Fast Boundary Element Methods for plasma simulation

Torsten Keßler Sergej Rjasanow Steffen Weißer
Saarland University

July 3, 2019

Vlasov-Poisson system

The Vlasov-Poisson system for the distribution function

$$
f:(0, \infty) \times \mathbb{R}_{x}^{3} \times \mathbb{R}_{v}^{3} \rightarrow(0, \infty)
$$

of electrons in a plasma with positive background charge reads

$$
\begin{gathered}
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f-E \cdot \nabla_{v} f=0 \\
E=-\nabla_{x} \phi \\
-\Delta_{x} \phi=\frac{1}{\beta}\left[1-\int_{\mathbb{R}^{3}} f \mathrm{~d} v\right]
\end{gathered}
$$

where

$$
\beta=\left(\frac{\lambda_{D}}{L_{0}}\right)^{2}, \quad \lambda_{D}=\sqrt{\frac{\varepsilon_{0} k_{B} T_{0}}{n_{0} e^{2}}} .
$$

Direct Simulation Monte Carlo

We discretise f with N_{p} macroparticles,

$$
f(t, x, v) \approx \sum_{i=1}^{N_{p}} w_{i} \delta_{x_{i}(t)}(x) \delta_{v_{i}(t)}(v)
$$

The Vlasov equation now is a system of ODEs,

$$
\begin{aligned}
\dot{x}_{i} & =v_{i} \\
\dot{v}_{i} & =-E\left(x_{i}\right),
\end{aligned}
$$

$$
i=1, \ldots, N_{p}
$$

Direct Simulation Monte Carlo

We discretise f with N_{p} macroparticles,

$$
f(t, x, v) \approx \sum_{i=1}^{N_{p}} w_{i} \delta_{x_{i}(t)}(x) \delta_{v_{i}(t)}(v)
$$

The Vlasov equation now is a system of ODEs,

$$
\begin{array}{ll}
\dot{x}_{i}=v_{i}, & \text { grid-free! } \\
\dot{v}_{i}=-E\left(x_{i}\right) &
\end{array}
$$

$$
i=1, \ldots, N_{p}
$$

Direct Simulation Monte Carlo

We discretise f with N_{p} macroparticles,

$$
f(t, x, v) \approx \sum_{i=1}^{N_{p}} w_{i} \delta_{x_{i}(t)}(x) \delta_{v_{i}(t)}(v)
$$

The Vlasov equation now is a system of ODEs,

$$
\begin{array}{ll}
\dot{x}_{i}=v_{i}, \\
\dot{v}_{i} & =-E\left(x_{i}\right),
\end{array} \quad \text { grid-free? } ? ~ l
$$

$i=1, \ldots, N_{p}$.

$$
-\Delta \phi=\frac{1}{\beta}\left[1-\sum_{j=1}^{N_{p}} w_{j} \delta_{x_{j}}\right]
$$

Direct Simulation Monte Carlo

We discretise f with N_{p} macroparticles,

$$
f(t, x, v) \approx \sum_{i=1}^{N_{p}} w_{i} \delta_{x_{i}(t)}(x) \delta_{v_{i}(t)}(v)
$$

The Vlasov equation now is a system of ODEs,

$$
\begin{aligned}
& \dot{x}_{i}=v_{i}, \\
& \dot{v}_{i}=-E\left(x_{i}\right),
\end{aligned}
$$

$i=1, \ldots, N_{p}$.

$$
-\Delta \phi=\frac{1}{\beta}\left[1-\sum_{j=1}^{N_{p}} w_{j} \delta_{x_{j}}\right]
$$

\rightarrow Use Boundary Element Methods for the Poisson equation

Representation formula

Let $\Omega \subset \mathbb{R}_{x}^{3}$ be a Lipschitz domain with boundary $\Gamma=\partial \Omega$. The solution u of

$$
\begin{aligned}
-\Delta u=g_{V} & \text { in } \Omega, \\
\gamma_{0} u=g_{D} & \text { on } \Gamma
\end{aligned}
$$

admits the representation formula

$$
\begin{aligned}
u(x)= & \int_{\Gamma} \gamma_{0, y} U(x, y) \gamma_{1} u(y) \mathrm{d} S_{y}-\int_{\Gamma} \gamma_{1, y} U(x, y) g_{D}(y) \mathrm{d} S_{y} \\
& +\int_{\Omega} U(x, y) g_{V}(y) \mathrm{d} y \\
= & \left(\tilde{V} \gamma_{1} u\right)(x)-\left(W g_{D}\right)(x)+\left(\tilde{N} g_{V}\right)(x), \quad x \in \Omega
\end{aligned}
$$

