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Example: The linear transport problem

The transport equation aims to determine a density distribution ρ : (0,T )×Rd → R≥0,
d ∈ {2, 3}, such that

∂tρ+ ∇·(ρv) = 0 on Rd × (0,T ) , ρ(·, 0) = ρ0 ,

for a given flow field v : (0,T )× Rd → Rd with ∇·v = 0 and initial density distribution
ρ0 ≥ 0.

This is a conservation law with flux function

F : R→ Rd , F (ρ) := ρv .

We may also read it as an abstract ODE

∂tρ+ Aρ = 0

with the linear operator Aρ = ∇·(ρv).
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Example: Acoustic waves

The acoustic wave equation describes the (small) deformation φ : R≥0 × Rd → R in
fluid/air by

ρ∂2
t φ− κ∆φ = 0

in (0,T )× Rd subject to initial and boundary conditions. With p = ρ∂tφ and v = ∇φ
we derive

κ−1∂tp = ∇·v and ρ∂tv = ∇p .

As a system in [p, v ] this reads

0 =

[
κ−1∂tp
ρ∂tv

]
−
[
∇·v
∇p

]
=

[
κ−1 0
0 ρ

]
∂t

[
p
v

]
− div

[
v†

p Idd

]
.

Thus we find the flux function

F : Rd+1 → Rd+1,d , F
([p

v

])
= −

[
v†

p Idd

]
.

As an abstract ODE it has with u = [p, v ] the form

M∂tu + Au = 0.
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Example: Electromagnetic waves (1)

For a permeability µ and a permittivity ε (possibly tensor-valued) find an electric field
E and a magnetic field H such that the linear Maxwell system

µ∂tH + ∇×E = 0 , ε∂tE −∇×H = 0 ,
∇·(µH) = 0 , ∇·(εE) = 0

holds for all t ∈ (0,T ) and x ∈ R3.

This can be written as

Lu := M∂tu + Au = 0 ,

where M, A, u are given by

M :=

[
µ 0
0 ε

]
, A :=

[
0 ∇×
−∇× 0

]
, u :=

[
H
E

]
.
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Example: Electromagnetic waves (2)

There exist constant symmetric matrices B1,B2,B3 ∈ R6×6 and a linear flux function
F : R6 → R6,3 such that

Au = div F (u) = B1∂x1 u + B2∂x2 u + B3∂x3 u ,

so we can equivalently write

Lu = M∂tu + div F (u) = 0 .

One may simplify this problem by considering the 2D reduction

u =
[
H1,H2,E3

]
, H3 ≡ E1 ≡ E2 ≡ 0 ,

for Maxwell’s equations in R2 (transverse magnetic (TM) modes).

Second order form for E is the wave equation

ε∂2
t E + ∇×

(
µ−1∇×E

)
= 0 .
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Linear hyperbolic first-order systems

For Ω ⊂ Rd and T > 0 we seek u : (0,T )× Ω ⊂ R≥0 × Rd → RJ such that

M∂tu(t) + Au(t) = f (t) for all t ∈ (0,T ) ,

u(0) = u0 ,

with a flux function F : RJ → RJ,d defined by

F (v) =
d∑

i=1

Biv .

Here M,Bi ∈ L∞(Ω)J×J
sym and M is positive definite. Thus the operator A is given by

Av = divF (v) =
d∑

i=1

∂i (Biv) for all v ∈ D(A) .
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The semigroup setting (1)

Let H be a Hilbert space with inner product (v ,w)H , M : H → H isomorphism, and let
A be a linear operator in H with domain D(A) ⊂ H.

Theorem (Existence of a semigroup)

Assume

D(A) is dense in H,

there exists ω ≥ 0 with (Av , v)H ≥ −ω (Mv , v)H for all v ∈ D(A),

there exists λ0 > ω such that A + λ0M is onto.

Then −M−1A generates a semigroup with ‖exp(−tM−1A)‖H ≤ exp(ωt).

If the operator −M−1A generates a semigroup in H, then linear evolution equation
M∂tu + Au = 0 is solved by

u(t) = exp(−tM−1A)u(0) .

