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Background: the text-book finite-element ‘protocol’

(i) Boundary-value problem:

L u D f in �,
Bu D g on @�

(PDE)

(ii) Reformulation:
Find u 2 V such that
a.v; u/ D l.v/ 8v 2 L

(VP)

(iii) Discretization:

Find uh 2 Vh such that
a.vh; uh/ D l.vh/ 8vh 2 Lh

(FEM)

Typically, (VP) interpreted as the meaning of (PDE)
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Well-posedness1

l linear, continuous on L

a bilinear and continuous on L � V

a defines a bounded linear operator A W V ! L0

(VP) well posed if and only if

(i) 9˛ > 0 such that, for each u 2 V ,

sup
v2L
v¤0

a.v; u/

kvkL
� ˛kukV

) The range of A is closed.
(ii) If v 2 L satifies

a.v; u/ D 0 8u 2 V

then v D 0.
) A surjective.

1Nečas (1962)
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Notable exception from the ‘protocol’!
Discontinuous Galerkin (DG) methods
for hyperbolic equations2

Standard model problem):

ˇ � ru C �u D f in �,
u D g on ��

Assuming �.x/ � �0 > 0, r � ˇ D 0.

��

�C

�0 �0

��.C/ D f x 2 @� j n � ˇ < .>/0 g

�0 D f x 2 @� j n � ˇ D 0 g

In DG literature, for well-posedness of hyperbolic problems, if at all
discussed, reference to “theory for Friedrichs systems”
Numerical method not based on discretization of a
variational formulation!

2Reed & Hill (1973), Lesaint & Raviart (1974)
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DG methods for hyperbolic equations

Variational form only for the discrete problem! Basic idea:

Let Vh be a space of finite-dimensional, weakly differentiable (for
now) functions
Define ah.vh; uh/ D lh.vh/ for uh; vh 2 Vh, where

ah.vh; uh/ D

Z
�

vh

�
ˇ � ruh C �uh

�
�

Z
��

n � ˇvhuh;

lh.vh/ D

Z
�

vhf �

Z
��

n � ˇvhg

Note:
Variational expression consistent with BVP (i.e. ah.vh; u/ D lh.vh/)
Boundary condition weakly imposed
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DG methods for hyperbolic equations

System matrix positive definite: for uh ¤ 0,

ah.uh; uh/ D

Z
�

uh

�
ˇ � ruh C �uh

�
�

Z
��

n � ˇ.uh/2

D
1

2

Z
@�

n � ˇ.uh/2
C

Z
�

�.uh/2
�

Z
��

n � ˇ.uh/2

D

Z
�

�.uh/2
C

1

2

Z
@�

jn � ˇj.uh/2 > 0

Thus, the linear system is solvable
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DG methods for hyperbolic equations

Stability for ah as above too weak in practice
Therefore:

Relax continuity; let Vh be piecewise polynomials
Impose interelement continuity weakly, analogous to BC

Yields improved coercivity property

ah.uh; uh/ D

Z
�

�.uh/2
C

1

2

X
K2Th

Z
@K�

jn � ˇjJuhK2
C

1

2

Z
�C

jn � ˇj.uh/2

JuhK D uC

h
� u�

h

RHS discrete version of the norm

kuk
2

D

Z
�

�u2
C

Z
�

.ˇ � ru/2
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A proper variational formulation?
Recall discrete expressionZ

�

vh .ˇ � ruh C �uh/ �

Z
��

n � ˇvhuh D

Z
�

vhf �

Z
��

n � ˇvhg

Data in L2.�/ � L2.��I jn � ˇj/

Suggests test space L D L2.�/ � L2.��I jn � ˇj/

Differential operator T u D ˇ � ru C �u

Suggests solutions bounded in kuk2
W D kuk2

L2.�/
C kT uk2

L2.�/

Boundary integral requires traces of u in L2.��I jn � ˇj/

Our approach inspired by and developed from

A. Ern, J.-L. Guermond, G. Caplain. An Intrinsic Criterion for the
Bijectivity of Hilbert Operators Related to Friedrichs’ Systems.
Comm. Partial Differential Equations 32:317–341, 2007
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The proposed variational formulation

