# A Unified View of Some Numerical Methods for Fractional Diffusion

**Clemens Hofreither** 



AANMPDE 12 Strobl, Austria July 2019

### Outline

- 1 The discrete eigenfunction method
- 2 Rational approximation methods
- 3 The BURA method
- 4 Rational approximations based on quadrature
- 5 The extension method
- 6 Time stepping method of Vabishchevich
- 7 Numerical study

### Outline

### 1 The discrete eigenfunction method

- 2 Rational approximation methods
- 3 The BURA method
- 4 Rational approximations based on quadrature
- 5 The extension method
- 6 Time stepping method of Vabishchevich
- 7 Numerical study

### Model problem

With  $\Omega \subset \mathbb{R}^d$  a domain,  $s \in (0, 1)$ :

$$\mathcal{L}^{s} u = f \quad \text{in } \Omega,$$
  
 $u = 0 \quad \text{on } \partial \Omega,$ 

where  $\mathcal{L}u = -\operatorname{div}(A\nabla u)$  s.p.d. diffusion operator.

### Model problem

With  $\Omega \subset \mathbb{R}^d$  a domain,  $s \in (0, 1)$ :

$$\mathcal{L}^{s} u = f$$
 in  $\Omega$ ,  
 $u = 0$  on  $\partial \Omega$ ,

where  $\mathcal{L}u = -\operatorname{div}(A \nabla u)$  s.p.d. diffusion operator. Use spectral definition: for  $u \in H_0^1(\Omega)$ :

$$\mathcal{L}^{\boldsymbol{s}}\boldsymbol{u} = \sum_{\boldsymbol{k}} \lambda_{\boldsymbol{k}}^{\boldsymbol{s}}(\boldsymbol{u},\varphi_{\boldsymbol{k}})\varphi_{\boldsymbol{k}}$$

Nonlocal problem!

### The discrete eigenfunction method (DEM)

M. Matsuki and T. Ushijima. "A note on the fractional powers of operators approximating a positive definite selfadjoint operator." J. Fac. Sci. Univ. Tokyo Sect. IA Math., 1993

■ Galerkin discretization on  $V_h \subset H_0^1(\Omega)$ 

l

discrete eigensystem: 
$$\mathcal{L}_h u_j^n = \lambda_j^n u_j^n$$
,  $j = 1, ..., n$ 

$$\mathcal{L}^{s} u \approx \sum_{j=1}^{n} (\lambda_{j}^{h})^{s} (u, u_{j}^{h}) u_{j}^{h}$$
$$\mathcal{U}_{\mathsf{DEM}} := \sum_{j=1}^{n} (\lambda_{j}^{h})^{-s} (f, u_{j}^{h}) u_{j}^{h}$$

### DEM in linear algebra terms

With stiffness/mass matrix  $K, M \in \mathbb{R}^{n \times n}$ : solve eigenproblem

$$Ku_j = \lambda_j^h Mu_j, \quad j = 1, \ldots, n,$$

where

### DEM in linear algebra terms

With stiffness/mass matrix  $K, M \in \mathbb{R}^{n \times n}$ : solve eigenproblem

$$Ku_j = \lambda_j^h Mu_j, \quad j = 1, \ldots, n,$$

where

Let  $\mathbf{f} \in \mathbb{R}^n$  coefficient vector of  $Q_h f \in V_h$ .

$$\mathbf{u}_{\mathsf{DEM}} = U \Lambda^{-s} U^{\mathsf{T}} M \mathbf{f} = (M^{-1} K)^{-s} \mathbf{f}.$$

A. Bonito, J. Pasciak. "Numerical approximation of fractional powers of elliptic operators." Math Comp. 2015

Using P1 FEM on a quasi-uniform mesh and under standard elliptic regularity assumptions, we have

$$\|u_{ ext{exact}} - u_{ ext{DEM}}\|_{L_2(\Omega)} \leq C \log(h^{-1}) h^{2s+2\delta} \|f\|_{\dot{H}^{2\delta}}$$

for  $f \in \dot{H}^{2\delta}$ ,  $\delta \leq 1 - s$ .

DEM is **slow**:  $O(n^3)$  operations for eigendecomposition.

