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Model problem

With Q ¢ RY a domain, s € (0,1):

L%u=f in Q,
u=20 on 09,

where Lu = —div(AVu) s.p.d. diffusion operator.



Model problem

With Q ¢ RY a domain, s € (0,1):

L%u=f in Q,
u=20 on 09,

where Lu = —div(AVu) s.p.d. diffusion operator.

Use spectral definition: for u € H](Q):
Lo =Y AU, px) ek
K

Nonlocal problem!



The discrete eigenfunction method (DEM)

M. Matsuki and T. Ushijima. “A note on the fractional powers of opera-
tors approximating a positive definite selfadjoint operator.” J. Fac. Sci.
Univ. Tokyo Sect. IA Math., 1993

m Galerkin discretization on Vi, C H}(Q)

m discrete eigensystem: Ehujh = )\jhuf’, j=1,...,n

j
n

Lu=) (A)(u,ufyul
=
n

upem = »_(AM)°(f, u)up
=1



DEM in linear algebra terms

With stiffness/mass matrix K, M € R™": solve eigenproblem
Kuj=A'Mu;, j=1,....n,

where
m A = diag(A\)]_, matrix of eigenvalues,
m U € R™" matrix of eigenvectors.



DEM in linear algebra terms

With stiffness/mass matrix K, M € R™": solve eigenproblem
Kuj=A'Mu;, j=1,....n,

where
m A = diag(A\)]_, matrix of eigenvalues,
m U € R™" matrix of eigenvectors.

Let f € R” coefficient vector of Qxf € V4.

Upem = UNSUT M = (M~ K) 5%,



DEM has quasi-optimal error

A. Bonito, J. Pasciak. “Numerical approximation of fractional powers
of elliptic operators.” Math Comp. 2015

Using P1 FEM on a quasi-uniform mesh and under standard
elliptic regularity assumptions, we have

|| Uexact — UDEMHLg(Q) < CIOg(h71)hzs+25”fHH25
forfe H? §<1—s.

DEM is slow: O(n®) operations for eigendecomposition.
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Rational approximation methods

Assume we have a rational function r(z) such that

We define



Rational approximation methods

Assume we have a rational function r(z) such that

We define
ur = r(M"K)f.

Theorem

Let ur € V, from rational approximation. Then

Upem — U < max |z7°—r(2)|||f :
| upem — UrllL,(0) _ze[Amin,AmaX]| (D) fllLo(2)

(cf. [Harizanov et al., 2018] for a similar result)
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Realizing a rational approximation method

If r is given in partial fraction decomposition form
ko o6
J
r(z) = ¢ c,d €R,
(2) 0+j§1:2_dja j» G

we obtain
k

u =r(M'K)f=co+ > (M 'K —dil,) .
j=1
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Realizing a rational approximation method

If r is given in partial fraction decomposition form
ko o6
J
r(z) = ¢ c,d €R,
(2) o+j§1:2_dja j» G

we obtain
k
u =r(M'K)f=co+ > (M 'K —dil,) .
j=1
With the solutions w; of
(K — gM)w; = M, j=1,....k
(shifted diffusion problems), we can write
k
j=1
If d; <0, then usually K = K — d;M. Nonpositive poles!

— parallel realization 1038
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The BURA method
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The BURA method

Idea:

m compute BURA r(z) to z'=¢in [0, 1] with degrees (p, p)

S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, Y. Vutov. “Opti-
mal solvers for linear systems with fractional powers of sparse SPD
matrices.” Numer Linear Algebra Appl. 2018

m use @ ~z%in[0,1]

m rescale original matrix such that Apax < 1

m "2 has degrees (p,p+ 1), PFD:

z
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Remarks on the BURA method
m |r(z) — z'%| equioscillates, but
H2)/z 2| = () - 2

is large for small z
m using estimates from [Harizanov et al., 2018]:

llupem — UsurallLa(@) S &' °Espllfll (@)

where Eg , ~ exp(—+/(1 — s)p)
m improved approach: « eliminated
m computing BURAs is difficult

m modified Remez algorithm

m hard to implement
B numerically unstable

m even with quadruple precision, only p < 11 feasible
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Rational approximations based on quadrature
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Rational approximations based on quadrature

A. Bonito, J. Pasciak. “Numerical approximation of fractional powers
of elliptic operators.” Math Comp. 2015

Based on
ay,

,-s _ 2sin(rs) /°° e?sy
I w1+ez

three classes of quadrature rules are proposed.
Third one:

2gsin(ms) N
rep3(2) = ——— Z T oo
T Py 1
With proper parameter choices, they show:
max [27° — rgpa(2)| < exp(—v/p)

where p is the degree of rgp3(2).
15/39
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The extension method
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Fractional Laplace as a Dirichlet-to-Neumann map

(—A)%u in Q is the Neumann data of a local elliptic problem in
Q x (0, 00) with Dirichlet data u.