Nonhomogeneous right hand sides f can be treated with the variation of constants
formula.
Evans: Partial Differential Equations
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The semigroup setting (2)

Let (·, ·)Ω =
∫

Ω
. . . dx .

Acoustic waves Assume q = 0 on ∂Ω, then

(A[p, v ], [q,w ])Ω = −(∇·v , q)Ω − (p,∇·w)Ω

= −(ν · v , q)∂Ω − (A[q,w ], [p, v ])Ω

= −(A[q,w ], [p, v ])Ω .

Hence A is skew-symmetric for q ∈ H1
0(Ω).

Electro-magnetic waves We get that A skew-symmetric using the boundary
condition ν × E = 0. Hence A is skew-symmetric for E ∈H0(curlΩ).

For the considered examples A is dissipative with ω = 0.
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The semigroup setting (3)

In the applications (A + M)−1 exists and is bounded, hence A + M maps onto H
(λ0 = 1).

Acoustic waves (A + M)(p, v) = (f ,g) implies

−∆p + ρκ−1p = ρf −∇·g

This is solvable for p ∈ H1
0(Ω) and ρv = g −∇p.
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The semigroup setting (4)

We consider a Hilbert space H with inner product (·, ·)H = (M ·, ·)Ω and an operator A
defined on D(A) ⊂ H to find solutions of

M∂tu + Au = f in [0,T ] .

Acoustic waves
H = L2(Ω)× L2(Ω)d , M[p, v ] = [κ−1p, ρv ],
A[p, v ] = −[∇·v ,∇p], D(A) = H(div,Ω)×H1

0(Ω).

Electro-magnetic waves
H = L2(Ω)3 × L2(Ω)3, M[E ,H] = [εE , µH] , A[E ,H] = (−∇×H,∇×E)Ω

D(A) =
{

[E ,H] ∈H0(curl,Ω)×H(curl,Ω): ∇·(εE) = 0, ∇·(µH) = 0}.

Energy conservation
We have (Au,w)Ω = −(u,Aw)Ω for u,w ∈ D(A), and this implies conservation of the
energy E(u) = 1

2‖u‖
2
V , i.e., the solution satisfies

∂tE(u(t)) = 0.
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The Babuška–Nečas setting

Theorem
Let V , W be Hilbert spaces, and let b : V ×W −→ R be a bilinear form. Assume

there is C > 0 such that for all v ∈ V, w ∈ W

|b(v ,w)| ≤ C ‖v‖V‖w‖W .

there is β > 0 such that for all v ∈ V

sup
w∈W

b(v ,w)

‖w‖W
≥ β ‖v‖V .

Then, there exists for all f ∈ W a unique solution u ∈ V of

b(u,w) = (f ,w)W for all w ∈ W

that satisfies the bound ‖u‖V ≤ C/β ‖f‖W .
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A space-time setting (1)

We consider now function spaces V ,W ,H on the space-time cylinder Q = (0,T )×Ω.
Let L = M∂t + A on Q with domain V = D(L), where

V :=
{

u ∈ C1(0,T ;D(A)) : u(0) = 0
}‖·‖V

with respect to the weighted graph norm ((·, ·)Q =
∫

Q . . . dx dt)

‖v‖2
V = (Mv , v)Q + (M−1Lv , Lv)Q .

Then we define W = L(V ) ⊆ H = L2(Q)J with norm ‖w‖2
W = (Mw ,w)Q .

Theorem
Let (Av(·), v(·))Ω ≥ 0 a.e. for v ∈ V (A dissipative). For given f ∈ H there exists a
unique solution u ∈ V solving the variational problem

(Lu,w)Q = (f ,w)Q for all w ∈ W

with

‖u‖V ≤
√

1 + 4T 2‖M−1/2f‖Q .
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A space-time setting (2)

Proof.
For the proof we define b : V ×W → R with

b(v ,w) = (Lv ,w)Q .

The continuity follows from the upper bound

|b(v ,w)| ≤ ‖v‖V‖w‖W .

We will show that for all v ∈ C1(0,T ;D(A)) with v(0) = 0

‖v‖W ≤ 2T ‖M−1Lv‖W .

