Bilinear forms for first-order systems

Martin Berggren, Linus Hägg

Department of Computing Science Umeå University, Sweden

July 4 2019

Background: the text-book finite-element 'protocol'

(i) Boundary-value problem:

$$\mathcal{L}u = f \quad \text{in } \Omega,$$
 $\mathcal{B}u = g \quad \text{on } \partial\Omega$ (PDE)

(ii) Reformulation:

Find
$$u \in V$$
 such that $a(v, u) = l(v) \quad \forall v \in L$ (VP)

(iii) Discretization:

Find
$$u_h \in V_h$$
 such that
$$a(v_h, u_h) = l(v_h) \qquad \forall v_h \in L_h$$
 (FEM)

Typically, (VP) interpreted as the **meaning** of (PDE)

Well-posedness¹

- *l* linear, continuous on *L*
- a bilinear and continuous on $L \times V$
- a defines a bounded linear operator $A: V \to L'$

(VP) well posed if and only if

(i) $\exists \alpha > 0$ such that, for each $u \in V$,

$$\sup_{\begin{subarray}{c} v \in L \\ v \neq 0 \end{subarray}} \frac{a(v,u)}{\|v\|_L} \ge \alpha \|u\|_V$$

 \Rightarrow The range of A is closed.

(ii) If $v \in L$ satisfies

$$a(v, u) = 0 \quad \forall u \in V$$

then v=0.

 \Rightarrow A surjective.

¹Nečas (1962)

Notable exception from the 'protocol'!

Discontinuous Galerkin (DG) methods for hyperbolic equations²

Standard model problem):

$$\boldsymbol{\beta} \cdot \nabla u + \rho u = f \quad \text{in } \Omega,$$

$$u = g \quad \text{on } \Gamma_{-}$$

Assuming $\rho(x) \ge \rho_0 > 0$, $\nabla \cdot \boldsymbol{\beta} = 0$.

$$\Gamma_{-(+)} = \{ x \in \partial \Omega \mid \mathbf{n} \cdot \boldsymbol{\beta} < (>)0 \}$$

$$\Gamma_{0} = \{ x \in \partial \Omega \mid \mathbf{n} \cdot \boldsymbol{\beta} = 0 \}$$

Γ

 Γ_0

- In DG literature, for well-posedness of hyperbolic problems, if at all discussed, reference to "theory for Friedrichs systems"
- Numerical method not based on discretization of a variational formulation!

 Γ_{+}

 Γ_0

²Reed & Hill (1973), Lesaint & Raviart (1974)

DG methods for hyperbolic equations

Variational form only for the discrete problem! Basic idea:

- Let V_h be a space of finite-dimensional, weakly differentiable (for now) functions
- Define $a_h(v_h, u_h) = l_h(v_h)$ for $u_h, v_h \in V_h$, where

$$a_h(v_h, u_h) = \int_{\Omega} v_h (\boldsymbol{\beta} \cdot \nabla u_h + \rho u_h) - \int_{\Gamma_-} \boldsymbol{n} \cdot \boldsymbol{\beta} v_h u_h,$$
$$l_h(v_h) = \int_{\Omega} v_h f - \int_{\Gamma} \boldsymbol{n} \cdot \boldsymbol{\beta} v_h g$$

Note:

- Variational expression **consistent** with BVP (i.e. $a_h(v_h, u) = l_h(v_h)$)
- Boundary condition weakly imposed

DG methods for hyperbolic equations

System matrix positive definite: for $u_h \neq 0$,

$$a_{h}(u_{h}, u_{h}) = \int_{\Omega} u_{h} (\boldsymbol{\beta} \cdot \nabla u_{h} + \rho u_{h}) - \int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta}(u_{h})^{2}$$

$$= \frac{1}{2} \int_{\partial \Omega} \boldsymbol{n} \cdot \boldsymbol{\beta}(u_{h})^{2} + \int_{\Omega} \rho(u_{h})^{2} - \int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta}(u_{h})^{2}$$

$$= \int_{\Omega} \rho(u_{h})^{2} + \frac{1}{2} \int_{\partial \Omega} |\boldsymbol{n} \cdot \boldsymbol{\beta}|(u_{h})^{2} > 0$$