### Outline

#### 1 The discrete eigenfunction method

#### 2 Rational approximation methods

- 3 The BURA method
- 4 Rational approximations based on quadrature
- 5 The extension method
- 6 Time stepping method of Vabishchevich
- 7 Numerical study

### Rational approximation methods

Assume we have a rational function r(z) such that

$$r(z) \approx z^{-s}$$

We define

$$\mathbf{u}_r = r(M^{-1}K)\mathbf{f}.$$

### Rational approximation methods

Assume we have a rational function r(z) such that

$$r(z) pprox z^{-s}$$

We define

$$\mathbf{u}_r = r(M^{-1}K)\mathbf{f}.$$

#### Theorem

Let  $u_r \in V_h$  from rational approximation. Then

$$\|u_{DEM} - u_r\|_{L_2(\Omega)} \le \max_{z \in [\lambda_{\min}, \lambda_{\max}]} |z^{-s} - r(z)| \, \|f\|_{L_2(\Omega)}.$$

(cf. [Harizanov et al., 2018] for a similar result)

### Realizing a rational approximation method

If r is given in partial fraction decomposition form

$$r(z) = c_0 + \sum_{j=1}^k \frac{c_j}{z - d_j}, \qquad c_j, d_j \in \mathbb{R},$$

we obtain

$$\mathbf{u}_r = r(M^{-1}K)\mathbf{f} = c_0 + \sum_{j=1}^k c_j(M^{-1}K - d_jI_n)^{-1}\mathbf{f}.$$

# Realizing a rational approximation method

If r is given in partial fraction decomposition form

$$r(z) = c_0 + \sum_{j=1}^k \frac{c_j}{z - d_j}, \qquad c_j, d_j \in \mathbb{R},$$

we obtain

$$\mathbf{u}_r = r(M^{-1}K)\mathbf{f} = c_0 + \sum_{j=1}^k c_j(M^{-1}K - d_jI_n)^{-1}\mathbf{f}.$$

With the solutions  $\mathbf{w}_i$  of

$$(K - d_j M) \mathbf{w}_j = M \mathbf{f}, \qquad j = 1, \dots, k$$

(shifted diffusion problems), we can write

$$\mathbf{u}_r = c_0 + \sum_{j=1}^k c_j \mathbf{w}_j.$$

If  $d_j \leq 0$ , then usually  $K \cong K - d_j M$ . Nonpositive poles!  $\rightarrow$  parallel realization

### Outline

- 1 The discrete eigenfunction method
- 2 Rational approximation methods
- 3 The BURA method
- 4 Rational approximations based on quadrature
- 5 The extension method
- 6 Time stepping method of Vabishchevich
- 7 Numerical study

### The BURA method

S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, Y. Vutov. "Optimal solvers for linear systems with fractional powers of sparse SPD matrices." Numer Linear Algebra Appl. 2018

#### Idea:

• compute BURA r(z) to  $z^{1-s}$  in [0, 1] with degrees (p, p)

• use 
$$\frac{r(z)}{z} \approx z^{-s}$$
 in  $[0, 1]$ 

■ rescale original matrix such that  $\lambda_{max} \leq 1$ 

■ 
$$\frac{r(z)}{z}$$
 has degrees ( $p, p+1$ ), PFD:

$$\frac{r(z)}{z} = \sum_{j=1}^{p+1} \frac{c_j}{z-d_j}.$$

### Remarks on the BURA method

■  $|r(z) - z^{1-s}|$  equioscillates, but

$$|r(z)/z - z^{-s}| = \frac{1}{z}|r(z) - z^{1-s}|$$

is large for small z

using estimates from [Harizanov et al., 2018]:

$$\|u_{\mathsf{DEM}} - u_{\mathsf{BURA}}\|_{L_2(\Omega)} \lesssim \kappa^{1-s} \mathcal{E}_{s,p} \|f\|_{L_2(\Omega)}$$

where  $E_{s,p} \sim \exp(-\sqrt{(1-s)p})$ 

improved approach:  $\kappa$  eliminated

- computing BURAs is difficult
  - modified Remez algorithm
    - hard to implement
    - numerically unstable
  - even with quadruple precision, only  $p \lesssim 11$  feasible

### Outline

- 1 The discrete eigenfunction method
- 2 Rational approximation methods
- 3 The BURA method
- 4 Rational approximations based on quadrature
- 5 The extension method
- 6 Time stepping method of Vabishchevich
- 7 Numerical study