This extends to all v ∈ V and shows L(V ) = L(V ) in W . Inserting w = M−1Lv yields

inf
v∈V

sup
w∈W

b(v ,w)

‖v‖V‖w‖W
≥ inf

v∈V

b(v ,M−1Lv)

‖v‖V‖M−1Lv‖W
= inf

v∈V

‖M−1Lv‖W√
‖v‖2

W + ‖M−1Lv‖2
W

≥ 1√
1 + 4T 2

.

13 Willy Dörfler - Space-time discretisations for linear hyperbolic systems IANM



A space-time setting (3)

To prove the stated inequality we first note that for all v ∈ C1(0,T ;D(A)) with v(0) = 0
we have

‖v‖2
W =

∫ T

0

(
Mv(t), v(t)

)
Ω
dt =

∫ T

0

((
Mv(t), v(t)

)
Ω
−
(
Mv(0), v(0)

)
Ω

)
dt

=

∫ T

0

∫ t

0
∂t
(
Mv(s), v(s)

)
Ω
ds dt = 2

∫ T

0

∫ t

0

(
M∂tv(s), v(s)

)
Ω
ds dt

≤ 2
∫ T

0

∫ t

0

(
M∂tv(s) + Av(s), v(s)

)
Ω
ds dt

≤ 2
∫ T

0

∫ t

0

(
M−1Lv(s), Lv(s)

)1/2
Ω

(
Mv(s), v(s)

)1/2
Ω

ds dt

≤ 2T ‖M−1Lv‖W‖v‖W .

This yields ‖v‖W ≤ 2T ‖M−1Lv‖W for all v ∈ V . •
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Discrete space-time setting (1)

Let Vh ⊂ V and Wh ⊂ W be finite dimensional subspaces. Define the L2-projection
Πh : W → Wh by

(
Πhw ,wh

)
Q =

(
w ,wh

)
Q for wh ∈ Wh and Mh = ΠhM. Let

Lh ∈ L(Vh,Wh) be an appropriate discrete operator with corresponding discrete
bilinear form

bh(vh,wh) =
(
Lhvh,wh)Q .

We define norms

‖vh‖Vh =
(
‖vh‖2

W + ‖M−1
h Lhvh‖2

W

)1/2
, ‖wh‖Wh = ‖wh‖W .

Lemma
(1) bh : Vh ×Wh → R is a continuous bilinear form.
(2) Assume that, with dT (t) = T − t ,(

MhdT∂tvh, vh
)

Q ≤
(
Lhvh, dT Πhvh

)
Q for all vh ∈ Vh . (1)

Then, the bilinear form bh is inf-sup stable on Vh ×Wh with β = 1/
√

1 + 4T 2.
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Discrete space-time setting (2)

Proof. (1) For all vh ∈ Vh, wh ∈ Wh

bh(vh,wh) =
(
Lhvh,wh

)
Q ≤ ‖M

−1
h Lhvh‖W‖wh‖W ≤ ‖vh‖Vh‖wh‖W .

(2) Transferring the proof of the non-discrete to the discrete setting yields

‖vh‖2
W =

∫ T

0

(
Mhvh(t), vh(t)

)
Ω
dt

=

∫ T

0

((
Mhvh(t), vh(t)

)
Ω
−
(
Mhvh(0), vh(0)

)
Ω

)
dt

=

∫ T

0

∫ t

0
∂t
(
Mhvh(s), vh(s)

)
Ω
ds dt = 2

∫ T

0

∫ t

0

(
Mh∂tvh(s), vh(s)

)
Ω
ds dt

= 2
(
Mh∂tvh, dT vh

)
Q ≤ 2

(
Lhvh, dT Πhvh

)
Q

≤ 2T ‖M−1
h Lhvh‖W‖vh‖W .

This yields ‖vh‖Vh ≤ 2T ‖M−1
h Lhvh‖W . To prove the inf-sup stability we use

wh = M−1
h Lhvh. •
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Discrete space-time setting (3)

Application of the Babuška–Nečas result.

