T-coercivity for solving variational formulations

Patrick Ciarlet

Laboratoire POEMS
ENSTA Paris, Institut Polytechnique de Paris, France

Abstract setting

- Let
- V, W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form on $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle \text {. }
$$

Abstract setting

- Let
- V, W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form on $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle .
$$

- [Ladyzhenskaya-Babuska-Brezzi] Recall the inf-sup condition

$$
\text { (isc) } \exists \alpha>0, \forall v \in V, \sup _{w \in W \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{W}} \geq \alpha\|v\|_{V} .
$$

- The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V, W) \text { bijective, } \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

Abstract setting

- Let
- V, W be two Hilbert spaces;
- $a(\cdot, \cdot)$ be a continuous sesquilinear form on $V \times W$;
- f be an element of W^{\prime}, the dual space of W.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in W, a(u, w)=\langle f, w\rangle .
$$

- Theorem (Well-posedness)

The three assertions below are equivalent:
(i) the Problem $(V F)$ is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies (isc) and $\{w \in W \mid \forall v \in V, a(v, w)=0\}=\{0\}$;
(iii) the form $a(\cdot, \cdot)$ is T-coercive.

$$
\text { The operator } \mathrm{T} \text { realizes the inf-sup condition (isc) explicitly. }
$$

Abstract setting - hermitian case

- Let
- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in V, a(u, w)=\langle f, w\rangle .
$$

- [Ladyzhenskaya-Babuska-Brezzi] The inf-sup condition writes

$$
\text { (isc) } \exists \alpha>0, \forall v \in V, \sup _{w \in V \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{V}} \geq \alpha\|v\|_{V} \text {. }
$$

- The form $a(\cdot, \cdot)$ is T-coercive if

$$
\exists \mathrm{T} \in \mathcal{L}(V), \exists \underline{\alpha}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2} .
$$

Abstract setting - hermitian case

- Let
- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in V, a(u, w)=\langle f, w\rangle .
$$

- Theorem (Well-posedness, hermitian case)

The three assertions below are equivalent:
(i) the Problem $(V F)$ is well-posed;
(ii) the form $a(\cdot, \cdot)$ satisfies (isc);
(iii) the form $a(\cdot, \cdot)$ is T-coercive.

$$
\text { The operator } \mathrm{T} \text { realizes the inf-sup condition (isc) explicitly. }
$$

Abstract setting - hermitian case

- Let
- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in V, a(u, w)=\langle f, w\rangle .
$$

- Introduce the weak inf-sup condition

$$
\text { (wisc) } \quad \exists \mathrm{C} \in \mathcal{K}(V), \alpha, \beta>0, \forall v \in V, \sup _{w \in V \backslash\{0\}} \frac{|a(v, w)|}{\|w\|_{V}} \geq \alpha\|v\|_{V}-\beta\|\mathrm{C} v\|_{V} \text {. }
$$

- The form $a(\cdot, \cdot)$ is weakly T -coercive if
$\exists \mathrm{c} \in \mathcal{K}(V), \mathrm{T} \in \mathcal{L}(V)$ bijective, $\exists \underline{\alpha}, \underline{\beta}>0, \forall v \in V,|a(v, \mathrm{~T} v)| \geq \underline{\alpha}\|v\|_{V}^{2}-\underline{\beta}\|\mathrm{C} v\|_{V}^{2}$.

Abstract setting - hermitian case

- Let
- V be a Hilbert space;
- $a(\cdot, \cdot)$ be a continuous sesquilinear, hermitian form on $V \times V$;
- f be an element of V^{\prime}, the dual space of V.

Aim: solve the Variational Formulation

$$
(V F) \quad \text { Find } u \in V \text { s.t. } \forall w \in V, a(u, w)=\langle f, w\rangle .
$$

- Theorem (Well-posedness in Fredholm sense, hermitian case)

The three assertions below are equivalent:
(i) the Problem ($V F$) is well-posed in the Fredholm sense;
(ii) the form $a(\cdot, \cdot)$ satisfies (wisc);
(iii) the form $a(\cdot, \cdot)$ is weakly T -coercive.