### Rational approximations based on quadrature

A. Bonito, J. Pasciak. "Numerical approximation of fractional powers of elliptic operators." Math Comp. 2015

Based on

$$z^{-s} = \frac{2\sin(\pi s)}{\pi} \int_{-\infty}^{\infty} \frac{e^{2sy}}{1 + e^{2y}z} dy,$$

three classes of quadrature rules are proposed. Third one:

$$r_{ ext{BP3}}(z) := rac{2q\sin(\pi s)}{\pi} \sum_{\ell=-M}^{N} rac{e^{2sy_{\ell}}}{1+e^{2y_{\ell}}z}.$$

With proper parameter choices, they show:

$$\max_{z}|z^{-s}-r_{ ext{BP3}}(z)|\lesssim \exp(-\sqrt{p})$$

where *p* is the degree of  $r_{BP3}(z)$ .

### Outline

- 1 The discrete eigenfunction method
- 2 Rational approximation methods
- 3 The BURA method
- 4 Rational approximations based on quadrature
- 5 The extension method
- 6 Time stepping method of Vabishchevich
- 7 Numerical study

# Fractional Laplace as a Dirichlet-to-Neumann map

#### Idea

 $(-\Delta)^s u$  in  $\Omega$  is the Neumann data of a **local** elliptic problem in  $\Omega \times (0, \infty)$  with Dirichlet data u.

- Caffarelli, Silvestre 2007
- Stinga, Torrea 2010
- Capella, Dávila, Dupaigne, Sire 2011
- Brändle, Colorado, de Pablo, Sánchez 2013
- Nochetto, Otárola, Salgado 2015

### The dimension-extended problem

R.H. Nochetto, E. Otárola, A.J. Salgado. "A PDE approach to fractional diffusion in general domains: A priori error analysis." Found Comp Math. 2015

Let  $\alpha = 1 - 2s \in (-1, 1)$ . Find  $\mathcal{U}(x, y), x \in \Omega, y \in (0, \infty)$  such that  $-\operatorname{div}(y^{\alpha} \nabla \mathcal{U}) = 0$  in  $\Omega \times (0, \infty)$ ,  $\lim_{y \to \infty} \mathcal{U}(x, y) = 0$   $\forall x \in \Omega$ ,  $\mathcal{U}(x, y) = 0$   $\forall x \in \partial\Omega, y \in (0, \infty)$ ,  $-(\lim_{y \to 0} y^{\alpha} \partial_y \mathcal{U}(x, y)) = d_s f(x)$   $\forall x \in \Omega$ .

Then the solution is the Dirichlet trace

$$u(x) = (\mathcal{L}^{-s}f)(x) = \mathcal{U}(x,0).$$

# Numerical approach

R.H. Nochetto, E. Otárola, A.J. Salgado. "A PDE approach to fractional diffusion in general domains: A priori error analysis." Found Comp Math. 2015

- variational formulation in weighted Sobolev spaces
- can truncate extended direction (exponential convergence)
- discretization using tensor product spaces
- error analysis using P1-functions in y direction

# Numerical approach

R.H. Nochetto, E. Otárola, A.J. Salgado. "A PDE approach to fractional diffusion in general domains: A priori error analysis." Found Comp Math. 2015

- variational formulation in weighted Sobolev spaces
- can truncate extended direction (exponential convergence)
- discretization using tensor product spaces
- error analysis using P1-functions in y direction

Higher-order discretizations in *y* direction:

- Ainsworth, Glusa 2018
- Meidner, Pfefferer, Schürholz, Vexler 2018
- Banjai, Melenk, Nochetto, Otárola, Salgado, Schwab 2018

### Discretization

Discretize using tensor product space built from

$$\blacksquare V_h \subset H^1_0(\Omega) \qquad \qquad \text{dim } V_h = n$$

■  $W_h$  FE space over (0, Y),  $w_h(Y) = 0$  dim  $W_h = m$ 

### Discretization

Discretize using tensor product space built from

■  $V_h \subset H_0^1(\Omega)$  dim  $V_h = n$ ■  $W_h$  FE space over (0, Y),  $w_h(Y) = 0$  dim  $W_h = m$ 