Domain � open, bounded, connected with Lipschitz boundary
Function spaces

L D L2.�/ � L2.��I jn � ˇj/

W D
˚

u 2 L2.�/ j T u 2 L2.�/
	

Functions in W admits traces only in H �1=2.@�/ in general
However, traces in L2.@�I jn � ˇj/ when dist.��; �C/ > 0 (Ern,
Guermond, SINUM, 2006)
Thus, assume dist.��; �C/ > 0 and choose solution space V D W

Denote by � (C) the trace operators V ! L2.��I jn � ˇj/

(V ! L2.�CI jn � ˇj/)

July 4 2019 9 / 20



The proposed variational formulation
For v D .v0; v1/ 2 L, define

a.v; u/ D

Z
�

v0

�
ˇ � ru C �u„ ƒ‚ …

T u

�
�

Z
��

n � ˇv1u u 2 V

a�.v; u/ D

Z
�

v0

�
�ˇ � ru C �u„ ƒ‚ …

QT u

�
C

Z
�C

n � ˇv1u u 2 V �
D V

l.v/ D

Z
�

v0f �

Z
��

n � ˇv1g

where a� satifies, 8u; v 2 V ,
a�

�
.u; Cu/; v

�
D a

�
.v; �v/; u

�
Theorem
The variational problem

Find u 2 V such that

a.v; u/ D l.v/ 8v 2 L
(VP)

is well posed
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Proof strategy
1. Continuity of a, a�, l (by construction)
2. V , V � are closed
3. C 1.�/ is dense in V

4. Boundary traces of functions in V are in L2.@�I jn � ˇj/

5. Inf-sup in L: 9˛ > 0 s.t.

sup
v2Lnf0g

a.v; u/

kvk
� ˛

�
kuk

2
L2.�/

C kuk
2
L2.��Ijn�ˇj/

�1=2
8u 2 V

sup
v2Lnf0g

a�.v; u/

kvk
� ˛

�
kuk

2
L2.�/

C kuk
2
L2.�CIjn�ˇj/

�1=2
8u 2 V � (*)

6. Inf-sup in V : 9˛ > 0 s.t.

sup
v2Lnf0g

a.v; u/

kvk
� ˛kukV 8u 2 V

7. Surjectivity: if v 2 L such that
a.v; u/ D 0 8u 2 V;

then v D 0. Here, the “adjoint” inf-sup property (*) in L is utilized.
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Inf-sup

In L: for u 2 V , let Ou D .u; �u/. Then

a. Ou; u/ D

Z
�

u
�
.ˇ � r/u C �u

�
�

Z
��

n � ˇu2

D
1

2

Z
@�

jn � ˇju2
C

Z
�

�u2
�

1

2
k Ouk

2
L;

from which the condition follows.

In V : let Ov D
�
ˇ � ru C �u; 0

�
(u ¤ 0)

a. Ov; u/ D

24Z
�

.ˇ � ru C �u/2

351=2

D kT uk;

which together with the condition in L yields the result.
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Surjectivity

Recall
a.v; u/ D

Z
�

v0

�
ˇ � ru C �u

�
�

Z
��

n � ˇv1u

Let v 2 L such that a.v; u/ D 0, 8u 2 V . Two properties of v D .v0; v1/

follow:

�.ˇ � r/v0 C �v0 D QT v0 D 0 (by def. of weak derivative)
) v 2 W D V

v0 D

(
0 on �C,
v1 on ��

(after integration by parts)

QT v0 D 0 and Cv0 D 0 ) v0 D 0 by inf-sup condition in L of a�.
Thus v1 D 0 by above.
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The acoustic wave equation
� 2 Rd , open, bounded, connected with a smooth boundary; T < C1

@tu C rp D f in Q D � � .0; T / (1a)
@tp C r � u D 0 in Q D � � .0; T / (1b)

p � n � u � ˛.p C n � u/ D g on † D @� � .0; T /, (1c)
u D us; p D ps on †0 D � � f0g (1d)

Condition (1c) in alternative form:

.1 � ˛/p � .1 C ˛/n � u D g

Restriction: ˛ 2 L1.@�/, j˛j � ˛M < 1

Here

� D

�
�1

�2

�
2 RdC1; T D

�
@t r

r� @t

�
; T � D

�
@t�1 C r�2

@t�2 C r � �1

�
;

QT D �T D

�
�@t �r

�r� �@t

�
; ˙

† � D .�2 ˙ n � �1/
ˇ̌
†

July 4 2019 14 / 20



Acoustic wave equation: variational formulation
Let � D . O�; �†; �I/, � 2 L2.Q/dC1 � L2.†/ � L2.�/dC1

a.�; �/ D

Z
Q

O�T T � C

Z
†

�†

�
�

†� � ˛C
† �

�
C

Z
†0

�T
I �

l.�/ D

Z
Q

O�Tf C

Z
†

�†g C

Z
†0

�T
I �0

a�.�; �/ D

Z
Q

O�T QT � C

Z
†

�†

�
C

† � � ˛�
†�

�
�

Z
†T

�T
I �

Graph space:

W D

n
� 2 L2.Q/dC1

j T � 2 L2.Q/dC1
o

Admits traces in H �1=2.@Q/. Therefore following spaces well defined:

V D

n
� 2 W j �

†� 2 L2.†/; †0
� 2 L2.�/dC1

o
V �

D

n
� 2 W j C

† � 2 L2.†/; †T
� 2 L2.�/dC1

o
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Acoustic wave equation: steps of well-posedness proof
Lemma
V , V � are closed.

Straightforward to prove.

Lemma
C 1.Q/dC1 is dense in V and V �

Not straightforward! The proof uses a density result by Rauch (1985).

Lemma
The trace operators C

†W C 1.Q/dC1 ! L2.†/,
†T

W C 1.Q/dC1 ! L2.�/dC1 defined by

C
† � D .�2 C n � �1/j†

†T
D �

ˇ̌
tDT

extend uniquely to continuous operators on V .

Thus, integration by parts holds with L2.@Q/ boundary integrals
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Acoustic wave equation: inf-sup conditions

Lemma (inf-sup in L)
9˛ D C min.1=T; 1 � ˛M / s.t. 8� 2 V ,

sup
�2Lnf0g

a.�; �/

k�k
� ˛

�
k�k

2
L2.Q/dC1 C k�

†�k
2
L2.†/

C k†0
�k

2
L2.�/dC1

�1=2

and 8� 2 V �,

sup
�2Lnf0g

a�.�; �/

k�k
� ˛

�
k�k

2
L2.Q/dC1 C kC

† �k
2
L2.†/

C k†T
�k

2
L2.�/dC1

�1=2

Proven by (for a) choosing � D

�
e�t=T �; 1

2
e�t=T �

†�; †0
�
�
, which gives

the lower bound after integration by parts.
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Acoustic wave equation: inf-sup and surjectivity

Lemma (inf-sup in V )
9˛ > 0 s.t. 8� 2 V ,

sup
�2Lnf0g

a.�; �/

k�k
� ˛k�kV 8� 2 V

Choosing � D .T �; 0; 0/T gives kT �kL2.Q/dC1 as lower bound, which
together with the bound in L yields the result.

Surjectivity proof same as before, but algebraically messier
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Acoustic wave equation; well-posedness

@tu C rp D f in Q D � � .0; T /

@tp C r � u D 0 in Q D � � .0; T /

p � n � u � ˛.p C n � u/ D g on † D @� � .0; T /

u D us; p D ps on †0 D � � f0g

Theorem
The system admits a unique solution in V satisfying

k.u; p/kV �
1

˛
k.f; g; us; ps/kL;

where ˛ D C min.1=T; 1 � ˛M /
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Final words

Ongoing work, no manuscripts yet!
Closes a “gap” in the typical protocol for FE analysis
The variational form, although simple and natural, appears to be new
Difference from Ern, Guermond, Caplain:

They strongly enforce homogeneous characteristic BC in definition of
V � W

We weakly enforce nonhomogeneous BC through the bilinear form

Next step:
Explore the method for additional problems (equations, boundary
conditions)
Construct numerical methods based on the bilinear form
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