Sharp spatial H^1 -norm analysis of a finite element method for a time-fractional diffusion problem

Chaobao Huang

Beijing Computational Science Research Center

The 12th AANMPDE, St.Wolfgang/Strobl, Austria

July 2, 2019

Joint work with

Martin Stynes, Beijing Computational Science Research Center

- 一司

- 2 The idea of analysis
- 3 H^1 -norm analysis of the fully discrete FEM
- 4 Numerical experiments

Fractional PDE

- 2 The idea of analysis
- 3 H¹-norm analysis of the fully discrete FEM

4 Numerical experiments

Fractional-derivative PDE (initial-boundary value problem)

$$Lu := \frac{D_t^{\alpha} u}{U} - \Delta u = f(x, t)$$
(1)

for $(x, t) \in Q := \Omega \times (0, T]$, with

$$egin{aligned} u(x,0) &= u_0(x) \quad ext{for } x \in \Omega, \ u|_{\partial\Omega} &= 0 \quad ext{for } 0 < t \leq T, \end{aligned}$$

where $\alpha \in (0, 1)$, the functions f is continuous on $\overline{Q} = \overline{\Omega} \times [0, T]$, and $u_0 \in C(\overline{\Omega})$. Here the spatial domain $\Omega \subset \mathbb{R}^d$ (where $d \in \{1, 2, 3\}$) is bounded, with a Lipschitz continuous boundary $\partial \Omega$.

 D_t^{α} denotes the Caputo fractional derivative defined by

$$D_t^{\alpha}u(x,t)=\frac{1}{\Gamma(1-\alpha)}\int_0^t(t-s)^{-\alpha}\frac{\partial u(x,s)}{\partial s}\,ds.$$

The previous works:

- L1 scheme
 - M. Stynes et al., SIAM J. Numer. Anal., 55(2) (2017) 1057-1079.

$$\begin{split} \left\| u(\cdot,t) \right\|_{q} &\leq C \quad \text{for } q \in \mathbb{N}_{0}, \\ \left\| \partial_{t}^{l} u(x,t) \right\|_{q} &\leq C \left(1 + t^{\alpha - l} \right) \quad \text{for } l = 0, 1, 2, \text{and } q \in \mathbb{N}_{0}, \qquad (2) \\ \left\| D_{t}^{\alpha} u(\cdot,t) \right\|_{q} &\leq C \quad \text{for } q \in \mathbb{N}_{0}. \end{split}$$

N. Kopteva, Math. Comput., Doi:10.1090/mcom/3410, 2018.
H. L. Liao et al., SIAM J. Numer. Anal., 56(2) (2018) 1112-1133.

• L2-1 $_{\sigma}$ scheme

- H. L. Liao et al., arXiv:2018.
- H. L. Liao et al., SIAM J. Numer. Anal., 57(1) (2019) 218-237.
- H. Chen and M. Stynes, J. Sci. Comput., 79(1) (2019), 624-647.

By Poincare inequality, one has

$$\|u^n - u_h^n\| \le C \|\nabla u^n - \nabla u_h^n\|.$$
(3)

C. B. Huang and M. Stynes, Appl. Numer. Math, 135 (2019) 15-29.
 N. Kopteva, Math. Comput, DOI:10.1090/mcom/3410, 2018.

$$\|\nabla u^n - \nabla u^n_h\| \leq C\tau_n^{-\alpha/2}(N^{-\min\{2-\alpha,r\alpha\}} + h^{k+1}).$$

(4)

Note: The finite difference method for H^1 norm

J. C. Ren et al., arXiv:1811.08059.

- 2 The idea of analysis
 - 3 H¹-norm analysis of the fully discrete FEM
- 4 Numerical experiments

Vidar Thomée, Galerkin finite element methods for parabolic problems, 2006.