Thus, the linear system is solvable

DG methods for hyperbolic equations

- Stability for a_h as above too weak in practice
- Therefore:
 - Relax continuity; let V_h be **piecewise** polynomials
 - Impose interelement continuity weakly, analogous to BC
- Yields improved coercivity property

$$a_h(u_h, u_h) = \int_{\Omega} \rho(u_h)^2 + \frac{1}{2} \sum_{K \in \mathcal{T}_h} \int_{\partial K^-} |\boldsymbol{n} \cdot \boldsymbol{\beta}| [\![u_h]\!]^2 + \frac{1}{2} \int_{\Gamma_+} |\boldsymbol{n} \cdot \boldsymbol{\beta}| (u_h)^2$$

$$\llbracket u_h \rrbracket = u_h^+ - u_h^-$$

RHS discrete version of the norm

$$||u||^2 = \int_{\Omega} \rho u^2 + \int_{\Omega} (\boldsymbol{\beta} \cdot \nabla u)^2$$

A proper variational formulation?

Recall discrete expression

$$\int\limits_{\Omega} v_h \left(\boldsymbol{\beta} \cdot \nabla u_h + \rho u_h \right) - \int\limits_{\Gamma_-} \boldsymbol{n} \cdot \boldsymbol{\beta} v_h u_h = \int\limits_{\Omega} v_h f - \int\limits_{\Gamma_-} \boldsymbol{n} \cdot \boldsymbol{\beta} v_h g$$

- Data in $L^2(\Omega) \times L^2(\Gamma_-; |\mathbf{n} \cdot \boldsymbol{\beta}|)$
- Suggests test space $L = L^2(\Omega) \times L^2(\Gamma_-; |\mathbf{n} \cdot \boldsymbol{\beta}|)$
- Differential operator $Tu = \beta \cdot \nabla u + \rho u$
- Suggests solutions bounded in $\|u\|_W^2 = \|u\|_{L^2(\Omega)}^2 + \|Tu\|_{L^2(\Omega)}^2$
- Boundary integral requires traces of u in $L^2(\Gamma_-; |\mathbf{n} \cdot \boldsymbol{\beta}|)$
- Our approach inspired by and developed from

A. Ern, J.-L. Guermond, G. Caplain. An Intrinsic Criterion for the Bijectivity of Hilbert Operators Related to Friedrichs' Systems. *Comm. Partial Differential Equations* 32:317–341, 2007

The proposed variational formulation

- Domain Ω open, bounded, connected with Lipschitz boundary
- Function spaces

$$L = L^{2}(\Omega) \times L^{2}(\Gamma_{-}; |\boldsymbol{n} \cdot \boldsymbol{\beta}|)$$
$$W = \left\{ u \in L^{2}(\Omega) \mid Tu \in L^{2}(\Omega) \right\}$$

- Functions in W admits traces only in $H^{-1/2}(\partial\Omega)$ in general
- However, traces in $L^2(\partial\Omega; |\mathbf{n}\cdot\boldsymbol{\beta}|)$ when $\operatorname{dist}(\Gamma_-, \Gamma_+) > 0$ (Ern, Guermond, *SINUM*, 2006)
- Thus, assume dist $(\Gamma_-, \Gamma_+) > 0$ and choose solution space V = W
- Denote by γ_- (γ_+) the trace operators $V \to L^2(\Gamma_-; |\boldsymbol{n} \cdot \boldsymbol{\beta}|)$ ($V \to L^2(\Gamma_+; |\boldsymbol{n} \cdot \boldsymbol{\beta}|)$)

The proposed variational formulation

For
$$v = (v_0, v_1) \in L$$
, define

$$a(v,u) = \int_{\Omega} v_0 \underbrace{\left(\boldsymbol{\beta} \cdot \nabla u + \rho u \right)}_{Tu} - \int_{\Gamma_-} \boldsymbol{n} \cdot \boldsymbol{\beta} v_1 u \qquad u \in V$$

$$a^*(v,u) = \int_{\Omega} v_0 \underbrace{\left(-\boldsymbol{\beta} \cdot \nabla u + \rho u \right)}_{\tilde{T}u} + \int_{\Gamma_+} \boldsymbol{n} \cdot \boldsymbol{\beta} v_1 u \qquad u \in V^* = V$$

