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Vlasov—Poisson system
The Vlasov-Poisson system for the distribution function
f:(0,00) x R x R3 — (0, 00)
of electrons in a plasma with positive background charge reads
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Direct Simulation Monte Carlo

We discretise f with N, macroparticles,

f(t,x,v) Zw, xi(8)(X) du ey (V)

The Vlasov equation now is a system of ODEs,

Xj = Vi,

vi = —E(x;),
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Direct Simulation Monte Carlo

We discretise f with N, macroparticles,

f(t,x,v) Z Wi Gy, (¢)(X) Sy,(e) (V)-

The Vlasov equation now is a system of ODEs,

Xj = Vi,
vi = —E(x;),
i=1,...,Np.
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— Use Boundary Element Methods for the Poisson equation



Representation formula

Let Q C R3 be a Lipschitz domain with boundary I' = 9Q. The

solution u of
—Au=gy in€Q,

You=gp onl,

admits the representation formula
u(x) = /r Yoy U(x, y)nu(y)dS, — /r 71y U(x, y)gp(y)dSy

T / Ux,y)ev (y) dy,
~ Q ~
—(Vu)(x) — (Wep)(x) + (Ngv)(x), x €,
where

1 1

c R3.
4 |x —y|’ X7y

U(x,y) =



Boundary Integral Equations

Taking the Dirichlet trace vy of the representation formula, we get
an integral equation on I for t = vy u,

1
Vt = <2 + K) gp — Nogv,

where

Vi(x) = / Yoy U )E(y)dS,, x €T,
r

is symmetric and positive definite,

Kgp(x) = p.v. /ryLyU(x,y)gD(y) dS,, xeT,

and
Nogy (x) = /Q U y)gv(y)dy, xeT.



Boundary Element Methods

We discretise the surface I with N elements, Mr nodes, and mesh
size h.

Employing a Galerkin Method with discontinuous ansatz functions
for the Neumann trace t and continuous functions for gp,

Nr Mr
t~ Z(th)k o), ep~ Z(gh)iw},
k=1 i=1

leads to the discrete system

1
Vity = (2Mh + Kh> gh — Np.



Approximation error

For sufficiently regular data (gy,gp) we have
[v1u = tall2(ry < Gih,

where h is the mesh size of the boundary discretisation. This
implies the pointwise estimates

|u(x) = un
|Vu(x) — Vup(x)| < G(x)h®

for x € Q.
» No loss of convergence rate for the gradient!

» Very well suited for the computation of the electric field.



Application to the particle system

The crucial part is the evaluation of the Newton potential N,

Ngy (x /nygv( )dy,

but for our plasma

1
=5 Z s
and therefore
1 1
fgv) = 5 [ Uky)dy = 53 wlltes).
5 Ja 5

The remaining volume integral is avoided by the use of a special
solution for the background charge.



Application to the particle system

For the particle system, we solve

Np
N —; D widy inQ,
j=1

Y09 = &p — b onT,
where ¢p(x) = —1/(68)|x|2, x € Q. We have
Yoo w xi—x
=S L T id-f
E(xi) JZ; 4B % — grid-free
J#i
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Application to the particle system

For the particle system, we solve

Np
N —; D widy inQ,
j=1

Yod = &b — P onT,
where ¢p(x) = —1/(68)|x|2, x € Q. We have
Yoo w xi—x;
E(x)=) —L 12 grid-free
J.Z; AT |x; — x;[3
JF#
— Von(xi) grid-free

— V(V110)(x) + V(Wr00)(x;) integration over I,
i=1,...,N,.



Application to the particle system

For the particle system, we solve

Np
N —; D widy inQ,
j=1

Y09 = 8D — ¢b onT,

where ¢p(x) = —1/(68)|x|2, x € Q. We have
Np

VAW X -
E(X,) = Z mm grld—free

Jj=1
JF

— Vop(x) grid-free
— V(V110)(x) + V(Wr00)(x;) integration over I,
i=1,...,N,.
» No volume mesh is needed for the evaluation of E.
» Computational complexity for E is in O(N3 + NrN,).



Hierarchical approximation

The direct summation is
> very expensive, O(N2) complexity,
» not needed for particles which are "far apart” (in the far field)

Goal: Reduction of complexity from (’)(Ng) to O(rNp), r < N,.



Hierarchical approximation

We subdivide the particles by a nested cluster tree
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Hierarchical approximation

We subdivide the particles by a nested cluster tree

The far field is characterised by the admissibility condition
max{diam X, diam Y} < ndist(X, Y)

for clusters X and Y with a constant n > 0.



Hierarchical approximation

For admissible clusters (X, Y') the evaluation of U is replaced by

interpolation
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Hierarchical approximation

For admissible clusters (X, Y') the evaluation of U is replaced by

interpolation
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Vx and Wy are interpolation matrices at the positions of the

particles.
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Hierarchical approximation

» The matrices Vx, Wy are independent of the interpolated
function.
— simultaneous evaluation of vector-valued functions.

» Only small leaf matrices are needed.
— Computation on the fly while iterating through the cluster
tree.
— Reduction of complexity from O(N3) to O(rN,), r < Np.

» The same techniques apply for the approximation of BEM
matrices.



Numerical examples

» The system of ODEs

Xj = Vj,

V;Z—E(X,‘), izl,...,n,

is integrated by the Leapfrog scheme

At
Vt+1/2 = Vt - 7Et,
Xey1 = X + AtV 12,
At

Vi1 =Ver2 — - B,

which is second order and time-reversible.



Computational timing for E
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Plasma sheath

Initially, 10000 particles are distributed uniformly inside the
unit sphere.

The particles are absorbed at the boundary.

Homogeneous Dirichlet boundary conditions for ¢.

The surface is triangulated with 1280 triangles.
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Plasma sheath
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Absorbed particles leave a positive net charge near the boundary.
— Potential barrier for slow particles.

— Particles are confined to the interior.

— Number of particles is (nearly) stationary.



Plasma oscillation

v

Initially, 5000 particles are distributed uniformly in the middle
of the cylinder, leaving positive net charge at its ends.

v

The particles are absorbed at the boundary.

Homogeneous Dirichlet boundary conditions on the bases,
homogeneous Neumann boundary conditions on the rest.

v

v

The surface is triangulated with 2110 triangles.



Plasma oscillation
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The plasma oscillates with a frequency of 3.0 -1
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Plasma oscillation
For the plasma frequency, we have

Wp = Ce\m,

which is observed numerically:
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Accelerator

» Initially, 10000 particles are distributed uniformly in the left

cylinder.
» The particles are absorbed at the boundary.

» The surface is triangulated with 2078 triangles.
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Accelerator

The particle distribution is rotationally symmetric around the
symmetry axis of the geometry.



Conclusion

» With BEM,
» no volume mesh is needed for solving the Vlasov-Poisson
system.
» we can handle complex geometries and mixed boundary value
problems.
» we have the same order of convergence for E = —V ¢ as for ¢.

» Combined with hierarchical approximation we obtain an O(N,)
algorithm.

» The Coulombic interaction is fully resolved by our scheme,
especially in the near field.