Application: neutron diffusion problem

- Let Ω be a domain of $\mathbb{R}^{d}, d=1,2,3$.
- Goal: given $f \in L^{2}(\Omega)$, solve the diffusion problem Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
-\operatorname{div}(A \nabla u)+b u=f \text { in } \Omega .
$$

- "Physical" assumptions on the set of parameters:
(Hyp) $\quad\left\{\begin{array}{l}A \in \mathbb{L}_{\text {sym }}^{\infty}(\Omega), \exists A_{\min }>0, \forall \mathbf{z} \in \mathbb{R}^{d}, A \mathbf{z} \cdot \mathbf{z} \geq A_{\min }|\mathbf{z}|^{2} \text { a.e. in } \Omega ; \\ b \in L^{\infty}(\Omega), \exists b_{\text {min }}>0, b \geq b_{\text {min }} \text { a.e. in } \Omega .\end{array}\right.$

Application: neutron diffusion problem

- Let Ω be a domain of $\mathbb{R}^{d}, d=1,2,3$.
- Goal: given $f \in L^{2}(\Omega)$, solve the diffusion problem

Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
-\operatorname{div}(A \nabla u)+b u=f \text { in } \Omega .
$$

- "Physical" assumptions on the set of parameters:
(Hyp) $\quad\left\{\begin{array}{l}A \in \mathbb{L}_{\text {sym }}^{\infty}(\Omega), \exists A_{\min }>0, \forall \mathbf{z} \in \mathbb{R}^{d}, A \mathbf{z} \cdot \mathbf{z} \geq A_{\min }|\mathbf{z}|^{2} \text { a.e. in } \Omega ; \\ b \in L^{\infty}(\Omega), \exists b_{\min }>0, b \geq b_{\min } \text { a.e. in } \Omega .\end{array}\right.$
- Primal form:

Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
\forall v \in H_{0}^{1}(\Omega), \quad(A \nabla u, \nabla v)_{0}+(b u, v)_{0}=(f, v)_{0} .
$$

Application: neutron diffusion problem

- Let Ω be a domain of $\mathbb{R}^{d}, d=1,2,3$.
- Goal: given $f \in L^{2}(\Omega)$, solve the diffusion problem

Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
-\operatorname{div}(A \nabla u)+b u=f \text { in } \Omega .
$$

- "Physical" assumptions on the set of parameters:
(Hyp) $\quad\left\{\begin{array}{l}A \in \mathbb{L}_{\text {sym }}^{\infty}(\Omega), \exists A_{\min }>0, \forall \mathbf{z} \in \mathbb{R}^{d}, A \mathbf{z} \cdot \mathbf{z} \geq A_{\min }|\mathbf{z}|^{2} \text { a.e. in } \Omega ; \\ b \in L^{\infty}(\Omega), \exists b_{\text {min }}>0, b \geq b_{\text {min }} \text { a.e. in } \Omega .\end{array}\right.$
- Mixed form: introduce the auxiliary unknown $\mathbf{p}=-A \nabla u$.

Find $(\mathbf{p}, u) \in \boldsymbol{H}(\operatorname{div}, \Omega) \times L^{2}(\Omega)$ such that:
$\forall(\mathbf{q}, v) \in \boldsymbol{H}(\operatorname{div}, \Omega) \times L^{2}(\Omega),-\left(A^{-1} \mathbf{p}, \mathbf{q}\right)_{0}+(\operatorname{div} \mathbf{q}, u)_{0}+(\operatorname{div} \mathbf{p}, v)_{0}+(b u, v)_{0}=(f, v)_{0}$.