$$l(v) = \int_{\Omega} v_0 f - \int_{\Gamma_-} \boldsymbol{n} \cdot \boldsymbol{\beta} v_1 g$$

where a^* satisfies, $\forall u, v \in V$,

$$a^*((u,\gamma_+u),v) = a((v,\gamma_-v),u)$$

Theorem

The variational problem

Find
$$u \in V$$
 such that $a(v, u) = l(v) \quad \forall v \in L$

(VP)

is well posed

Proof strategy

- 1. Continuity of a, a^* , l (by construction)
- 2. V, V^* are closed
- 3. $C^1(\overline{\Omega})$ is dense in V
- 4. Boundary traces of functions in V are in $L^2(\partial \Omega; |\mathbf{n} \cdot \boldsymbol{\beta}|)$
- 5. Inf-sup in $L: \exists \alpha > 0$ s.t.

$$\sup_{v \in L \setminus \{0\}} \frac{a(v, u)}{\|v\|} \ge \alpha \left(\|u\|_{L^{2}(\Omega)}^{2} + \|u\|_{L^{2}(\Gamma_{-}; |\boldsymbol{n} \cdot \boldsymbol{\beta}|)}^{2} \right)^{1/2} \quad \forall u \in V$$

$$\sup_{v \in L \setminus \{0\}} \frac{a^{*}(v, u)}{\|v\|} \ge \alpha \left(\|u\|_{L^{2}(\Omega)}^{2} + \|u\|_{L^{2}(\Gamma_{+}; |\boldsymbol{n} \cdot \boldsymbol{\beta}|)}^{2} \right)^{1/2} \quad \forall u \in V^{*} \quad (*)$$

6. Inf-sup in $V: \exists \alpha > 0$ s.t.

$$\sup_{v \in L \setminus \{0\}} \frac{a(v, u)}{\|v\|} \ge \alpha \|u\|_V \qquad \forall u \in V$$

7. Surjectivity: if $v \in L$ such that

$$a(v, u) = 0 \quad \forall u \in V,$$

then v = 0. Here, the "adjoint" inf-sup property (*) in L is utilized.

Inf-sup

In L: for $u \in V$, let $\hat{u} = (u, \gamma_{-}u)$. Then

$$a(\hat{u}, u) = \int_{\Omega} u [(\boldsymbol{\beta} \cdot \nabla)u + \rho u] - \int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta} u^{2}$$
$$= \frac{1}{2} \int_{\Omega} |\boldsymbol{n} \cdot \boldsymbol{\beta}| u^{2} + \int_{\Omega} \rho u^{2} \ge \frac{1}{2} \|\hat{u}\|_{L}^{2},$$

from which the condition follows.

In V: let
$$\hat{v} = (\boldsymbol{\beta} \cdot \nabla u + \rho u, 0) (u \neq 0)$$

$$a(\hat{v}, u) = \left[\int_{\Omega} (\boldsymbol{\beta} \cdot \nabla u + \rho u)^2 \right]^{1/2} = ||Tu||,$$

which together with the condition in L yields the result.

Surjectivity

Recall

$$a(v,u) = \int_{\Omega} v_0 (\boldsymbol{\beta} \cdot \nabla u + \rho u) - \int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta} v_1 u$$

Let $v \in L$ such that a(v, u) = 0, $\forall u \in V$. Two properties of $v = (v_0, v_1)$ follow:

$$-(\pmb{\beta}\cdot\nabla)v_0+\rho v_0=\tilde{T}v_0=0 \qquad \qquad \text{(by def. of weak derivative)}$$

$$\Rightarrow v\in W=V$$

$$v_0=\begin{cases} 0 & \text{on }\Gamma_+,\\ v_1 & \text{on }\Gamma_- \end{cases} \qquad \text{(after integration by parts)}$$

 $\tilde{T}v_0=0$ and $\gamma_+v_0=0 \Rightarrow v_0=0$ by inf-sup condition in L of a^* . Thus $v_1=0$ by above.

