefficients c[i].
- Approximation with r "significant" vectors

$$
\mathbf{v} \approx \widetilde{\mathbf{v}}=\sum_{i=1}^{r} c[i] \mathbf{b}_{i}^{(1)} \otimes \mathbf{b}_{i}^{(2)}
$$

- Memory requirement of full format is N^{d} and low-rank is $d N r$.

Canonical Format ${ }^{3}$

- The representation has the form:

$$
\mathbf{v} \approx \sum_{i=1}^{r} \bigotimes_{j=1}^{d} \mathbf{b}_{\mathbf{v}}^{(j)}\left[i_{j}\right]
$$

where item $\mathbf{b}_{\mathbf{v}}^{(j)} \in \mathbb{C}^{r \times N_{j}}$ stores the basis vectors.

- obtained by Singular Value Decomposition (SVD).
- Memory requirements: $d N r$
- Pros: The lowest memory requirements.
- Cons: only in 2D.

[^3]
TUCKER FORMAT ${ }^{4}$

- Generalisation of the canonical format to higher dimensions.
- The representation has the form:

$$
\mathbf{v} \approx \sum_{i_{1}=1}^{r_{1}} \cdots \sum_{i_{d}=1}^{r_{d}} \mathrm{c}\left[i_{1}, \ldots, i_{d}\right] \bigotimes_{j=1}^{d} \mathbf{b}_{\mathbf{v}}^{(j)}\left[i_{j}\right] .
$$

where $\mathrm{c}\left[i_{1}, \ldots, i_{d}\right]$ is element of core $\mathbf{c} \in \mathbb{C}^{r_{1} \times \cdots \times r_{d}}$.

- obtained by Higher Order Singular Value Decomposition (HOSVD).
- Memory requirements: $d N r+r^{d}$.
- Pros: higher dimensions.
- Cons: core size depends exponentially on dimension.

[^4]
Tensor train (TT) FORMAT ${ }^{5}$

- The representation has the form:

$$
\mathbf{v} \approx \sum_{i_{1}=1}^{r_{1}} \ldots \sum_{i_{d-1}=1}^{r_{d-1}} \bigotimes_{j=1}^{d} \mathbf{b}_{\mathbf{v}}^{j}\left[i_{j-1},:, i_{j}\right]
$$

where $\mathbf{b}_{\mathbf{v}}^{j} \in \mathbb{C}^{r_{j-1} \times N_{j} \times r_{j}}$ are the carriages.

- Memory requirements: $2 \mathrm{Nr}+(d-2) N r^{2}$
- Pros: size depends linearly on d.
- Cons: Truncation is more expensive.

[^5]
Linear system with Low-Rank tensors

- The linear system
- Memory consumption of \mathbf{u}

- Complexity of FFT

Memory consumption of u

Figure 3: Memory consumption of canonical in 2D (left), Tucker (middle) and TT (right) in 3D.

FFT REQUIREMENTS

- The linear system

$$
\underbrace{\mathcal{F}_{N}^{-1} \widehat{\nabla}_{N}^{*} \mathcal{F}_{N} \tilde{\mathrm{~A}} \mathcal{F}_{N}^{-1} \widehat{\nabla}_{N} \mathcal{F}_{N}}_{\mathrm{C}} \mathbf{u}=\underbrace{-\mathcal{F}_{N}^{-1} \widehat{\nabla}_{N}^{*} \mathcal{F}_{N} \tilde{\mathbf{A}} \mathbf{E}}_{\mathrm{d}},
$$

Figure 4: FFT complexity of canonical in 2D (left), Tucker (middle) and TT (right) in 3D.

Operations with Low-Rank tensor

- Mathematical operations are performed in low rank format.
- Rank grows during some operations (see Table 1).

Operation	Rank \boldsymbol{r}
Differentiation (gradient)	remain unchanged
d-dimensional FFT	remain unchanged
Evaluation of material law	increased
Divergence	increased

Table 1: Effect of operations in low-rank formats on rank r.

- Rank truncation (rounding) \mathcal{T} - keep rank on efficient level. - require additional operations

Operations with Low-Rank tensor

- Mathematical operations are performed in low rank format.
- Rank grows during some operations (see Table 1).

Operation	Rank \boldsymbol{r}
Differentiation (gradient)	remain unchanged
d-dimensional FFT	remain unchanged
Evaluation of material law	increased
Divergence	increased

Table 1: Effect of operations in low-rank formats on rank r.

- Rank truncation (rounding) \mathcal{T} - keep rank on efficient level.
- require additional operations

Operations with Low-Rank tensor

- Mathematical operations are performed in low rank format.
- Rank grows during some operations (see Table 1).

Operation	Rank \boldsymbol{r}
Differentiation (gradient)	remain unchanged
d-dimensional FFT	remain unchanged
Evaluation of material law	increased
Divergence	increased

Table 1: Effect of operations in low-rank formats on rank r.