The idea of analysis:

- Rewrite the fully discrete FEM into the discrete differential formulation.
- ♦ Multiply the discrete differential equation $D_N^{\alpha}\mu^n \Delta_h\mu^n = P_hg^n$ by $-\Delta_h\mu^n$. (contrasts with the related classical technique for $H^1(\Omega)$ -norm analysis of the semidiscrete problem, where the discrete differential equation is multiplied by $(\mu^n)_{t.}$)
- \diamond Applying the definition of the discrete Laplacian Δ_h yields

$$(D_N^{\alpha} \nabla \mu^n, \nabla \mu^n) + \|\Delta_h \mu^n\|^2 = (\nabla P_h g^n, \nabla \mu^n).$$
(5)

 $\diamond \ \ \, \mathsf{By}\ \|
abla P_h v\|\leq K\|
abla v\|,$ one has

$$(D_N^{\alpha} \nabla \mu^n, \nabla \mu^n) \le K \| \nabla g^n \| \| \nabla \mu^n \|.$$
(6)

Three operators

Define the L^2 projector $P_h: L^2(\Omega) \to V_{0h}$ by

$$(P_hw, v_h) = (w, v_h) \quad \forall \ v_h \in V_{0h}.$$

J. H. Bramble, J. E. Pasciak, and O. Steinbach, Math. Comput., 71(237):147-156, 2002.

$$\|\nabla P_h v\| \le K \|\nabla v\| \text{ for all } v \in H^1_0(\Omega).$$
(7)

Define the *Ritz projector* $R_h : H^1_0(\Omega) \to V_{0h}$ by

$$(\nabla R_h w, \nabla v_h) = (\nabla w, \nabla v_h) \quad \forall \ v_h \in V_{0h}.$$

It is well known that

$$\|w - R_h w\| + h\|w - R_h w\|_1 \le Ch^{k+1} |w|_{k+1} \quad \forall \ w \in H^{k+1}(\Omega) \cap H^1_0(\Omega).$$
(8)

Define the discrete Laplacian $\Delta_h: V_{0h} \rightarrow V_{0h}$ by

$$(\Delta_h v, w) = -(\nabla v, \nabla w) \quad \forall \ v, w \in V_{0h} \ . \tag{9}$$

V. Thomée, Galerkin finite element methods for parabolic problems, 2006.

$$\Delta_h R_h v = P_h \Delta v \quad \forall \ v \in H^2(\Omega) \ . \tag{10}$$

FEM discretisation in space

Let M be a positive integer. Partition Ω by a quasiuniform mesh of M elements $\{K_m : m = 1, \dots, M\}$. Set

$$h_m = \operatorname{diam}(K_m)$$
 for each m and $h = \max_{1 \le m \le M} \{h_m\}.$

Weak formulation: Find $u(\cdot, t) \in H^1_0(\Omega)$ for each $t \in (0, T]$, such that

$$\begin{cases} (D_t^{\alpha}u,v) + (\nabla u,\nabla v) = (f,v) \quad \forall \ v \in H_0^1(\Omega), \\ (u(0,\cdot),v(\cdot)) = (u_0,v) \quad \forall \ v \in H_0^1(\Omega), \end{cases}$$
(11)

Define the finite element spaces on spatial mesh by

$$V_h = \left\{ v_h \in L^2(\Omega) : v_h \big|_{K_m} \in P^k(K_m), \ m = 1, 2, \cdots, M \right\},$$
$$V_{0h} = \left\{ v_h \in V_h : v_h \big|_{\partial \Omega} = 0 \right\},$$

where $P^k(K_m)$ denotes the space of polynomials on K_m with degree at most k.

The semi-discrete FEM: Find $u_h(\cdot, t) \in V_{0h}$ for each $t \in (0, T]$, such that

$$\begin{cases} (D_t^{\alpha}u_h, v_h) + (\nabla u_h, \nabla v_h) = (f, v_h) \quad \forall v_h \in V_{0h}, \\ (u_h(0, \cdot), v_h(\cdot)) = (u_0, v_h) \quad \forall v_h \in V_{0h}. \end{cases}$$

- 2 The idea of analysis
- 3 H^1 -norm analysis of the fully discrete FEM

4 Numerical experiments

Graded mesh in time

Let N be positive integer. Set

$$t_n := T(n/N)^r$$
 for $n = 0, 1, \cdots, N$

with mesh grading $r \ge 1$ chosen by user.