Can write stiffness matrix as

$$\mathcal{A}^{(\alpha)} = M_y^{(\alpha)} \otimes K + K_y^{(\alpha)} \otimes M,$$

where

■  $K, M \in \mathbb{R}^{n \times n}$  standard stiffness/mass matrices in  $V_h$ ■  $K_y^{(\alpha)}, M_y^{(\alpha)} \in \mathbb{R}^{m \times m}$  weighted stiffness/mass matrices in  $W_h$ :

$$[M_{y}^{(\alpha)}]_{ij} = \int_{0}^{Y} y^{\alpha} \psi_{j}(y) \psi_{i}(y) \, dy$$
$$[K_{y}^{(\alpha)}]_{ij} = \int_{0}^{Y} y^{\alpha} \psi_{j}'(y) \psi_{i}'(y) \, dy$$

# Closed formula for the solution

#### Theorem (H. 2019)

The solution of the discrete extended problem has the coefficient vector

$$\mathbf{u}_{EXM} = UEU^T M \mathbf{f}$$

with

$$E = (\mathbf{e}_1^T V \otimes I_n) D^{-1} (V^T \mathbf{e}_1 \otimes I_n) \in \mathbb{R}^{n \times n}$$

*Proof:* based on a diagonalization argument and linear algebra.

# Closed formula for the solution

#### Theorem (H. 2019)

The solution of the discrete extended problem has the coefficient vector

$$\mathbf{u}_{EXM} = UEU^T M \mathbf{f}$$

with

$$E = (\mathbf{e}_1^T V \otimes I_n) D^{-1} (V^T \mathbf{e}_1 \otimes I_n) \in \mathbb{R}^{n \times n}$$

*Proof:* based on a diagonalization argument and linear algebra. Recall the Discrete Eigenfunction Method:

$$\mathbf{u}_{\mathsf{DEM}} = oldsymbol{U} \Lambda^{-s} oldsymbol{U}^{\mathsf{T}} oldsymbol{M} \mathbf{f}.$$
 $oldsymbol{E} \sim \Lambda^{-s} ?$ 

Doing some linear algebra, we find that E is diagonal and

$$E = r(\Lambda),$$
  $r(z) = \sum_{k=1}^{m} \frac{v_k^h(0)^2}{\mu_k^h + z}.$ 

where

- $\mu_k^h$ , k = 1, ..., m are discrete eigenvalues of the *y* problem (1D),
- $v_k^h(y)$ , k = 1, ..., m are discrete eigenfunctions of the y problem (**1D**).

### Connection to rational approximation

$$\mathbf{u}_{\mathsf{DEM}} = U\Lambda^{-s}U^{\mathsf{T}}M\mathbf{f} = (M^{-1}K)^{-s}\mathbf{f}$$
$$\mathbf{u}_{\mathsf{EXM}} = Ur(\Lambda)U^{\mathsf{T}}M\mathbf{f} = r(M^{-1}K)\mathbf{f}$$

with

$$r(z) = \sum_{k=1}^{m} \frac{v_k^h(0)^2}{\mu_k^h + z}.$$

Extension method can be interpreted (realized, analyzed) as a rational approximation method!

### Connection to rational approximation

$$\mathbf{u}_{\mathsf{DEM}} = U\Lambda^{-s}U^{\mathsf{T}}M\mathbf{f} = (M^{-1}K)^{-s}\mathbf{f}$$
$$\mathbf{u}_{\mathsf{EXM}} = Ur(\Lambda)U^{\mathsf{T}}M\mathbf{f} = r(M^{-1}K)\mathbf{f}$$

with

$$r(z) = \sum_{k=1}^{m} \frac{v_k^h(0)^2}{\mu_k^h + z}.$$

Extension method can be interpreted (realized, analyzed) as a rational approximation method!

$$r(z) \stackrel{?}{\approx} z^{-s}$$

For z > 0, the discrete Galerkin solution  $v \in W_h$  of the ODE

$$\begin{aligned} -(y^{\alpha}v'(y))' + zy^{\alpha}v(y) &= 0 \quad \forall y \in (0, Y), \\ -\lim_{y \to 0^+} (y^{\alpha}v'(y)) &= 1, \\ v(Y) &= 0. \end{aligned}$$

satisfies

$$r(z)=v(0).$$

### Abstract error estimate for extension method

By studying the exact solution of the ODE and a duality-based error estimate, we can prove:

#### Theorem (H. 2019)

We have

$$\|u_{\mathsf{DEM}} - u_{\mathsf{EXM}}\|_{L_2(\Omega)} \leq E_{\mathsf{EXM}} \|f\|_{L_2(\Omega)}$$

with

$$E_{EXM} = C_s \left( \frac{\exp(-2\sqrt{\lambda_{\min}^h}Y)}{\sqrt{\lambda_{\min}^h}Y} + \sup_{z \in [\lambda_{\min}^h, \lambda_{\max}^h]} \inf_{w_h \in W_h} \|v_z - w_h\|_b^2 \right).$$

### Abstract error estimate for extension method

By studying the exact solution of the ODE and a duality-based error estimate, we can prove:

#### Theorem (H. 2019)

We have

$$\|u_{\mathsf{DEM}} - u_{\mathsf{EXM}}\|_{L_2(\Omega)} \leq \mathcal{E}_{\mathsf{EXM}} \|f\|_{L_2(\Omega)}$$

with

$$E_{EXM} = C_s \left( \frac{\exp(-2\sqrt{\lambda_{\min}^h Y})}{\sqrt{\lambda_{\min}^h Y}} + \sup_{z \in [\lambda_{\min}^h, \lambda_{\max}^h]} \inf_{w_h \in W_h} \|v_z - w_h\|_b^2 \right).$$

**Ex:** for s = 1/2 and using maximally smooth splines of degree p in *y*-direction, we obtain the rate  $O(m^{-2p})$ .

### Outline

- 1 The discrete eigenfunction method
- 2 Rational approximation methods
- 3 The BURA method
- 4 Rational approximations based on quadrature
- 5 The extension method
- 6 Time stepping method of Vabishchevich
- 7 Numerical study

### Time stepping method of Vabishchevich

P.N. Vabishchevich. "Numerically solving an equation for fractional powers of elliptic operators." J Comp Phys. 2015

Choose  $\delta > 0$  such that  $\mathcal{L} \ge \delta I$ . Find  $w(t), t \in (0, 1)$  from the parabolic equation  $(t(\mathcal{L}-\delta I)+\delta I)\frac{dw}{dt}+s(\mathcal{L}-\delta I)w=0 \quad \forall t \in (0, 1), \qquad w(0)=\delta^{-s}f.$ 

Then the solution of the fractional diffusion problem is

w(1).

### Time stepping method of Vabishchevich

P.N. Vabishchevich. "Numerically solving an equation for fractional powers of elliptic operators." J Comp Phys. 2015

Choose  $\delta > 0$  such that  $\mathcal{L} \ge \delta I$ . Find  $w(t), t \in (0, 1)$  from the parabolic equation  $(t(\mathcal{L}-\delta I)+\delta I)\frac{dw}{dt}+s(\mathcal{L}-\delta I)w=0 \quad \forall t \in (0, 1), \qquad w(0)=\delta^{-s}f.$ Then the colution of the fractional diffusion problem in

Then the solution of the fractional diffusion problem is

*w*(1).

Scalar equivalent:

$$(t(z-\delta)+\delta)w'(t)+s(z-\delta)w(t)=0$$

with the solution

$$w(t) = ((1 - t)\delta + tz)^{-s},$$
  
 $w(0) = \delta^{-s}, \qquad w(1) = z^{-s}.$ 

### Discretization

Semidiscretization in space,  $D := K - \delta M$ :

 $(tD + \delta M)\mathbf{w}' + sD\mathbf{w} = 0 \quad \forall t \in (0, 1), \qquad \mathbf{w}(0) = \delta^{-s}\mathbf{f},$ 

where  $\mathbf{w} : [0, 1] \rightarrow \mathbb{R}^n$ .

### Discretization

Semidiscretization in space,  $D := K - \delta M$ :

$$(tD + \delta M)\mathbf{w}' + sD\mathbf{w} = 0 \quad \forall t \in (0, 1), \qquad \mathbf{w}(0) = \delta^{-s}\mathbf{f},$$

where  $\mathbf{w} : [0, 1] \rightarrow \mathbb{R}^n$ .