The acoustic wave equation

 $\Omega \in \mathbb{R}^d$, open, bounded, connected with a smooth boundary; $T < +\infty$

$$\partial_t \mathbf{u} + \nabla p = f$$
 in $Q = \Omega \times (0, T)$ (1a)
 $\partial_t p + \nabla \cdot \mathbf{u} = 0$ in $Q = \Omega \times (0, T)$ (1b)

$$p - \mathbf{n} \cdot \mathbf{u} - \alpha(p + \mathbf{n} \cdot \mathbf{u}) = g$$
 on $\Sigma = \partial \Omega \times (0, T)$, (1c)
 $\mathbf{u} = \mathbf{u}_s$, $p = p_s$ on $\Sigma_0 = \Omega \times \{0\}$ (1d)

Condition (1c) in alternative form:

$$(1-\alpha)p - (1+\alpha)\mathbf{n} \cdot \mathbf{u} = g$$

Restriction: $\alpha \in L^{\infty}(\partial\Omega)$, $|\alpha| \leq \alpha_M < 1$ Here

$$\xi = \begin{pmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 \end{pmatrix} \in \mathbb{R}^{d+1}, \quad T = \begin{pmatrix} \partial_t & \nabla \\ \nabla \cdot & \partial_t \end{pmatrix}, \quad T\xi = \begin{pmatrix} \partial_t \boldsymbol{\xi}_1 + \nabla \boldsymbol{\xi}_2 \\ \partial_t \boldsymbol{\xi}_2 + \nabla \cdot \boldsymbol{\xi}_1 \end{pmatrix},$$

$$\tilde{T} = -T = \begin{pmatrix} -\partial_t & -\nabla \\ -\nabla \cdot & -\partial_t \end{pmatrix}, \quad \gamma_{\Sigma}^{\pm} \boldsymbol{\xi} = (\boldsymbol{\xi}_2 \pm \boldsymbol{n} \cdot \boldsymbol{\xi}_1) \big|_{\Sigma}$$

Acoustic wave equation: variational formulation

Let
$$\eta = (\hat{\eta}, \eta_{\Sigma}, \eta_{I}), \eta \in L^{2}(Q)^{d+1} \times L^{2}(\Sigma) \times L^{2}(\Omega)^{d+1}$$

$$a(\eta, \xi) = \int_{Q} \hat{\eta}^{T} T \xi + \int_{\Sigma} \eta_{\Sigma} \left[\gamma_{\Sigma}^{-} \xi - \alpha \gamma_{\Sigma}^{+} \xi \right] + \int_{\Sigma_{0}} \eta_{I}^{T} \xi$$

$$l(\eta) = \int_{Q} \hat{\eta}^{T} f + \int_{\Sigma} \eta_{\Sigma} g + \int_{\Sigma_{0}} \eta_{I}^{T} \xi_{0}$$

$$a^{*}(\eta, \xi) = \int_{Q} \hat{\eta}^{T} \tilde{T} \xi + \int_{\Sigma} \eta_{\Sigma} \left[\gamma_{\Sigma}^{+} \xi - \alpha \gamma_{\Sigma}^{-} \xi \right] - \int_{\Sigma_{T}} \eta_{I}^{T} \xi$$

Graph space:

$$W = \left\{ \xi \in L^2(Q)^{d+1} \mid T\xi \in L^2(Q)^{d+1} \right\}$$

Admits traces in $H^{-1/2}(\partial Q)$. Therefore following spaces well defined:

$$V = \left\{ \xi \in W \mid \gamma_{\Sigma}^{-} \xi \in L^{2}(\Sigma), \gamma_{\Sigma_{0}} \xi \in L^{2}(\Omega)^{d+1} \right\}$$
$$V^{*} = \left\{ \xi \in W \mid \gamma_{\Sigma}^{+} \xi \in L^{2}(\Sigma), \gamma_{\Sigma_{T}} \xi \in L^{2}(\Omega)^{d+1} \right\}$$

Acoustic wave equation: steps of well-posedness proof

Lemma

V, V^* are closed.

Straightforward to prove.

Lemma

 $C^1(\overline{Q})^{d+1}$ is dense in V and V^*

Not straightforward! The proof uses a density result by Rauch (1985).