Application: neutron diffusion problem

$R T_{0}$ FE ; DDM $+L^{2}$-jumps on non-nested grids ($h_{1}=h_{3}=2 / 3 h, h_{2}=h_{4}=h$):

	$r_{\max }=0.45(\delta \sim 7.35)$		$r_{\max }=0.20(\delta \sim 39.9)$									
$1 / h$	$\left\\|u-u_{h}\right\\|_{0}$	$\left\\|\mathbf{p}-\mathbf{p}_{h}\right\\|_{0}$	$\left\\|u-u_{h}\right\\|_{0}$	$\left\\|\mathbf{p}-\mathbf{p}_{h}\right\\|_{0}$								
48	$5.11 e^{-3}$	$9.63 e^{-2}$	$3.04 e^{-2}$	$4.39 e^{-1}$								
96	$2.71 e^{-3}$	$7.02 e^{-2}$	$2.34 e^{-2}$	$3.80 e^{-1}$								
192	$1.44 e^{-3}$	$5.12 e^{-2}$	$1.80 e^{-2}$	$3.29 e^{-1}$								
rate	$h^{0.92}$	$h^{0.46}$	$h^{0.38}$	$h^{0.20}$								

Application: Helmholtz problem

- Let Ω be a domain of $\mathbb{R}^{d}, d=1,2,3$.
- Goal: given $f \in L^{2}(\Omega)$, solve the Helmholtz problem Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
-\operatorname{div}(A \nabla u)+b u=f \text { in } \Omega .
$$

- Assumptions on the set of parameters:
(Hyp) $\quad\left\{\begin{array}{l}A \in \mathbb{L}_{\text {sym }}^{\infty}(\Omega), \exists A_{\min }>0, \forall \mathbf{z} \in \mathbb{R}^{d}, A \mathbf{z} \cdot \mathbf{z} \geq A_{\min }|\mathbf{z}|^{2} \text { a.e. in } \Omega ; \\ b<0 \text { s.t. }|b| \text { is not an eigenvalue of corresponding eigenproblem. }\end{array}\right.$

Application: Helmholtz problem

- Let Ω be a domain of $\mathbb{R}^{d}, d=1,2,3$.
- Goal: given $f \in L^{2}(\Omega)$, solve the Helmholtz problem Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
-\operatorname{div}(A \nabla u)+b u=f \text { in } \Omega .
$$

- Assumptions on the set of parameters:
(Hyp) $\quad\left\{\begin{array}{l}A \in \mathbb{L}_{\text {sym }}^{\infty}(\Omega), \exists A_{\min }>0, \forall \mathbf{z} \in \mathbb{R}^{d}, A \mathbf{z} \cdot \mathbf{z} \geq A_{\min }|\mathbf{z}|^{2} \text { a.e. in } \Omega ; \\ b<0 \text { s.t. }|b| \text { is not an eigenvalue of corresponding eigenproblem. }\end{array}\right.$
- Primal form:

Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
\forall v \in H_{0}^{1}(\Omega), \quad(A \nabla u, \nabla v)_{0}-|b|(u, v)_{0}=(f, v)_{0}
$$

Application: Helmholtz problem

- Let Ω be a domain of \mathbb{R}^{3}, and $\omega>0$.
- Goal: given $\boldsymbol{J} \in \boldsymbol{L}^{2}(\Omega)$, solve the Helmholtz Maxwell problem

Find $\boldsymbol{E} \in \boldsymbol{H}_{0}(\mathbf{c u r l}, \Omega)$ such that:

$$
\forall \boldsymbol{F} \in \boldsymbol{H}_{0}(\operatorname{curl}, \Omega), \quad\left(\mu^{-1} \operatorname{curl} \boldsymbol{E}, \operatorname{curl} \boldsymbol{F}\right)_{0}-\omega^{2}(\varepsilon \boldsymbol{E}, \boldsymbol{F})_{0}=\imath \omega(\boldsymbol{J}, \boldsymbol{F})_{0}
$$

- Assumptions on the set of parameters:

$$
(\mathrm{Hyp}) \quad\left\{\begin{array}{l}
\varepsilon>0 \\
\mu>0
\end{array}\right.
$$

