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Model problem

With Ω ⊂ Rd a domain, s ∈ (0,1):

Lsu = f in Ω,

u = 0 on ∂Ω,

where Lu = −div(A∇u) s.p.d. diffusion operator.

Use spectral definition: for u ∈ H1
0 (Ω):

Lsu =
∑

k

λs
k (u, ϕk )ϕk

Nonlocal problem!
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The discrete eigenfunction method (DEM)

M. Matsuki and T. Ushijima. “A note on the fractional powers of opera-
tors approximating a positive definite selfadjoint operator.” J. Fac. Sci.
Univ. Tokyo Sect. IA Math., 1993

Galerkin discretization on Vh ⊂ H1
0 (Ω)

discrete eigensystem: Lhuh
j = λh

j uh
j , j = 1, . . . ,n

Lsu ≈
n∑

j=1

(λh
j )s(u,uh

j )uh
j

uDEM :=
n∑

j=1

(λh
j )−s(f ,uh

j )uh
j
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DEM in linear algebra terms

With stiffness/mass matrix K ,M ∈ Rn×n: solve eigenproblem

Kuj = λh
j Muj , j = 1, . . . ,n,

where
Λ = diag(λh

j )n
j=1 matrix of eigenvalues,

U ∈ Rn×n matrix of eigenvectors.

Let f ∈ Rn coefficient vector of Qhf ∈ Vh.

uDEM = UΛ−sUT Mf = (M−1K )−sf.
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DEM has quasi-optimal error

A. Bonito, J. Pasciak. “Numerical approximation of fractional powers
of elliptic operators.” Math Comp. 2015

Using P1 FEM on a quasi-uniform mesh and under standard
elliptic regularity assumptions, we have

‖uexact − uDEM‖L2(Ω) ≤ C log(h−1)h2s+2δ‖f‖Ḣ2δ

for f ∈ Ḣ2δ, δ ≤ 1− s.

DEM is slow: O(n3) operations for eigendecomposition.
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Rational approximation methods

Assume we have a rational function r(z) such that

r(z) ≈ z−s

We define
ur = r(M−1K )f.

Theorem
Let ur ∈ Vh from rational approximation. Then

‖uDEM − ur‖L2(Ω) ≤ max
z∈[λmin,λmax]

|z−s − r(z)| ‖f‖L2(Ω).

(cf. [Harizanov et al., 2018] for a similar result)
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Realizing a rational approximation method

If r is given in partial fraction decomposition form

r(z) = c0 +
k∑

j=1

cj

z − dj
, cj ,dj ∈ R,

we obtain

ur = r(M−1K )f = c0 +
k∑

j=1

cj(M−1K − dj In)−1f.

With the solutions wj of

(K − djM)wj = Mf, j = 1, . . . , k

(shifted diffusion problems), we can write

ur = c0 +
k∑

j=1

cjwj .

If dj ≤ 0, then usually K ∼= K − djM. Nonpositive poles!
→ parallel realization
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The BURA method

S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, Y. Vutov. “Opti-
mal solvers for linear systems with fractional powers of sparse SPD
matrices.” Numer Linear Algebra Appl. 2018

Idea:
compute BURA r(z) to z1−s in [0,1] with degrees (p,p)

use r(z)
z ≈ z−s in [0,1]

rescale original matrix such that λmax ≤ 1
r(z)

z has degrees (p,p + 1), PFD:

r(z)

z
=

p+1∑
j=1

cj

z − dj
.
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Remarks on the BURA method

|r(z)− z1−s| equioscillates, but

|r(z)/z − z−s| =
1
z
|r(z)− z1−s|

is large for small z
using estimates from [Harizanov et al., 2018]:

‖uDEM − uBURA‖L2(Ω) . κ1−sEs,p‖f‖L2(Ω)

where Es,p ∼ exp(−
√

(1− s)p)

improved approach: κ eliminated
computing BURAs is difficult

modified Remez algorithm
hard to implement
numerically unstable

even with quadruple precision, only p . 11 feasible
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Rational approximations based on quadrature

A. Bonito, J. Pasciak. “Numerical approximation of fractional powers
of elliptic operators.” Math Comp. 2015

Based on

z−s =
2 sin(πs)

π

∫ ∞
−∞

e2sy

1 + e2yz
dy ,

three classes of quadrature rules are proposed.
Third one:

rBP3(z) :=
2q sin(πs)

π

N∑
`=−M

e2sy`

1 + e2y`z
.

With proper parameter choices, they show:

max
z
|z−s − rBP3(z)| . exp(−

√
p)

where p is the degree of rBP3(z).
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Fractional Laplace as a Dirichlet-to-Neumann map

Idea
(−∆)su in Ω is the Neumann data of a local elliptic problem in
Ω× (0,∞) with Dirichlet data u.