Theorem
Let bh be inf-sup stable on Vh ×Wh with β = 1/

√
1 + 4T 2. Then, for given f ∈ H there

exists a unique solution uh ∈ Vh of

(Lhuh,wh)Q = (f ,wh)Q for all wh ∈ Wh ,

satisfying the a priori bound ‖uh‖Vh ≤
√

4T 2 + 1‖M−1
h Πhf‖W .
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Space–Time decomposition

Decomposition of the space-time domain Q = (0,T )× Ω:

Decompose (0,T ) such that [0,T ] =
⋃N

n=1 In, where In is an open interval
In = (tn−1, tn) ⊂ (0,T ) for n = 1, . . . ,N.

Decompose Ω such that Ω =
⋃

K K , where K is an open set (e.g. triangle).

This defines a decomposition R of Q

R = {R = In × K : n ≤ N, K ∈ K}.

For R = I × K let hK = diam(K ) be the spatial mesh size and let hI = |I| be the
local timestep size, and hR = hI + hK .

Let FK be the set of faces of K ∈ K.
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An implicit space-time dG approximation (1)

For every R = I × K choose polynomial degrees pR and qR for the ansatz in space
and time, and define the local test spaces

W h,R =
(
PqR−1(I)× PpR (K )

)J

and the global test space

W h =
{

wh ∈ L2(Q)J : vh|R ∈ W h,R} .
For the ansatz space, we choose the affine space depending on the initial condition

V h =
{

vh ∈ H1(0,T ;L2(Ω)J ) : vh(0) = u0 and for all R ∈ R and (t , x) ∈ R

vh(t , x) =
tn − t

tn − tn−1
vh,R(tn−1, x) +

t − tn−1

tn − tn−1
wh,R(x) ,

where vh,R ∈ V h|[0,tn−1] and wh,R ∈ W h,R
}
.
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An implicit space-time dG approximation (2)

Multiplying Au = divF (u) with a test function wK and integrating over a spatial cell K
yields (

Au,wK
)

0,K =

∫
K

divF (u) ·wK dx

= −
∫

K
F (u) : ∇wK dx +

∑
f∈FK

∫
f
F (u)nK ,f ·wK dx .

nK ,f denotes the outer unit normal on the face f of K with respect to K .
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An implicit space-time dG approximation (3)

Given a consistent numerical flux F num
K ,f (vh) on f ∈ FK we define Ahvh ∈ V h by

(
Ahvh,wh

K
)

0,K = −
∫

K
F (vh

K ) ·∇wh
K dx +

∑
f∈FK

∫
f
F num

K ,f (vh)nK ,f ·wh
K dx

for all vh ∈ V h, wh
K ∈ V h

K and all K . This can be rewritten by partial integration as(
Ahvh,wh

K
)

0,K =

∫
K

divF (vh
K ) ·wh

K dx +
∑

f∈FK

∫
f

(
F num

K ,f (vh)− F (vh
K )
)
nK ,f ·wh

K dx .

Hesthaven and Warburton 2008

For inner faces f ∈ FK let Kf be the neighbouring cell with f = ∂K ∩ ∂Kf .

A numerical flux is called consistent if on inner faces f the difference(
F num

K ,f (vh)− F (vh
K )
)
nK ,f only depends on [vh]K ,f = vh,Kf − vh,K and that(

F num
K ,f (v)− F (v)

)
nK ,f = 0 for v ∈ D(A).
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Upwind flux
f a planar interface with normal n. Define the symmetric matrix F n =

∑
i niBi . x the

variable along the normal direction and define for constant vectors uL, uR

u0(x) = uLχ{x≤0} + uRχ{x>0} .

Solve exactly the Riemann problem

M∂tu + ∂x F nu = 0 for all t > 0, x ∈ R ,

u(0, ·) = u0 .

Solve the eigenvalue problem F nw i = λiMw i and define the splitting F n = F +
n + F−n .