m Caffarelli, Silvestre 2007

m Stinga, Torrea 2010

m Capella, Davila, Dupaigne, Sire 2011

m Brandle, Colorado, de Pablo, Sanchez 2013
m Nochetto, Otéarola, Salgado 2015
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The dimension-extended problem

R.H. Nochetto, E. Otarola, A.J. Salgado. “A PDE approach to fractional
diffusion in general domains: A priori error analysis.” Found Comp
Math. 2015

Leta=1-2s¢ (-1,1).
Find U(x,y), x € Q, y € (0, 00) such that

—div(y*VUU) =0  inQ x (0,00),
lim U(x,y)=0  VxeQ,
y—o0
Ux,y)=0 Vx € 09,y € (0,00),
—(lim y*o,U(x, y)) = dsf(x) Vx € Q.
y—0

Then the solution is the Dirichlet trace
u(x) = (L73%f)(x) = U(x,0).
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Numerical approach

R.H. Nochetto, E. Otarola, A.J. Salgado. “A PDE approach to fractional
diffusion in general domains: A priori error analysis.” Found Comp
Math. 2015

m variational formulation in weighted Sobolev spaces

m can truncate extended direction (exponential convergence)
m discretization using tensor product spaces

m error analysis using P1-functions in y direction
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Numerical approach

R.H. Nochetto, E. Otarola, A.J. Salgado. “A PDE approach to fractional
diffusion in general domains: A priori error analysis.” Found Comp
Math. 2015

m variational formulation in weighted Sobolev spaces

m can truncate extended direction (exponential convergence)
m discretization using tensor product spaces

m error analysis using P1-functions in y direction

Higher-order discretizations in y direction:
m Ainsworth, Glusa 2018
m Meidner, Pfefferer, Schirholz, Vexler 2018
m Banjai, Melenk, Nochetto, Otarola, Salgado, Schwab 2018
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Discretization

Discretize using tensor product space built from
m V,C HI(Q) dmV,=n
m W, FE space over (0,Y), wy(Y)=0 dimW,=m
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Discretization

Discretize using tensor product space built from
m V, C HI(Q) dmV,=n
m W, FE space over (0,Y), wy(Y)=0 dimW,=m
Can write stiffness matrix as
A@ = M @ K + K @ M,

where
m K, M e R™" standard stiffness/mass matrices in V
m K}SO‘), M}“) € R™M weighted stiffness/mass matrices in

WhZ
Y
M) = / yei(y)wi(y) dy
0

Y
(K] = /0 yeui(y)vily) dy
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Closed formula for the solution

Theorem (H. 2019)

The solution of the discrete extended problem has the
coefficient vector

Uexym = UEUTMf
with
E=(elVel)D "(Ve;®l,) e R™"

Proof: based on a diagonalization argument and linear algebra.
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Closed formula for the solution

Theorem (H. 2019)

The solution of the discrete extended problem has the
coefficient vector

Uexy = UEUT Mf

with
E=(elVel)D "(Ve;®l,) e R™"

Proof: based on a diagonalization argument and linear algebra.
Recall the Discrete Eigenfunction Method:
Upem = U/\fSUTMf.

E~NS?
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Interpretation of the matrix E

Doing some linear algebra, we find that E is diagonal and

m
E=rn), r(2)=3 vi(O)°
Pl
where
[ M,Q, k =1,..., mare discrete eigenvalues of the y problem
(1D),
m v/(y), k=1,...,mare discrete eigenfunctions of the y

problem (1D).
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Connection to rational approximation

Upem = UNSUTME = (M~TK)~5¢
ugxm = Ur(NUTMf = r(M~ 1K)t

with

r(z) :ZuﬂﬂLZ'

k=1

Extension method can be interpreted (realized, analyzed)
as a rational approximation method!
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Connection to rational approximation

Upem = UNSUTME = (M~TK)~5¢
ugxm = Ur(NUTMf = r(M~ 1K)t

with

r(z) :ZuﬂﬂLZ'

k=1
Extension method can be interpreted (realized, analyzed)
as a rational approximation method!

r(z) =z
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Relation to 1D Neumann-to-Dirichlet map

For z > 0, the discrete Galerkin solution v € W}, of the ODE

—(yV'(y)) +zyev(y)
= Jim (Vi)

0 Vye(0,Y),
1,

satisfies
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Abstract error estimate for extension method

By studying the exact solution of the ODE and a duality-based
error estimate, we can prove:

Theorem (H. 2019)

We have

|lupem — Uexmll o) < Eexmllfll ()
with

exp(—24/A.Y) .
EEXMCS( ™ "+ sup inf [lva—whl3].

h yh 1 WhEW,
ALY ZE[Min Mhmd YW
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Abstract error estimate for extension method

By studying the exact solution of the ODE and a duality-based
error estimate, we can prove:

Theorem (H. 2019)

We have
|upem — Uexmll o) < Eexmllfll @)
with
exp(—24/A.Y) .
Egxy = Cs "+ sup inf v — w3 ]
)"r:ﬁn Y ZE[)‘&in,Aﬁnax] Wh&Wn

Ex: for s = 1/2 and using maximally smooth splines of degree
p in y-direction, we obtain the rate O(m—2P).
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B Time stepping method of Vabishchevich
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Time stepping method of Vabishchevich

P.N. Vabishchevich. “Numerically solving an equation for fractional
powers of elliptic operators.” J Comp Phys. 2015

Choose § > 0 such that £ > 41.