- Rank truncation (rounding) \mathcal{T} - keep rank on efficient level.
- require additional operations

Linear system with Low rank tensors Rank truncation

- The linear system in full tensor format

$$
\mathcal{F}_{N}^{-1} \widehat{\nabla}_{N}^{*} \mathcal{F}_{N} \widetilde{\mathbf{A}}_{\mathcal{N}}^{-1} \widehat{\nabla}_{N} \mathcal{F}_{N} \mathbf{u}=-\mathcal{F}_{N}^{-1} \widehat{\nabla}_{N}^{*} \mathcal{F}_{N} \tilde{\mathbf{A}} \mathbf{E}
$$

- The linear system in fun low rank tensor format

Linear system with Low rank tensors Rank truncation

- The linear system in full tensor format

$$
\mathcal{F}_{N}^{-1} \widehat{\nabla}_{N}^{*} \mathcal{F}_{N} \tilde{\mathbf{A}}_{N}^{-1} \widehat{\nabla}_{N} \mathcal{F}_{N} \mathbf{u}=-\mathcal{F}_{N}^{-1} \widehat{\nabla}_{N}^{*} \mathcal{F}_{N} \widetilde{\mathbf{A}} \mathbf{E}
$$

- The linear system in fun low rank tensor format

Outline

© Introduction to FFT-based Homogenisation

- Homogenisation problem
- Fourier-Galerkin method
(2) Low-Rank Tensor Approximations
- Idea of low-rank tensor Approximation
- Low-rank tensor formats
- Linear system with low-rank tensors
(3) Numerical Experiments and Results
(4) Conclusion

Materials

- Canonical in 2D:

- Tucker and TT in 3D:

Error of Low-Rank approximation

- As an criterion the relative algebraic error between the low-rank solution and the full solution has been used, i.e.

$$
\text { relative error }=\frac{A_{\mathrm{H}, \boldsymbol{N}}-\tilde{A}_{\mathrm{H}, \boldsymbol{N}}}{A_{\mathrm{H}, \boldsymbol{N}}}
$$

Figure 5: Dependency of approximation error on solution rank.

Memory efficiency

- memory effectiveness

$$
\frac{\text { memory for sparse solution }}{\text { memory for full solution }}
$$

Figure 6: Dependency of memory efficiency on solution rank for discretizations with N^{d} points.

Computational efficiencies

- Computational effectiveness

$$
\frac{\text { time for sparse solution }}{\text { time for full solution }}
$$

Figure 7: Time consumption with respect to rank-r

Outline

© Introduction to FFT-based Homogenisation

- Homogenisation problem
- Fourier-Galerkin method
(2) Low-Rank Tensor Approximations
- Idea of low-rank tensor Approximation
- Low-rank tensor formats
- Linear system with low-rank tensors

3 Numerical Experiments and Results
(4) COnClusion

Conclusion

- Elliptic PDE with periodic boundary conditions

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

- Solved by FFT-based Fourier-Galerkin method.
- Linear system expressed in low-rank tensor formats.
- Tested formats: canonical, Tucker, and tensor train (TT).
- Low-rank approximations lead to a significant memory and computational reduction.

Conclusion

- Elliptic PDE with periodic boundary conditions

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

- Solved by FFT-based Fourier-Galerkin method.
- Linear system expressed in low-rank tensor formats.
- Tested formats: canonical, Tucker, and tensor train (TT).
- Low-rank approximations lead to a significant memory and computational reduction.

Conclusion

- Elliptic PDE with periodic boundary conditions

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

- Solved by FFT-based Fourier-Galerkin method.
- Linear system expressed in low-rank tensor formats.
- Tested formats: canonical, Tucker, and tensor train (TT).
- Low-rank approximations lead to a significant memory and computational reduction.

Conclusion

- Elliptic PDE with periodic boundary conditions

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

- Solved by FFT-based Fourier-Galerkin method.
- Linear system expressed in low-rank tensor formats.
- Tested formats: canonical, Tucker, and tensor train (TT).
- Low-rank approximations lead to a significant memory and computational reduction.

Conclusion

- Elliptic PDE with periodic boundary conditions

$$
\nabla \cdot\left(\boldsymbol{A}(\boldsymbol{x}) \nabla u_{\alpha}\right)=\nabla \cdot \boldsymbol{A}(\boldsymbol{x}) \boldsymbol{E}_{\alpha} \quad \text { in } \quad \mathcal{Y}, \quad \alpha=1, \ldots, d
$$

- Solved by FFT-based Fourier-Galerkin method.
- Linear system expressed in low-rank tensor formats.
- Tested formats: canonical, Tucker, and tensor train (TT).
- Low-rank approximations lead to a significant memory and computational reduction.

Thank you for your attention!

FFT-BASED HOMOGENISATION ACCELERATED BY LOW-RANK APPROXIMATIONS

Jaroslav Vondřejc ${ }^{1}$, Dishi Liu ${ }^{1}$, Martin Ladecký ${ }^{2}$ and Hermann G. Matthies ${ }^{1}$

${ }^{1}$ Institute of Scientific Computing, Technische Universität Braunschweig
${ }^{2}$ Department of Mathematics, Faculty of Civil Engineering,
Czech Technical University in Prague

AANMPDE 12, Strobl, Austria

Preprint

[^0]: Jan Zeman, Jaroslav Vondřejc, Jan Novák, Ivo Marek, 2010, Accelerating a FFT-based solver for numerical

[^1]: 1 Jan Zeman, Jaroslav Vondřejc, Jan Novák, Ivo Marek, 2010, Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients.

[^2]: ${ }^{2}$ Zhang, Zheng and Batselier, Kim and Liu, Haotian and Daniel, Luca and Wong, Ngai, Tensor Computation: A New Framework for High-Dimensional Problems in EDA,IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems

[^3]: ${ }^{3}$ Hackbusch,Wolfgang: Tensor Spaces and Numerical Tensor Calculus, Springer Verlag Berlin Heidelberg New York, 2012.

[^4]: ${ }^{4}$ Hackbusch,Wolfgang: Tensor Spaces and Numerical Tensor Calculus, Springer Verlag Berlin Heidelberg New York, 2012.

[^5]: ${ }^{5}$ Oseledets, Ivan and Tyrtyshnikov, Eugene: Linear Algebra Appl.,North-Holland, TT-cross approximation for multidimensional arrays, 2010, pp 0-88.