The numerical flux (“upwind flux”) is now given by

F num(u) = F n(u(t , 0)) = F +
n (uL) + F−n (uR) = F n(uL) + F−n (uR − uL)

Thus F num(u)− F n(uL) depends on the jump uR − uL only. This flux is consistent
and non-negative

(Ahvh, vh)Ω ≥ C
∑
K∈K

∑
f∈FK

∥∥nK · (F num(vh)− F (vh
K ))
∥∥2

f .
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Upwind flux for linear transport

For the upwind flux we get(
Ahρh , ηh,K

)
K =

(
v ·∇ρh,K , ηh,K

)
K +

∑
f∈FK

1
2
(
(nK · v − |nK · v |) [ρh]K ,f , ηh,K

)
0,f .
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Upwind flux for electro-magnetic waves

For the upwind flux we get 1(
Ah(Hh,Eh), (φh

K ,ψ
h
K )
)

0,K = (∇×Eh
K ,φ

h
K )0,K − (∇×Hh

K ,ψ
h
K

)
0,K

+
∑

f∈FK

{ ZKf

ZK + ZKf

(
nK ,f × [Eh]K ,f ,φ

h
K

)
0,f

−
YKf

YK + YKf

(
nK ,f × [Hh]K ,f ,ψ

h
K

)
0,f

+
1

ZK + ZKf

(
nK ,f × (nK ,f × [Hh]K ,f ),φ

h
K

)
0,f

+
1

YK + YKf

(
nK ,f × (nK ,f × [Eh]K ,f ),ψ

h
K

)
0,f

}
for (Eh,Hh) ∈ V h and (ψh

K ,φ
h
K ) ∈ V h

K , ZK :=
√
µK/εK = 1/YK .

1E.g. Hesthaven and Warburton 2008.
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Discrete space-time setting (3)

We use a tensor-product discretisation in space-time. The ansatz space consists of
local polynomials of degree p, q, while the test space of those of degree p, q − 1.

We defined a spatial operator Ah : Vh → Wh with a consistent numerical flux and with
the property (Ahvh, vh) ≥ 0 for all vh ∈ Vh.

We defined the discrete space-time operator Lh ∈ L(Vh,Wh) by

Lh = Mh∂tvh + Ahvh

and the corresponding discrete bilinear form by bh(·, ·) =
(
Lh ·, ·)Q .

Lemma
If the discretization has tensor product structure, the inf-sup condition for bh holds if
we have for all vh ∈ Vh

Πh∂tvh = ∂tvh ,
(
MhdT∂tvh, vh

)
Q ≤

(
Mh∂tvh, dT Πhvh

)
Q , 0 ≤

(
Ahvh, dT Πhvh

)
Q .

This is fulfilled by the above construction.
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Discrete space-time setting (4)

Theorem
With the inf-sup constant β (as before) we arrive at the error estimate

||u − uh||V h ≤
(
1 +

√
1 + 4T 2

)
inf

vh∈V h
||u − vh||V h .

If in addition the solution is sufficiently smooth and the space-time discretisation has
tensor product structure with polynomial degrees p, q (both ≥ 1), we obtain the a
priori error estimate

‖u − uh‖Vh ≤ C
(
Mtq + Mxp)(‖∂q+1

t u‖Q + ‖Dp+1u‖Q

)
.

Proof
Strang lemma and interpolation.
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The implicit Space-Time dG Approximation

Summary

Ansatz space V h: Discontinuous in space and continuous in time

Test space W h: Discontinuous in space and time

Approximate continuity across faces by the upwind flux

Advantage

No CFL (Courant–Friedrichs–Lewy) condition⇒ allows larger time intervals

Parallel computation in space and time using a parallel GMRES solver with
multigrid preconditioner

Disadvantage

Large linear system with many unknowns⇒ adaptive strategy is needed
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Dual Error Estimator

Goal: Minimise the error e := u − uh w.r.t. to a given output J (u).

Use the dual problem(
w , L∗u∗

)
Q = J ′[u](w) for all w ∈ W

with dual solution u∗ ∈ V ∗ to get the error representation

E := J (u)− J (uh) = (f − Lhuh, u∗ − uh
∗)Q + O(‖e‖2) .

The error can be estimated as

|E| = |(f − Lhuh, u∗ − uh
∗)Q |+ O(‖e‖2)

≤ |E0|+
∑
R∈R

ηR + O(‖e‖2) for ηR := ρR ωR ,

with discretisation error E0, residuals ρR(uh) and weights ωR(u∗ − uh
∗).