where

$$
U(x, y)=\frac{1}{4 \pi} \frac{1}{|x-y|}, \quad x \neq y \in \mathbb{R}^{3}
$$

Boundary Integral Equations

Taking the Dirichlet trace γ_{0} of the representation formula, we get an integral equation on Γ for $t=\gamma_{1} u$,

$$
V t=\left(\frac{1}{2}+K\right) g_{D}-N_{0} g_{V}
$$

where

$$
V t(x)=\int_{\Gamma} \gamma_{0, y} U(x, y) t(y) \mathrm{d} S_{y}, \quad x \in \Gamma
$$

is symmetric and positive definite,

$$
K g_{D}(x)=\text { p.v. } \int_{\Gamma} \gamma_{1, y} U(x, y) g_{D}(y) \mathrm{d} S_{y}, \quad x \in \Gamma
$$

and

$$
N_{0} g_{V}(x)=\int_{\Omega} U(x, y) g_{V}(y) \mathrm{d} y, \quad x \in \Gamma
$$

Boundary Element Methods

We discretise the surface Γ with N_{Γ} elements, M_{Γ} nodes, and mesh size h.

Employing a Galerkin Method with discontinuous ansatz functions for the Neumann trace t and continuous functions for g_{D},

$$
t \approx \sum_{k=1}^{N_{\Gamma}}\left(t_{h}\right)_{k} \varphi_{k}^{0}, \quad g_{D} \approx \sum_{i=1}^{M_{\Gamma}}\left(g_{h}\right)_{i} \varphi_{i}^{1}
$$

leads to the discrete system

$$
V_{h} t_{h}=\left(\frac{1}{2} M_{h}+K_{h}\right) g_{h}-\underline{N}_{0}
$$

Approximation error

For sufficiently regular data $\left(g_{V}, g_{D}\right)$ we have

$$
\left\|\gamma_{1} u-t_{h}\right\|_{L^{2}(\Gamma)} \leq C_{1} h,
$$

where h is the mesh size of the boundary discretisation. This implies the pointwise estimates

$$
\begin{aligned}
\left|u(x)-u_{h}(x)\right| & \leq C_{2}(x) h^{3}, \\
\left|\nabla u(x)-\nabla u_{h}(x)\right| & \leq C_{3}(x) h^{3}
\end{aligned}
$$

for $x \in \Omega$.

- No loss of convergence rate for the gradient!
- Very well suited for the computation of the electric field.

Application to the particle system

The crucial part is the evaluation of the Newton potential \tilde{N},

$$
\tilde{N} g_{V}(x)=\int_{\Omega} U(x, y) g_{V}(y) d y
$$

but for our plasma

$$
g_{V}=\frac{1}{\beta}\left[1-\sum_{j=1}^{N_{p}} w_{j} \delta_{x_{j}}\right]
$$

and therefore

$$
\tilde{N} g_{V}(x)=\frac{1}{\beta} \int_{\Omega} U(x, y) \mathrm{d} y-\frac{1}{\beta} \sum_{j=1}^{N_{p}} w_{j} U\left(x, x_{j}\right)
$$

The remaining volume integral is avoided by the use of a special solution for the background charge.

Application to the particle system

For the particle system, we solve

$$
\begin{array}{rlrl}
-\Delta \phi & =-\frac{1}{\beta} \sum_{j=1}^{N_{p}} w_{j} \delta_{x_{j}} & \text { in } \Omega, \\
\gamma_{0} \phi & =g_{D}-\phi_{b} & & \text { on } \Gamma,
\end{array}
$$

where $\phi_{b}(x)=-1 /(6 \beta)|x|^{2}, x \in \Omega$. We have

$$
E\left(x_{i}\right)=\sum_{\substack{j=1 \\ j \neq i}}^{N_{p}} \frac{w_{j}}{4 \pi \beta} \frac{x_{i}-x_{j}}{\left|x_{i}-x_{j}\right|^{3}}
$$

$i=1, \ldots, N_{p}$.