L1 discretisation in time

The Caputo fractional derivative is approximated by L1 scheme (graded mesh in time)

$$D_N^{\alpha} u_m^n := \frac{1}{\Gamma(2-\alpha)} \sum_{i=0}^{n-1} \frac{u_m^{i+1} - u_m^i}{\tau_{i+1}} [(t_n - t_i)^{1-\alpha} - (t_n - t_{i+1})^{1-\alpha}].$$
(12)

The truncation error:

$$\left\|D_t^{\alpha}u(x,t_n)-D_N^{\alpha}u(x,t_n)\right\|_1\leq Cn^{-\min\{2-\alpha,r\alpha\}}.$$

The fully discrete L1 FEM:

$$\begin{cases} (D_N^{\alpha} u_h^n, v_h) + (\nabla u_h^n, \nabla v_h) = (f^n, v_h) & \text{for } n = 1, \dots, N \text{ and all } v_h \in V_{0h}, \\ (u_h^0, v_h) = (u_0, v_h) & \forall v_h \in V_{0h}, \end{cases}$$
(13)

where $f^n(\cdot) := f(\cdot, t_n)$.

Applying (9), the L1 FEM (13) takes the form: find $u_h^n \in V_{0h}$ for $n = 0, 1, \ldots, N$ such that

$$\begin{cases} \left(\mathcal{D}_{N}^{\alpha}u_{h}^{n},v_{h}\right)-\left(\Delta_{h}u_{h}^{n},v_{h}\right)=\left(\mathcal{P}_{h}f^{n},v_{h}\right) \text{ for } n=1,\ldots,N \text{ and all } v_{h}\in V_{0h},\\ \left(u_{h}^{0},v_{h}\right)=\left(\mathcal{P}_{h}u_{0},v_{h}\right) \ \forall \ v_{h}\in V_{0h}, \end{cases}$$

$$\tag{14}$$

The discrete differential equation:

$$\begin{cases} D_N^{\alpha} u_h^n - \Delta_h u_h^n = P_h f^n & \text{for } n = 1, \dots, N, \\ u_h^0 = P_h u_0. \end{cases}$$
(15)

Stability result

Theorem 1 ($H^1(\Omega)$ -stability of the L1 FEM)

Let u_h^n be the solution of (15). Then

$$\|\nabla u_h^n\| \le \|\nabla u_h^0\| + \frac{KT^{\alpha}\Gamma(2-\alpha)}{1-\alpha} \max_{1\le j\le n} \|\nabla f^j\| \text{ for } n=1,2,\ldots,N.$$

C. B. Huang M. Stynes

Denote

$$\zeta^n := R_h u^n - u_h^n \text{ and } \rho^n := R_h u^n - u^n.$$

Error equation:

$$D_N^{\alpha} \zeta^n - \Delta_h \zeta^n = (R_h D_N^{\alpha} u^n - \underbrace{\Delta_h R_h}_{P_h \Delta} u^n) - (\underbrace{D_N^{\alpha} u_h^n - \Delta_h u_h^n}_{P_h f^n})$$
$$= (R_h - P_h) D_N^{\alpha} u^n + P_h (D_N^{\alpha} u^n - \Delta u^n) - P_h f^n$$
$$= P_h (R_h - I) D_N^{\alpha} u^n + P_h (f^n + \varphi^n) - P_h f^n$$
$$= P_h (D_N^{\alpha} \rho^n + \varphi^n), \tag{16}$$

where $\varphi^n := D_N^{\alpha} u^n - D_t^{\alpha} u^n$.

э.

・ロト ・ 日 ト ・ 田 ト ・

Convergent result:

Theorem 2 (Error estimate for the L1 FEM)

Let u^n and u^n_h be the solutions of (11) and (13), respectively. Then for n = 1, 2, ..., N, there exists a constant C such that

$$\|\nabla u^n - \nabla u^n_h\| \le C \left(N^{-\min\{2-\alpha, r\alpha\}} + h^k \right).$$
(17)

If $r \geq (2 - \alpha)/\alpha$, then one has

$$\|u^n - u^n_h\|_{\mathcal{H}^1(\Omega)} \le C\left(N^{-(2-lpha)} + h^k
ight)$$
 for $n = 0, 1, \dots, N$

For $n = 0, \ldots, N - 1$ and $0 \le \sigma \le 1$, set $t_{n+\sigma} = t_n + \sigma \tau_{n+1}$.