Caffarelli, Silvestre 2007
Stinga, Torrea 2010
Capella, Dávila, Dupaigne, Sire 2011
Brändle, Colorado, de Pablo, Sánchez 2013
Nochetto, Otárola, Salgado 2015
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The dimension-extended problem

R.H. Nochetto, E. Otárola, A.J. Salgado. “A PDE approach to fractional
diffusion in general domains: A priori error analysis.” Found Comp
Math. 2015

Let α = 1− 2s ∈ (−1,1).
Find U(x , y), x ∈ Ω, y ∈ (0,∞) such that

−div(yα∇U) = 0 in Ω× (0,∞),

lim
y→∞

U(x , y) = 0 ∀x ∈ Ω,

U(x , y) = 0 ∀x ∈ ∂Ω, y ∈ (0,∞),

−( lim
y→0

yα∂yU(x , y)) = dsf (x) ∀x ∈ Ω.

Then the solution is the Dirichlet trace

u(x) = (L−sf )(x) = U(x ,0).
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Numerical approach

R.H. Nochetto, E. Otárola, A.J. Salgado. “A PDE approach to fractional
diffusion in general domains: A priori error analysis.” Found Comp
Math. 2015

variational formulation in weighted Sobolev spaces
can truncate extended direction (exponential convergence)
discretization using tensor product spaces
error analysis using P1-functions in y direction

Higher-order discretizations in y direction:
Ainsworth, Glusa 2018
Meidner, Pfefferer, Schürholz, Vexler 2018
Banjai, Melenk, Nochetto, Otárola, Salgado, Schwab 2018
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Discretization

Discretize using tensor product space built from
Vh ⊂ H1

0 (Ω) dim Vh = n
Wh FE space over (0,Y ), wh(Y ) = 0 dim Wh = m

Can write stiffness matrix as

A(α) = M(α)
y ⊗ K + K (α)

y ⊗M,

where
K ,M ∈ Rn×n standard stiffness/mass matrices in Vh

K (α)
y ,M(α)

y ∈ Rm×m weighted stiffness/mass matrices in
Wh:

[M(α)
y ]ij =

∫ Y

0
yαψj(y)ψi(y) dy

[K (α)
y ]ij =

∫ Y

0
yαψ′j (y)ψ′i (y) dy
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Closed formula for the solution

Theorem (H. 2019)

The solution of the discrete extended problem has the
coefficient vector

uEXM = UEUT Mf

with
E = (eT

1 V ⊗ In)D−1(V T e1 ⊗ In) ∈ Rn×n

Proof: based on a diagonalization argument and linear algebra.

Recall the Discrete Eigenfunction Method:

uDEM = UΛ−sUT Mf.

E ∼ Λ−s?
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Interpretation of the matrix E

Doing some linear algebra, we find that E is diagonal and

E = r(Λ), r(z) =
m∑

k=1

vh
k (0)2

µh
k + z

.

where
µh

k , k = 1, . . . ,m are discrete eigenvalues of the y problem
(1D),
vh

k (y), k = 1, . . . ,m are discrete eigenfunctions of the y
problem (1D).
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Connection to rational approximation

uDEM = UΛ−sUT Mf = (M−1K )−sf

uEXM = Ur(Λ)UT Mf = r(M−1K )f

with

r(z) =
m∑

k=1

vh
k (0)2

µh
k + z

.

Extension method can be interpreted (realized, analyzed)
as a rational approximation method!

r(z)
?
≈ z−s
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Relation to 1D Neumann-to-Dirichlet map

For z > 0, the discrete Galerkin solution v ∈Wh of the ODE

−(yαv ′(y))′ + zyαv(y) = 0 ∀y ∈ (0,Y ),

− lim
y→0+

(yαv ′(y)) = 1,

v(Y ) = 0.

satisfies
r(z) = v(0).
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Abstract error estimate for extension method

By studying the exact solution of the ODE and a duality-based
error estimate, we can prove:

Theorem (H. 2019)

We have
‖uDEM − uEXM‖L2(Ω) ≤ EEXM‖f‖L2(Ω)

with

EEXM = Cs

exp(−2
√
λh

minY )√
λh

minY
+ sup

z∈[λh
min,λ

h
max]

inf
wh∈Wh

‖vz − wh‖2b

 .

Ex: for s = 1/2 and using maximally smooth splines of degree
p in y -direction, we obtain the rate O(m−2p).
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Time stepping method of Vabishchevich

P.N. Vabishchevich. “Numerically solving an equation for fractional
powers of elliptic operators.” J Comp Phys. 2015

Choose δ > 0 such that L ≥ δI.
Find w(t), t ∈ (0,1) from the parabolic equation

(t(L−δI)+δI)
dw
dt

+s(L−δI)w = 0 ∀t ∈ (0,1), w(0) = δ−sf .