Time stepping: Choose  $\theta \in (0, 1]$ . For  $k \in \{0, \ldots, m\}$ , denote

$$t^{k} = \tau k, \qquad \tau = \frac{1}{m},$$
  
$$t^{\theta(k)} := \theta t^{k+1} + (1-\theta)t^{k},$$
  
$$\mathbf{w}^{\theta(k)} := \theta \mathbf{w}^{k+1} + (1-\theta)\mathbf{w}^{k}$$

and introduce the implicit scheme

$$(t^{\theta(k)}D + \delta M)\frac{\mathbf{w}^{k+1} - \mathbf{w}^k}{\tau} + sD\mathbf{w}^{\theta(k)} = 0 \qquad \forall k = 0, \dots, m-1.$$

# Relation to rational approximation

#### Theorem (H. 2019)

The solution obtained by time stepping is given by

$$\mathbf{u} = Ur(\Lambda)U^{-1}\mathbf{f} = r(M^{-1}K)\mathbf{f}$$

with the rational function

$$r(z) = \delta^{-s} \prod_{k=0}^{m-1} \omega_k(z),$$
  
$$\omega_k(z) = \frac{\left(\frac{t^{\theta(k)}}{\tau} - s(1-\theta)\right)(z-\delta) + \frac{\delta}{\tau}}{\left(\frac{t^{\theta(k)}}{\tau} + s\theta\right)(z-\delta) + \frac{\delta}{\tau}}, \qquad k = 0, \dots, m-1,$$

with degrees (m, m).  $r(\cdot)$  has **nonpositive roots** if  $\theta = 0.5$ .

# Relation to rational approximation

#### Theorem (H. 2019)

The solution obtained by time stepping is given by

$$\mathbf{u} = Ur(\Lambda)U^{-1}\mathbf{f} = r(M^{-1}K)\mathbf{f}$$

with the rational function

$$r(z) = \delta^{-s} \prod_{k=0}^{m-1} \omega_k(z),$$
  
$$\omega_k(z) = \frac{\left(\frac{t^{\theta(k)}}{\tau} - s(1-\theta)\right)(z-\delta) + \frac{\delta}{\tau}}{\left(\frac{t^{\theta(k)}}{\tau} + s\theta\right)(z-\delta) + \frac{\delta}{\tau}}, \qquad k = 0, \dots, m-1,$$

with degrees (m, m).  $r(\cdot)$  has **nonpositive roots** if  $\theta = 0.5$ .

# This time stepping scheme can be interpreted as a rational approximation method – parallel realization!

### Outline

- 1 The discrete eigenfunction method
- 2 Rational approximation methods
- 3 The BURA method
- 4 Rational approximations based on quadrature
- 5 The extension method
- 6 Time stepping method of Vabishchevich
- 7 Numerical study

### Example

$$-\left(\frac{d^2}{dx^2}\right)^s u(x) = 1 \quad \forall x \in (-1,1),$$
$$u(-1) = u(1) = 0$$

Linear FEM with 1024 elements. eigenvalues of  $M^{-1}K$ :  $\lambda_{\min}^h \approx 9.87$ ,  $\lambda_{\max}^h \approx 1.26 \cdot 10^7$ .

All methods realized as rational approximation methods. **Note:** convergence theorem is dimension independent.

We consider the spectral error

$$\max_{z \in [\lambda_{\min}, \lambda_{\max}]} |z^{-s} - r(z)|$$

and the L2-error

$$\|u_{\text{exact}} - u_r\|_{L_2(\Omega)}$$

in dependence of the degree of the rational function r.

### Spectral error -s = 0.5



### $L_2 \text{ error} - s = 0.5$



### Spectral error -s = 0.25



### $L_2 \, \text{error} - s = 0.25$



### Spectral error -s = 0.75



### $L_2 \, \text{error} - s = 0.75$



37/39

#### Apply a black-box rational approximation method to

$$z^{-s}$$
,  $z \in [\lambda_{\min}, \lambda_{\max}]$ .

Here:

Y. Nakatsukasa, O. Sète, L.N. Trefethen. "The AAA algorithm for rational approximation." SIAM J Sci Comput. 2018

Use the resulting rational function r(z) for a rational approximation method.

### Conclusion

- all presented methods can be interpreted and realized as rational approximation methods
- the max-error of the rational approximation predicts the actual error in the L<sub>2</sub> norm well
- the realization as a rational approximation method is inherently parallel
- better ways to get best rational approximations to z<sup>-s</sup>?
  - analytically Zolotarev theory?
  - numerically continuation methods?

#### Code:

https://people.ricam.oeaw.ac.at/c.hofreither/