L2-1 $_{\sigma}$ discretisation in time

The Caputo fractional derivative is approximated by L2-1 $_{\sigma}$ scheme at $t_{n+\sigma}$ (graded mesh in time)

$$D_t^{\alpha} v(t_{n+\sigma}) \approx \delta_{t_{n+\sigma}}^{\alpha} v := g_{n,n} v^{n+1} - \sum_{j=0}^n (g_{n,j} - g_{n,j-1}) v^j$$
 for $n = 0, \dots, N-1$. (18)

Here $g_{0,0}= au_1^{-1}a_{0,0},\ g_{n,-1}=$ 0, and for $n\geq 1$ one has

$$g_{n,j} = \begin{cases} \tau_{j+1}^{-1}(a_{n,0} - b_{n,0}) & \text{if } j = 0, \\ \tau_{j+1}^{-1}(a_{n,j} + b_{n,j-1} - b_{n,j}) & \text{if } 1 \le j \le n-1, \\ \tau_{j+1}^{-1}(a_{n,n} + b_{n,n-1}) & \text{if } j = n, \end{cases}$$

C. B. Huang M. Stynes

where

$$\begin{aligned} a_{n,n} &= \frac{1}{\Gamma(1-\alpha)} \int_{t_n}^{t_{n+\sigma}} (t_{n+\sigma} - \eta)^{-\alpha} d\eta = \frac{\sigma^{1-\alpha}}{\Gamma(2-\alpha)} \tau_{n+1}^{1-\alpha} \quad \text{for} \quad n \ge 0, \\ a_{n,j} &= \frac{1}{\Gamma(1-\alpha)} \int_{t_j}^{t_{j+1}} (t_{n+\sigma} - \eta)^{-\alpha} d\eta \quad \text{for} \quad n \ge 1 \quad \text{and} \quad 0 \le j \le n-1, \\ b_{n,j} &= \frac{1}{\Gamma(1-\alpha)} \frac{2}{t_{j+2} - t_j} \int_{t_j}^{t_{j+1}} \frac{\eta - t_{j+1/2}}{(t_{n+\sigma} - \eta)^{\alpha}} d\eta \quad \text{for} \quad n \ge 1 \quad \text{and} \quad 0 \le j \le n-1. \end{aligned}$$

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

The fully discrete L2-1 $_{\sigma}$ FEM :

$$\left(\delta_{t_{n+\sigma}}^{\alpha} u_h, v_h\right) + \left(\nabla u_h^{n,\sigma}, \nabla v_h\right) = \left(f^{n+\sigma}, v_h\right) \ \forall \ v_h \in V_{0h}, \tag{19}$$

where we set $u_h^0 = R_h u_0$ and $f^{n+\sigma} = f(\cdot, t_{n+\sigma})$ and $u^{n,\sigma} = \sigma u_h^{n+1} + (1-\sigma)u_h^n$ for $n = 0, 1, \dots, N-1$.

The discrete differential form:

$$\delta^{\alpha}_{t_{n+\sigma}} u_h - \Delta_h u_h^{n,\sigma} = P_h f^{n+\sigma} \quad \text{for} \quad n = 0, \dots, N-1,$$
(20)

with $u_h^0 = R_h u_0$.

Stability result

Theorem 3 ($H^1(\Omega)$ -stability of the L2-1_{σ} FEM)

The L2-1 $_{\sigma}$ FEM solution u_h^n of (20) satisfies

$$\|
abla u_h^n\|^2 \leq \|
abla u_0\|^2 + \Gamma(1-lpha) \mathcal{T}^lpha \max_{0\leq j\leq N-1} \|f^{j+\sigma}\|^2 ext{ for } n=0,1,\ldots,N-1.$$