The unknown exact dual solution u∗ is approximated from the computed solution
uh
∗ via a polynomial recovery urec

∗ of higher order in space and time.

(See e.g. Bangerth and Rannacher 2003)
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p and q space-time adaptivity

Adaptive Algorithm

Compute uh with lowest polynomial degree p = 0 and q = 1 on Q
While p < pmax and q < qmax do:

Compute the discrete dual solution uh
∗ and a recovery interpolation urec

∗
with degrees p + 1 and q + 1
Compute estimated error ηR on a cell R ∈ R
Sort the cells descending by ηR and mark e.g. 35% of them for refinement
Increase the polynomial degrees pR and qR on the marked space-time cells R ∈ R
Compute uh with a new distribution of polynomial degrees

Performance

High polynomial degrees are used in areas where it is necessary to minimise E
Lowest polynomial degrees are used in areas which do not effect E
Achieve the same accuracy as in the global refined case with less effort
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Convergence order

10−1 10010−6

10−4

10−2

100

1.00

2.01

3.00

4.00

Mx ,Mt

‖u
−

u h
‖ V

h

p ≡ q ≡ 1
p ≡ q ≡ 2
p ≡ q ≡ 3
p ≡ q ≡ 4

Example: EOC for a smooth plane wave solution (acoustic wave).
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Solver: GMRES with multigrid preconditioner

Let R0,0 be a coarse space-time mesh
Let Rl,k be a fine mesh with l = 1, . . . , lmax refinements in space and
k = 1, . . . , kmax refinements in time

BGS
l,k

R l,k
l−1,k BGS

l−1,k

BJ
0,k

R0,k
0,k−1 BJ

0,k−1

BML
0,0

BJ
0,k−1

P0,k
0,k−1

BJ
0,k

BGS
l−1,k

P l,k
l−1,k

BGS
l,k

(l, k)

(l − 1, k)

(0, k)

(0, k − 1)

(0, 0)

Prolongation P l,k
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Solver: GMRES with multigrid preconditioner

Let R0,0 be a coarse space-time mesh
Let Rl,k be a fine mesh with l = 1, . . . , lmax refinements in space and
k = 1, . . . , kmax refinements in time
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Solver: GMRES with multigrid preconditioner

Let R0,0 be a coarse space-time mesh
Let Rl,k be a fine mesh with l = 1, . . . , lmax refinements in space and
k = 1, . . . , kmax refinements in time
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Linear Transport: Rotating Cone (1)

Initial condition u0: Gaussian pulse

Transport vector field: q(x) = 2π[−x2, x1]†

DWR: Higher order recovery and E(v) = 1
2

∫
Q |v |

2

Solution uh
Distribution of polynomial degrees

(after 4 refinements)
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DWR: Higher order recovery and E(v) = 1
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∫
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Solution uh
Distribution of polynomial degrees

(after 4 refinements)
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Numerical Example: Rotating cone (2)

Figure: Solution of the transport equation in
the space-time domain Q, sliced at times
t = 0, 0.3, 0.6, 1.

Figure: Location of the highest polynomial
degrees in the space-time domain Q.
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Numerical Example: Rotating cone (3)

uniform GMRES
level poly. deg. (p, q) #DoFs steps (rate) ME ‖uh(T )− u(T )‖Ω

l = 1 (1,1) 1 585 152 10 (7.19e-2) 5.10e-2 4.06e-1
l = 2 (2,2) 6 340 608 10 (1.30e-1) 2.14e-3 1.97e-2
l = 3 (3,3) 15 851 520 10 (1.54e-1) 3.78e-5 8.52e-4
l = 4 (4,4) 31 703 040 11 (1.67e-1) 4.41e-7 5.16e-4

Table: Results for the transport equation with uniform mesh with 524 288 = 4 096× 128
space-time cells and different polynomial degrees.