Application to the particle system

For the particle system, we solve

$$
\begin{array}{rlrl}
-\Delta \phi & =-\frac{1}{\beta} \sum_{j=1}^{N_{p}} w_{j} \delta_{x_{j}} & \text { in } \Omega, \\
\gamma_{0} \phi & =g_{D}-\phi_{b} & & \text { on } \Gamma,
\end{array}
$$

where $\phi_{b}(x)=-1 /(6 \beta)|x|^{2}, x \in \Omega$. We have

$$
\begin{aligned}
E\left(x_{i}\right)= & \sum_{\substack{j=1 \\
j \neq i}}^{N_{p}} \frac{w_{j}}{4 \pi \beta} \frac{x_{i}-x_{j}}{\left|x_{i}-x_{j}\right|^{3}} \\
& -\nabla \phi_{b}\left(x_{i}\right)
\end{aligned}
$$

grid-free
grid-free
$i=1, \ldots, N_{p}$.

Application to the particle system

For the particle system, we solve

$$
\begin{aligned}
-\Delta \phi & =-\frac{1}{\beta} \sum_{j=1}^{N_{p}} w_{j} \delta_{x_{j}} & \text { in } \Omega, \\
\gamma_{0} \phi & =g_{D}-\phi_{b} & \text { on } \Gamma,
\end{aligned}
$$

where $\phi_{b}(x)=-1 /(6 \beta)|x|^{2}, x \in \Omega$. We have

$$
\begin{aligned}
E\left(x_{i}\right)= & \sum_{\substack{j=1 \\
j \neq i}}^{N_{p}} \frac{w_{j}}{4 \pi \beta} \frac{x_{i}-x_{j}}{\left|x_{i}-x_{j}\right|^{3}} & & \text { grid-free } \\
& -\nabla \phi_{b}\left(x_{i}\right) & & \text { grid-free } \\
& -\nabla\left(\tilde{V} \gamma_{1} \phi\right)\left(x_{i}\right)+\nabla\left(W \gamma_{0} \phi\right)\left(x_{i}\right) & & \text { integration over } \Gamma,
\end{aligned}
$$

$$
i=1, \ldots, N_{p}
$$

Application to the particle system

For the particle system, we solve

$$
\begin{array}{rlr}
-\Delta \phi & =-\frac{1}{\beta} \sum_{j=1}^{N_{p}} w_{j} \delta_{x_{j}} & \text { in } \Omega, \\
\gamma_{0} \phi & =g_{D}-\phi_{b} & \\
\text { on } \Gamma,
\end{array}
$$

where $\phi_{b}(x)=-1 /(6 \beta)|x|^{2}, x \in \Omega$. We have

$$
\begin{array}{rlrl}
E\left(x_{i}\right)= & \sum_{\substack{j=1 \\
j \neq i}}^{N_{p}} \frac{w_{j}}{4 \pi \beta} \frac{x_{i}-x_{j}}{\left|x_{i}-x_{j}\right|^{3}} & & \text { grid-free } \\
& -\nabla \phi_{b}\left(x_{i}\right) & & \text { grid-free } \\
& -\nabla\left(\tilde{V} \gamma_{1} \phi\right)\left(x_{i}\right)+\nabla\left(W \gamma_{0} \phi\right)\left(x_{i}\right) & & \text { integration over } \Gamma, \\
i=1, \ldots, N_{p} . & &
\end{array}
$$

- No volume mesh is needed for the evaluation of E.
- Computational complexity for E is in $\mathcal{O}\left(N_{p}^{2}+N_{\Gamma} N_{p}\right)$.

Hierarchical approximation

The direct summation is

- very expensive, $\mathcal{O}\left(N_{p}^{2}\right)$ complexity,
- not needed for particles which are "far apart" (in the far field)

Goal: Reduction of complexity from $\mathcal{O}\left(N_{p}^{2}\right)$ to $\mathcal{O}\left(r N_{p}\right), r \ll N_{p}$.

Hierarchical approximation

We subdivide the particles by a nested cluster tree

Hierarchical approximation

We subdivide the particles by a nested cluster tree

Hierarchical approximation

We subdivide the particles by a nested cluster tree

Hierarchical approximation

We subdivide the particles by a nested cluster tree

The far field is characterised by the admissibility condition

$$
\max \{\operatorname{diam} X, \operatorname{diam} Y\} \leq \eta \operatorname{dist}(X, Y)
$$

for clusters X and Y with a constant $\eta>0$.