Error equation:

$$\begin{split} \delta^{\alpha}_{t_{n+\sigma}}\zeta - \Delta_{h}\zeta^{n,\sigma} &= \left(R_{h}\delta^{\alpha}_{t_{n+\sigma}}u - \Delta_{h}R_{h}u^{n,\sigma}\right) - \left(\delta^{\alpha}_{t_{n+\sigma}}u_{h} - \Delta_{h}u^{n,\sigma}_{h}\right) \\ &= \left(R_{h} - P_{h}\right)\delta^{\alpha}_{t_{n+\sigma}}u + P_{h}\left(\delta^{\alpha}_{t_{n+\sigma}}u - \Delta u^{n,\sigma}\right) - P_{h}f^{n+\sigma} \\ &= P_{h}(R_{h} - I)\delta^{\alpha}_{t_{n+\sigma}}u + P_{h}\left(\delta^{\alpha}_{t_{n+\sigma}}u - \Delta u^{n,\sigma}\right) - P_{h}(D^{\alpha}_{t}u^{n+\sigma} - \Delta u^{n+\sigma}) \\ &= P_{h}\delta^{\alpha}_{t_{n+\sigma}}\rho + P_{h}\left(\delta^{\alpha}_{t_{n+\sigma}}u - D^{\alpha}_{t}u^{n+\sigma}\right) + P_{h}\left(\underline{\Delta u^{n+\sigma} - \Delta u^{n,\sigma}}_{\neq 0}\right) \\ &\neq 0 \end{split}$$

$$= P_h \left(\delta^{\alpha}_{t_{n+\sigma}} \rho + \varphi^{n+\sigma} + R^{n+\sigma} \right), \tag{21}$$

where $\varphi^{n+\sigma} := \delta^{\alpha}_{t_{n+\sigma}} u - D^{\alpha}_t u^{n+\sigma}$ and $R^{n+\sigma} := \Delta u^{n+\sigma} - \Delta u^{n,\sigma}$.

イロト イヨト イヨト

Theorem 4 (Error estimate for the L2-1 $_{\sigma}$ FEM)

Suppose $\sigma = 1 - \alpha/2$. Let u^n and u_h^n be the solutions of (11) and (20), respectively. Assume that $u \in L^{\infty}(0, T; H_0^1(\Omega) \cap H^{k+1}(\Omega))$, $D_t^{\alpha} u \in L^{\infty}(0, T; H_0^1(\Omega) \cap H^{k+1}(\Omega))$, and $\|\partial_t^l u\|_3 \lesssim 1 + t^{\alpha-l}$ for l = 0, 1, 2, 3. Then there exists a constant C such that

$$\max_{1 \le n \le N} \|\nabla u^n - \nabla u^n_h\| \le C \left(N^{-\min\{r\alpha, 2\}} + h^k \right).$$
(22)

If $r \geq 2/\alpha$, then one has

$$\max_{1 \le n \le N} \|u^n - u_h^n\|_{H^1(\Omega)} \le C\left(N^{-2} + h^k\right) \text{ for } n = 0, 1, \dots, N.$$

1 Fractional PDE

- 2 The idea of analysis
- **3** H^1 -norm analysis of the fully discrete FEM

4 Numerical experiments

Example 1

Consider the following problem with an exact analytical solution:

$$\begin{cases} D_t^{\alpha} u - \frac{\partial^2 u}{\partial x^2} = f(x,t) & \text{ for } (x,t) \in (0,1) \times (0,1], \\ u(0,t) = u(1,t) = 0 & \text{ for } t \in (0,1], \\ u(x,0) = (e^x - 1)(x-1) & \text{ for } x \in [0,1]. \end{cases}$$

The function f(x, t) in (23) is chosen such that the exact solution of the problem is $u(x, t) = (E_{\alpha}(-t^{\alpha}) + t^{3})(e^{x} - 1)(x - 1)$, where $E_{\alpha}(z) = \sum_{j=0}^{\infty} z^{j}/\Gamma(j\alpha + 1)$ is the Mittag-Leffler function. This solution u displays typical layer behaviour near t = 0. Taking $r = (2 - \alpha)/\alpha$ and N = M, the spatial error dominates the result. Predicted rate: $O(N^{-(2-\alpha)})$.

	M=N=64	M=N=128	M=N=256	M = N = 512
$\alpha = 0.4$	7.3119E-4	2.5834E-4 1.5009	8.9420E-5 1.5306	3.0529E-5 1.5504
$\alpha = 0.6$	1.0224E-3	3.9823E-4 1.3603	1.5356E-4 1.3747	5.8847E-5 1.3838
$\alpha = 0.8$	1.7345E-3	7.6222E-4 1.1862	3.3358E-4 1.1921	1.565E-4 1.1955

Table 1: $(L^{\infty}(H^1), N)$ errors and orders of convergence for L1 FEM

Taking $r = (2 - \alpha)/\alpha$ and N = M, the spatial error dominates the result. Predicted rate: $O(N^{-(2-\alpha)})$.