Find w(t),t € (0, 1) from the parabolic equation
(t(£—61)+5/)(2/:+s(£—5l)w =0 Vte(0,1), w(0) = 6~ 5f.

Then the solution of the fractional diffusion problem is
w(1).
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Time stepping method of Vabishchevich

P.N. Vabishchevich. “Numerically solving an equation for fractional
powers of elliptic operators.” J Comp Phys. 2015

Choose § > 0 such that £ > 41.
Find w(t), t € (0, 1) from the parabolic equation

(H(L— 5I)+5l)(2/:+s(£ shw=0 Vvte(0,1), w(0) = 6~ 5f.
Then the solution of the fractional diffusion problem is

w(1).
Scalar equivalent:
(t(z —6) + o)W (t) +s(z—d)w(t)=0
with the solution
=((1-td+tz)"%,
5%, w(1) =z"°%.

w(t)
w(0) =

27/39



Discretization
Semidiscretization in space, D := K — §M:
(tD+ M)W +sDw =0 Vte (0,1), w(0) = 5 °f,

where w : [0, 1] — R".
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Discretization
Semidiscretization in space, D := K — §M:
(tD+ SM)W' +sDw =0 Vte (0,1), w(0) = 0~ °f,
where w : [0, 1] — R".

Time stepping: Choose 6 € (0,1]. For k € {0, ..., m}, denote

th =7k, T= l,
m
90 .= gtk (1 — 9)tk,

wok) = gwktT 4 (1 — 9wk

and introduce the implicit scheme

k41 wk
@O s W L spw'® —0  wk=o0,...,m—1.
T

28/39



Relation to rational approximation

Theorem (H. 2019)

The solution obtained by time stepping is given by

u=Ur(NU = r(M'K)f

with the rational function

m—1
r(z)y=06"°% H wi(2)

(f"(k s(1-6))(z-8)+¢
(fe‘k +se) (z—6)+2

wk(2) =

with degrees (m, m). r(-) has nonpositive roots if 6 = 0.5.

29/39



Relation to rational approximation

Theorem (H. 2019)

The solution obtained by time stepping is given by

u=Ur(NU = r(M'K)f

with the rational function

m—1
r(z)=6"° ] wk(2),
k=0

(2 -s(1-0)) (z—0)+2

T

(%(”Jrsa) (z—6)+¢

wk(2) =

with degrees (m, m). r(-) has nonpositive roots if 6 = 0.5.

This time stepping scheme can be interpreted as a rational
approximation method — parallel realization! 29/39
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Numerical study
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Example

(d2 >Su(x):1 Vx € (—1,1),

ax2
u-1)=u(1)=0
Linear FEM with 1024 elements.
eigenvalues of M~1K: AN~ 9.87, A, ~1.26-10".
All methods realized as rational approximation methods.
Note: convergence theorem is dimension independent.

We consider the spectral error

max |z7% —r(z)|
Ze[)‘minaAmaX]
and the Ls-error
| Uexact — Ur||L2(Q)

in dependence of the degree of the rational function r.
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Spectral error—s = 0.5

100 4

maximum error over spectrum

1074 4

10-5 4

10t
number of terms
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Lo error—-s=05

1014

10-2 4

104 4

10-5 4

number of system solves
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Spectral error — s = 0.25

—%— BP3
~&— BURA
— EXM
10t — EXM(3)
—8— AAA
—— Vab
~=- best
100 4
§
8 1014
-3 10
5}
2
3
s
g 1072
€
El
£
=
5}
E 103
1074 4
1075 4

10t
number of terms
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Lo error—s=0.25

10t

100 4

10-2 4

10-3 4

number of system solves
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Spectral error — s = 0.75

10-1 4

H
2

-
=)
1

IS

maximum error over spectrum

10-5 4

1076 4

10t
number of terms
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Lo error—s=0.75

10-1

10-2 4

10-3 4

10-5 4

10-6 4

number of system solves
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The AAA method

Apply a black-box rational approximation method to
Z_s> zZe [)\mina )\max]-

Here:

Y. Nakatsukasa, O. Seéte, L.N. Trefethen. “The AAA algorithm for ratio-
nal approximation.” SIAM J Sci Comput. 2018

Use the resulting rational function r(z) for a rational
approximation method.
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Conclusion

m all presented methods can be interpreted and realized as
rational approximation methods

m the max-error of the rational approximation predicts the
actual error in the L, norm well
m the realization as a rational approximation method is
inherently parallel
m better ways to get best rational approximations to z=5?
m analytically — Zolotarev theory?
m numerically — continuation methods?

Code:

https://people.ricam.oceaw.ac.at/c.hofreither/
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