Application: sign-changing interface pb

- Let Ω be a domain of $\mathbb{R}^{d}, d=1,2,3$.
- Goal: given $f \in L^{2}(\Omega)$, solve the transmission problem Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
-\operatorname{div}(A \nabla u)+b u=f \text { in } \Omega .
$$

- "Physical" assumption on the parameters:
(Hyp) $\quad\left\{\begin{array}{l}A \text { piecewise constant }: A_{1}:=A_{\mid \Omega_{1}}>0, A_{2}:=A_{\mid \Omega_{2}}<0 ; \\ b \text { piecewise constant. }\end{array}\right.$

NB. The case of an inclusion with $\Sigma \cap \partial \Omega=\emptyset$ is also possible.

Application: sign-changing interface pb

- Let Ω be a domain of $\mathbb{R}^{d}, d=1,2,3$.
- Goal: given $f \in L^{2}(\Omega)$, solve the transmission problem Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
-\operatorname{div}(A \nabla u)+b u=f \text { in } \Omega .
$$

- "Physical" assumption on the parameters:

$$
\text { (Hyp) } \quad\left\{\begin{array}{l}
A \text { piecewise constant }: A_{1}:=A_{\mid \Omega_{1}}>0, A_{2}:=A_{\mid \Omega_{2}}<0 \\
b \text { piecewise constant. }
\end{array}\right.
$$

- Primal form:

Find $u \in H_{0}^{1}(\Omega)$ such that:

$$
\forall v \in H_{0}^{1}(\Omega), \quad A_{1}\left(\nabla u_{1}, \nabla v_{1}\right)_{0, \Omega_{1}}-\left|A_{2}\right|\left(\nabla u_{2}, \nabla v_{2}\right)_{0, \Omega_{2}}+(b u, v)_{0}=(f, v)_{0} .
$$

Application: sign-changing interface pb

- Case of a symmetric domain: $\left.\Omega_{1}=\right]-1,0[\times] 0,1\left[, \Omega_{2}=\right] 0,1[\times] 0,1[$.
- Contrast $A_{2} / A_{1}=-1.001$, and $b=0$.
- Discretization using P_{1} Lagrange finite elements.
- Influence of the meshes? (relative errors in L^{2}-norm ; $O\left(h^{2}\right)$ is expected).

Application: sign-changing interface pb

- Contrast $A_{2} / A_{1}=-5.2$ (critical interval $\left.I_{\Sigma}=[-5,-1 / 5]\right)$, and $b=0$.
- Discretization using P_{3} Lagrange finite elements.

standard mesh

T-conform mesh

Application: sign-changing interface pb

- Contrast $A_{2} / A_{1}=-5.2$ (critical interval $\left.I_{\Sigma}=[-5,-1 / 5]\right)$, and $b=0$.
- Discretization using P_{3} Lagrange finite elements.
- Comparison of the computed solutions ($\approx 10^{5}$ dof).

standard mesh

T-conform mesh

[^0]
To go further...

- Neutron diffusion problems:
- Jamelot-PC Journal of Computational Physics, 241 (2013);
- PC-Jamelot-Kpadonou Computers and Mathematics with Applications, 74 (2017);
- PC-Giret-Jamelot-Kpadonou ESAIM: M2AN, 52 (2018);
- PhD of Léandre Giret, Paris-Saclay University (2018).
- Helmholtz-type problems:
- Hiptmair Acta Numerica (2002);
- PC Computers and Mathematics with Applications, 64 (2012).
- Sign-changing interface problems:
- BonnetBenDhia-Chesnel-PC ESAIM: M2AN, 46 (2012);
- Chesnel-PC Numerische Mathematik, 124 (2013);
- Carvalho-Chesnel-PC C. R. Acad. Sci. Paris,Ser. I, 355 (2017);
- BonnetBenDhia-Carvalho-PC Numerische Mathematik, 138 (2018);
- PhD of Lucas Chesnel, Ecole Polytechnique (2012).
- PhD of Camille Carvalho, Ecole Polytechnique (2015).

[^0]: Meshes must/should be carefully designed: T-conform meshes