Hierarchical approximation

For admissible clusters (X, Y) the evaluation of U is replaced by interpolation

$$
\left(\begin{array}{cccc}
U\left(x_{1}, y_{1}\right) & U\left(x_{1}, y_{2}\right) & \cdots & U\left(x_{1}, y_{q}\right) \\
U\left(x_{2}, y_{1}\right) & U\left(x_{2}, y_{2}\right) & \cdots & U\left(x_{2}, y_{q}\right) \\
\vdots & \vdots & & \vdots \\
U\left(x_{p-1}, y_{1}\right) & U\left(x_{p-1}, y_{2}\right) & \ldots & U\left(x_{p-1}, y_{q}\right) \\
U\left(x_{p}, y_{1}\right) & U\left(x_{p}, y_{2}\right) & \ldots & U\left(x_{p}, y_{q}\right)
\end{array}\right)
$$

Hierarchical approximation

For admissible clusters (X, Y) the evaluation of U is replaced by interpolation

$$
v_{X}\left(\begin{array}{ccc}
U\left(\xi_{1}, \zeta_{1}\right) & \ldots & U\left(\xi_{1}, \zeta_{r}\right) \\
\vdots & & \vdots \\
U\left(\xi_{r}, \zeta_{1}\right) & \ldots & U\left(\xi_{r}, \zeta_{r}\right)
\end{array}\right) \boldsymbol{W}_{Y}^{\top}
$$

V_{X} and W_{Y} are interpolation matrices at the positions of the particles.

Hierarchical approximation

- The matrices V_{X}, W_{Y} are independent of the interpolated function.
\rightarrow simultaneous evaluation of vector-valued functions.
- Only small leaf matrices are needed.
\rightarrow Computation on the fly while iterating through the cluster tree.
\rightarrow Reduction of complexity from $\mathcal{O}\left(N_{p}^{2}\right)$ to $\mathcal{O}\left(r N_{p}\right), r \ll N_{p}$.
- The same techniques apply for the approximation of BEM matrices.

Numerical examples

- The system of ODEs

$$
\begin{aligned}
\dot{x}_{i} & =v_{i} \\
\dot{v}_{i} & =-E\left(x_{i}\right), \quad i=1, \ldots, n,
\end{aligned}
$$

is integrated by the Leapfrog scheme

$$
\begin{aligned}
\mathbf{V}_{t+1 / 2} & =\mathbf{V}_{t}-\frac{\Delta t}{2} \mathbf{E}_{t} \\
\mathbf{X}_{t+1} & =\mathbf{X}_{t}+\Delta t \mathbf{V}_{t+1 / 2} \\
\mathbf{V}_{t+1} & =\mathbf{V}_{t+1 / 2}-\frac{\Delta t}{2} \mathbf{E}_{t+1},
\end{aligned}
$$

which is second order and time-reversible.

Computational timing for E

Cluster tree

Newton potential

Gradient of representation formula

Plasma sheath

- Initially, 10000 particles are distributed uniformly inside the unit sphere.
- The particles are absorbed at the boundary.
- Homogeneous Dirichlet boundary conditions for ϕ.
- The surface is triangulated with 1280 triangles.

Plasma sheath

Absorbed particles leave a positive net charge near the boundary.
\rightarrow Potential barrier for slow particles.
\rightarrow Particles are confined to the interior.
\rightarrow Number of particles is (nearly) stationary.

Plasma oscillation

- Initially, 5000 particles are distributed uniformly in the middle of the cylinder, leaving positive net charge at its ends.
- The particles are absorbed at the boundary.
- Homogeneous Dirichlet boundary conditions on the bases, homogeneous Neumann boundary conditions on the rest.
- The surface is triangulated with 2110 triangles.

Plasma oscillation

The plasma oscillates with a frequency of $3.0 \cdot 10^{8} \frac{1}{\mathrm{~s}}$, which is in the order of the plasma frequency

$$
\omega_{p}=\sqrt{\frac{n e^{2}}{\varepsilon_{0} m_{e}}} \approx 1.8 \cdot 10^{8} \frac{1}{\mathrm{~s}} .
$$

Plasma oscillation

For the plasma frequency, we have

$$
\omega_{p}=C_{e} \sqrt{n},
$$

which is observed numerically:

Accelerator

- Initially, 10000 particles are distributed uniformly in the left cylinder.
- The particles are absorbed at the boundary.
- The surface is triangulated with 2078 triangles.

Accelerator

The particle distribution is rotationally symmetric around the symmetry axis of the geometry.

Conclusion

- With BEM,
- no volume mesh is needed for solving the Vlasov-Poisson system.
- we can handle complex geometries and mixed boundary value problems.
- we have the same order of convergence for $E=-\nabla_{x} \phi$ as for ϕ.
- Combined with hierarchical approximation we obtain an $\mathcal{O}\left(N_{p}\right)$ algorithm.
- The Coulombic interaction is fully resolved by our scheme, especially in the near field.