	M=N=64	M=N=128	M=N=256	M = N = 512
$\alpha = 0.4$	7.3119E-4	2.5834E-4 1.5009	8.9420E-5 1.5306	3.0529E-5 1.5504
$\alpha = 0.6$	1.0224E-3	3.9823E-4 1.3603	1.5356E-4 1.3747	5.8847E-5 1.3838
$\alpha = 0.8$	1.7345E-3	7.6222E-4 1.1862	3.3358E-4 1.1921	1.565E-4 1.1955

Table 1: $(L^{\infty}(H^1), N)$ errors and orders of convergence for L1 FEM

 $\bigcup_{O(N^{-(2-\alpha)})}$

Taking $r = 2/\alpha$ and N = M, the spatial error dominates the result. Predicted rate: $O(N^{-2})$.

	M=N=64	M=N=128	M=N=256	M = N = 512
$\alpha = 0.4$	1.9215E-3	4.9315E-4 1.9621	1.2481E-4 1.9822	3.1382E-5 1.9917
$\alpha = 0.6$	1.1549E-3	2.9153E-4 1.9860	7.3179E-5 1.9942	1.8321E-5 1.9979
$\alpha = 0.8$	7.6079E-4	1.9064E-4 1.9966	4.7674E-5 1.9996	1.1908E-5 2.0011

Table 2: $(L^{\infty}(H^1), N)$ errors and orders of convergence for L2-1_{σ} FEM

Taking $r = 2/\alpha$ and N = M, the spatial error dominates the result. Predicted rate: $O(N^{-2})$.

$ \begin{array}{c} \overline{\alpha} = 0.4 & 1.9215 \text{E-3} & 4.9315 \text{E-4} & 1.2481 \text{E-4} & 3.1382 \text{E-5} \\ 1.9621 & 1.9822 & 1.9917 \end{array} \\ \alpha = 0.6 & 1.1549 \text{E-3} & 2.9153 \text{E-4} & 7.3179 \text{E-5} & 1.8321 \text{E-5} \\ 1.9860 & 1.9942 & 1.9979 \end{array} \\ \alpha = 0.8 & 7.6079 \text{E-4} & 1.9064 \text{E-4} & 4.7674 \text{E-5} & 1.1908 \text{E-5} \\ 1.9966 & 1.9996 & 2.0011 \end{array} $		M=N=64	M=N=128	M=N=256	M = N = 512
$\label{eq:alpha} \begin{split} \alpha &= 0.6 & 1.1549 \text{E-3} & 2.9153 \text{E-4} & 7.3179 \text{E-5} & 1.8321 \text{E-5} \\ 1.9860 & 1.9942 & 1.9979 \end{split}$ $\alpha &= 0.8 & 7.6079 \text{E-4} & 1.9064 \text{E-4} & 4.7674 \text{E-5} & 1.1908 \text{E-5} \\ 1.9966 & 1.9996 & 2.0011 \end{split}$	$\alpha = 0.4$	1.9215E-3	4.9315E-4 1.9621	1.2481E-4 1.9822	3.1382E-5 1.9917
$\label{eq:alpha} \begin{split} \alpha = 0.8 & 7.6079 \text{E-4} & 1.9064 \text{E-4} & 4.7674 \text{E-5} & 1.1908 \text{E-5} \\ & 1.9966 & 1.9996 & 2.0011 \end{split}$	$\alpha = 0.6$	1.1549E-3	2.9153E-4 1.9860	7.3179E-5 1.9942	1.8321E-5 1.9979
	$\alpha = 0.8$	7.6079E-4	1.9064E-4 1.9966	4.7674E-5 1.9996	1.1908E-5 2.0011

Table 2: $(L^{\infty}(H^1), N)$ errors and orders of convergence for L2-1_{σ} FEM

 $\frac{\Downarrow}{O(N^{-2})}$

Thank You

Image: A mathematical states and a mathem