Then the solution of the fractional diffusion problem is

w(1).

Scalar equivalent:

(t(z − δ) + δ)w ′(t) + s(z − δ)w(t) = 0

with the solution

w(t) = ((1− t)δ + tz)−s,

w(0) = δ−s, w(1) = z−s.

27 / 39



Time stepping method of Vabishchevich

P.N. Vabishchevich. “Numerically solving an equation for fractional
powers of elliptic operators.” J Comp Phys. 2015

Choose δ > 0 such that L ≥ δI.
Find w(t), t ∈ (0,1) from the parabolic equation

(t(L−δI)+δI)
dw
dt

+s(L−δI)w = 0 ∀t ∈ (0,1), w(0) = δ−sf .

Then the solution of the fractional diffusion problem is

w(1).

Scalar equivalent:

(t(z − δ) + δ)w ′(t) + s(z − δ)w(t) = 0

with the solution

w(t) = ((1− t)δ + tz)−s,

w(0) = δ−s, w(1) = z−s.

27 / 39



Discretization

Semidiscretization in space, D := K − δM:

(tD + δM)w′ + sDw = 0 ∀t ∈ (0,1), w(0) = δ−sf,

where w : [0,1]→ Rn.

Time stepping: Choose θ ∈ (0,1]. For k ∈ {0, . . . ,m}, denote

tk = τk , τ =
1
m
,

tθ(k) := θtk+1 + (1− θ)tk ,

wθ(k) := θwk+1 + (1− θ)wk

and introduce the implicit scheme

(tθ(k)D + δM)
wk+1 −wk

τ
+ sDwθ(k) = 0 ∀k = 0, . . . ,m − 1.
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Relation to rational approximation

Theorem (H. 2019)

The solution obtained by time stepping is given by

u = Ur(Λ)U−1f = r(M−1K )f

with the rational function

r(z) = δ−s
m−1∏
k=0

ωk (z),

ωk (z) =

(
tθ(k)

τ − s(1− θ)
)

(z − δ) + δ
τ(

tθ(k)

τ + sθ
)

(z − δ) + δ
τ

, k = 0, . . . ,m − 1,

with degrees (m,m). r(·) has nonpositive roots if θ = 0.5.

This time stepping scheme can be interpreted as a rational
approximation method – parallel realization!

29 / 39



Relation to rational approximation

Theorem (H. 2019)

The solution obtained by time stepping is given by

u = Ur(Λ)U−1f = r(M−1K )f

with the rational function

r(z) = δ−s
m−1∏
k=0

ωk (z),

ωk (z) =

(
tθ(k)

τ − s(1− θ)
)

(z − δ) + δ
τ(

tθ(k)

τ + sθ
)

(z − δ) + δ
τ

, k = 0, . . . ,m − 1,

with degrees (m,m). r(·) has nonpositive roots if θ = 0.5.

This time stepping scheme can be interpreted as a rational
approximation method – parallel realization! 29 / 39



Outline

1 The discrete eigenfunction method

2 Rational approximation methods

3 The BURA method

4 Rational approximations based on quadrature

5 The extension method

6 Time stepping method of Vabishchevich

7 Numerical study

30 / 39



Example

−
(

d2

dx2

)s

u(x) = 1 ∀x ∈ (−1,1),

u(−1) = u(1) = 0

Linear FEM with 1024 elements.
eigenvalues of M−1K : λh

min ≈ 9.87, λh
max ≈ 1.26 · 107.

All methods realized as rational approximation methods.
Note: convergence theorem is dimension independent.

We consider the spectral error

max
z∈[λmin,λmax]

|z−s − r(z)|

and the L2-error
‖uexact − ur‖L2(Ω)

in dependence of the degree of the rational function r .
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Spectral error – s = 0.5
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L2 error – s = 0.5
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Spectral error – s = 0.25
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Spectral error – s = 0.75
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The AAA method

Apply a black-box rational approximation method to

z−s, z ∈ [λmin, λmax].

Here:

Y. Nakatsukasa, O. Sète, L.N. Trefethen. “The AAA algorithm for ratio-
nal approximation.” SIAM J Sci Comput. 2018

Use the resulting rational function r(z) for a rational
approximation method.
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Conclusion

all presented methods can be interpreted and realized as
rational approximation methods
the max-error of the rational approximation predicts the
actual error in the L2 norm well
the realization as a rational approximation method is
inherently parallel
better ways to get best rational approximations to z−s?

analytically – Zolotarev theory?
numerically – continuation methods?

Code:
https://people.ricam.oeaw.ac.at/c.hofreither/
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