GMRES
level #DoFs (effort) steps (rate) ME ‖uh(T )− u(T )‖Ω ‖e∗ − e∗h‖Q MEh E
l = 1 1 585 152 10 (7.19e-2) 5.10e-2 4.06e-1 1.78e-1 4.08e-2 7.60e-1
l = 2 1 894 176 (30%) 10 (9.53e-2) 2.14e-3 2.02e-2 9.98e-3 2.63e-3 3.59e-2
l = 3 2 381 598 (15%) 10 (1.43e-1) 3.79e-5 1.87e-3 8.40e-4 4.44e-5 7.33e-4
l = 4 3 303 810 (10%) 11 (1.23e-1) 4.31e-7 5.22e-4 5.29e-4 4.94e-7 1.47e-5

Table: Adaptive refinement on a mesh with 524 288 = 4 096× 128 space-time cells (ϑ = 1e-4).
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Numerical Example: Travelling Wave (1)

Solution of the wave equation (special case of Maxwell’s equation).

We consider

a wave u(t , x) = a(x · k − ct) with an
amplitude profile

a(z) =
(

cos(2π(z − 1
2

)) + 1
)2

[0,−1, 1]T

in Q = (0, 3)× (0.5, 0.5)× (0,T ) with final
time T = 4 and Dirichlet boundary conditions,

constant material parameters µ = ε = 1,

the energy error functional

E(e) :=
1
2

(Me, e)Q .
Distribution of space-time cells on
32 processes
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Numerical Example: Travelling Wave (2)

Back: Time evolution of a travelling wave
Front: Used polynomial degrees
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Numerical Example: Travelling Wave (3)

Adaptive refinement with pτ ∈ {0, 1, 2, 3} in space and qτ ∈ {1, 2, 3, 4} in time.

p, q- adaptive uniform
level #DoFs

∣∣E(e)
∣∣ #DoFs

∣∣E(e)
∣∣

0 149 760 4.51e-0 149 760 4.51e-0
1 437 955 1.65e-1 898 560 1.65e-1
2 1 104 297 1.75e-3 2 695 680 1.83e-3
3 2 277 720 5.20e-5 5 990 400 1.43e-5

Space-time adaptive refinement and corresponding degrees of freedom.

By using adaptivity we achieve nearly the same accuracy as in the globally refined
case with approximately 38% degrees of freedom on the finest level.
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Numerical Example: Tapered domain

Time evolution of a wave in a tapered domain – the
problem was solved in about 12 min on 256 processes
(with about 30 mio degrees of freedom) and about 25
min on 1024 processes (with about 180 mio degrees
of freedom). Reduction to 27%, reps. 21% of the un-
knowns.

Distribution of space-
time cells on 256
processes.

41 Willy Dörfler - Space-time discretisations for linear hyperbolic systems IANM



Numerical Example: Double-slit (1)

We consider

an interfering wave in a double-slit experiment
with reflecting boundary conditions,

constant material parameters µ = ε = 1,
wavelength λ = 0.5, slit gap a = 1.25 and slit
width b = 0.25,

the linear error functional

J (e) := |S|−1
∫

S
ey d(x , t)

with region of interest
S := (5.5, 6)× (0, 2)× (0, 8)

(e.g. photosensitive detector),

known diffraction pattern for the far field

Idiff(α) = I0sinc2(π
λ

b sinα
)

cos2 (π
λ

a sinα
)

in dependence of the observation angle α.

Triangular mesh in domain Ω with
region of interest S on level l = 0.
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Numerical Example: Double-slit (2)

Left: Time evolution of an interfering wave and the location
of a theoretical minimum.

Right: Used polynomial degrees and region of interest.
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Visco-Elastic Wave inspired by Marmousi I

Visco-elastic waves, application from Geophysics

ρ ∂t~v = ∇ · ~σ0 + · · ·+∇ · ~σL +~f ,

∂t~σ0 = ~C0~ε(~v) ,

∂t~σl = ~Cl~ε(~v)− 1
τl
~σl , l = 1, . . . , L .

Latest results:

starting with linear functions making one adaptive step

Problem size: 442 859 696 of 1 019 215 872

24 GMRES steps using MG-preconditioner in less than 15 min

computed using 8192 cores
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Visco-Elastic Wave inspired by Marmousi I
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Visco-Elastic Wave inspired by Marmousi I
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