Lemma

The trace operators
$$\gamma_{\Sigma}^+$$
: $C^1(\overline{Q})^{d+1} \to L^2(\Sigma)$, γ_{Σ_T} : $C^1(\overline{Q})^{d+1} \to L^2(\Omega)^{d+1}$ defined by
$$\gamma_{\Sigma}^+ \xi = (\xi_2 + \mathbf{n} \cdot \mathbf{\xi}_1)|_{\Sigma}$$

$$\gamma_{\Sigma_T} = \xi|_{t=T}$$

extend uniquely to continuous operators on V.

Thus, integration by parts holds with $L^2(\partial Q)$ boundary integrals

Acoustic wave equation: inf-sup conditions

Lemma (inf-sup in *L*)

$$\exists \alpha = C \min(1/T, 1 - \alpha_{M}) \text{ s.t. } \forall \xi \in V,$$

$$\sup_{\eta \in L \setminus \{0\}} \frac{a(\eta, \xi)}{\|\eta\|} \ge \alpha \left(\|\xi\|_{L^{2}(Q)^{d+1}}^{2} + \|\gamma_{\Sigma}^{-}\xi\|_{L^{2}(\Sigma)}^{2} + \|\gamma_{\Sigma_{0}}\xi\|_{L^{2}(\Omega)^{d+1}}^{2} \right)^{1/2}$$

$$\text{and } \forall \xi \in V^{*},$$

$$\sup_{\eta \in L \setminus \{0\}} \frac{a^{*}(\eta, \xi)}{\|\eta\|} \ge \alpha \left(\|\xi\|_{L^{2}(Q)^{d+1}}^{2} + \|\gamma_{\Sigma}^{+}\xi\|_{L^{2}(\Sigma)}^{2} + \|\gamma_{\Sigma_{T}}\xi\|_{L^{2}(\Omega)^{d+1}}^{2} \right)^{1/2}$$

Proven by (for a) choosing $\eta = \left(e^{-t/T}\xi, \frac{1}{2}e^{-t/T}\gamma_{\Sigma}^{-}\xi, \gamma_{\Sigma_{0}}\xi\right)$, which gives the lower bound after integration by parts.

Acoustic wave equation: inf-sup and surjectivity

Lemma (inf-sup in
$$V$$
)
$$\exists \alpha > 0 \text{ s.t. } \forall \xi \in V,$$

$$\sup_{\eta \in L \setminus \{0\}} \frac{a(\eta, \xi)}{\|\eta\|} \ge \alpha \|\xi\|_V \quad \forall \xi \in V$$

Choosing $\eta = (T\xi, 0, 0)^T$ gives $||T\xi||_{L^2(Q)^{d+1}}$ as lower bound, which together with the bound in L yields the result.

Surjectivity proof same as before, but algebraically messier

Acoustic wave equation; well-posedness

$$\begin{aligned} \partial_t \boldsymbol{u} + \nabla p &= f & \text{in } Q &= \Omega \times (0, T) \\ \partial_t p + \nabla \cdot \boldsymbol{u} &= 0 & \text{in } Q &= \Omega \times (0, T) \\ p - \boldsymbol{n} \cdot \boldsymbol{u} - \alpha (p + \boldsymbol{n} \cdot \boldsymbol{u}) &= g & \text{on } \Sigma &= \partial \Omega \times (0, T) \\ \boldsymbol{u} &= \boldsymbol{u}_{\mathsf{S}}, & p &= p_{\mathsf{S}} & \text{on } \Sigma_0 &= \Omega \times \{0\} \end{aligned}$$

Theorem

The system admits a unique solution in V satisfying

$$\|(\boldsymbol{u},p)\|_{V} \leq \frac{1}{\alpha}\|(f,g,\boldsymbol{u}_{s},p_{s})\|_{L},$$

where $\alpha = C \min(1/T, 1 - \alpha_M)$

Final words

- Ongoing work, no manuscripts yet!
- Closes a "gap" in the typical protocol for FE analysis
- The variational form, although simple and natural, appears to be new
- Difference from Ern, Guermond, Caplain:
 - They **strongly** enforce **homogeneous** characteristic BC in definition of $V \subset W$
 - We weakly enforce nonhomogeneous BC through the bilinear form
- Next step:
 - Explore the method for additional problems (equations, boundary conditions)
 - Construct numerical methods based on the bilinear form