Sharp spatial H^1 -norm analysis of a finite element method for a time-fractional diffusion equation

Chaobao Huang^{*} and Martin Stynes[†]

* Beijing Computational Science Research Center, Haidian District, Beijing 100193, China

E-mail: huangcb@csrc.ac.cn [†] Beijing Computational Science Research Center, Haidian District, Beijing 100193, China E-mail: m.stynes@csrc.ac.cn

A time-fractional initial-boundary value problem $D_t^{\alpha}u - \Delta u = f$, where D_t^{α} is a Caputo fractional derivative of order $\alpha \in (0, 1)$, is considered on the space-time domain $\Omega \times [0, T]$, where $\Omega \subset \mathbb{R}^d$ $(d \geq 1)$ is a bounded Lipschitz domain. Typical solutions u(x, t) of such problems have components that behave like a multiple of t^{α} as $t \to 0^+$, so the integer-order temporal derivatives of u blow up at t = 0. The numerical method of the paper uses a standard finite element method in space on a quasiuniform mesh and considers both the L1 discretisation and Alikhanov's L2-1_{σ} discretisation of the Caputo derivative on suitably graded temporal meshes. *Optimal error bounds in* $H^1(\Omega)$ are proved; no previous analysis of a discretisation of this problem using finite elements in space has established such a bound. Furthermore, the optimal grading of the temporal mesh can be deduced from our analysis. Numerical experiments show that our error bounds are sharp.

KEY WORDS: Fractional diffusion equation, finite element method, ioptimal error in $H^1(\Omega)$, graded mesh

REFERENCES

^{1.} Chaobao Huang and Martin Stynes, Optimal spatial H^1 -norm analysis of a finite element method for a time-fractional diffusion equation. (Submitted for publication).

 $[\]P$ The research of Martin Stynes is supported in part by the National Natural Science Foundation of China under grants 91430216 and NSAF U1530401.