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Background: the text-book finite-element ‘protocol’

(i) Boundary-value problem:

ZLu=f inQ,
(PDE)
Pu =g on iR
(ii) Reformulation:
Find u € V such that
(VP)
a(v,u) =1(v) Yv e L
(iii) Discretization:
Find uj € V}, such that
(FEM)

a(vy,up) = l(vy) Yoy € Ly,

Typically, (VP) interpreted as the meaning of (PDE)
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Well-posedness’

@ [ linear, continuous on L

@ a bilinear and continuous on L x V

@ a defines a bounded linear operator A : V — L’
(VP) well posed if and only if

(i) Ja > 0 such that, foreachu € V,
a(v,u)

> aflully
ver [viL
v#0
= The range of A4 is closed.
(i) If v € L satifies
a(v,u) =0 YueV
then v = 0.
= A surjective.

TNecas (1962)
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Notable exception from the ‘protocol!

Discontinuous Galerkin (DG) methods
for hyperbolic equations?

Standard model problem):
B-Vu+pu=f inQ,
u=g onl_ r_
Assuming p(x) > po >0, V-8 = 0.
I ={x€dQ|n-B<(>)0}
Ip={x€dQ|n-B=0}

@ In DG literature, for well-posedness of hyperbolic problems, if at all

discussed, reference to “theory for Friedrichs systems”

@ Numerical method not based on discretization of a
variational formulation!

2Reed & Hill (1973), Lesaint & Raviart (1974)
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DG methods for hyperbolic equations

Variational form only for the discrete problem! Basic idea:

@ Let V;, be a space of finite-dimensional, weakly differentiable (for
now) functions

@ Define ay,(vy, up) = I, (vy) for uy, vy, € Vy, where

ap(vp, up) =/vh(ﬂ'Vuh +Puh)—/n'ﬂvhuh,

Q r—

wn = [onf = [ - Bong
Q r—

Note:
@ Variational expression consistent with BVP (i.e. aj, (vy, u) = I (vy))
@ Boundary condition weakly imposed
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DG methods for hyperbolic equations

System matrix positive definite: for uy, # 0,

anup,up) = | up(B-Vup + pup) — | n- Buy)?
/ /

1

=5 [ B+ [ o= [0y’

aQ Q j

= [ o2+ 5 [In- gl > 0
Q

Q

Thus, the linear system is solvable
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DG methods for hyperbolic equations

@ Stability for aj as above too weak in practice
@ Therefore:

o Relax continuity; let V}, be piecewise polynomials
e Impose interelement continuity weakly, analogous to BC

@ Yields improved coercivity property

KG:?haK_

1 1
ap(up,up) = /p(uh)2+ 2 > / - Bl[un]? + §/|n'.3|(uh)2
Q ry

[un] = wy —uj,

@ RHS discrete version of the norm

ul? = [ o+ [ 8- vuy?
Q

Q

July 4 2019

7120



A proper variational formulation?
Recall discrete expression

/vh(ﬂ'Vuh+Puh)—[n'ﬂvhuh=/vhf—/n'ﬂvhg

Q r- Q r—

Data in L2(Q) x L2(T_; |n - B|)
Suggests test space L = L?(Q) x L2>(I'_; |n - B])
Differential operator Tu = 8 - Vu + pu

Suggests solutions bounded in [lu]|3, = ”“”12}(9) + ||Tu||iz(9)

Boundary integral requires traces of u in L2(I'_; |n - B|)

Our approach inspired by and developed from

A. Ern, J.-L. Guermond, G. Caplain. An Intrinsic Criterion for the
Bijectivity of Hilbert Operators Related to Friedrichs’ Systems.
Comm. Partial Differential Equations 32:317-341, 2007
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The proposed variational formulation

Domain € open, bounded, connected with Lipschitz boundary

Function spaces
L =L*Q)x L*(T_; |n- B)
W={uel*Q)|Tuel*Q)}
Functions in W admits traces only in H~1/2(32) in general

However, traces in L2(992; |n - B|) when dist(T_,T"y) > 0 (Ern,
Guermond, SINUM, 2006)

Thus, assume dist(T'—, I'+) > 0 and choose solution space V = W

Denote by y_ (y4) the trace operators V — L2(I'_; |n - B])
(V= L2(Ty:|n - B))
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The proposed variational formulation
For v = (vg,v1) € L, define
a(v,u) = / vo(ﬁ -Vu + pu) —/ n-pou
Q T r—
a*(v,u) = / vo(—ﬂ~Vu + pu) +/ n-fuu

Tu

l(U)Z/QUOf—/F_”'ﬂUlg

where a* satifies, Vu,v € V,
a*((u,yyu),v) = a((v,y_v),u)
Theorem
The variational problem
Find u € V such that
a(v,u) = 1(v) YveL

is well posed

ueV*=v
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Proof strategy

1.
.V, V* are closed

G R wN

Continuity of a, a*, | (by construction)

Cl(Q)isdensein V
Boundary traces of functions in V are in L2(3S2; |n - B])
Inf-sup in L: 3o > 0 s.t.

a(v,u) 5 ) 1/2
sup > o (Il + 1032 g Vuev
ver\{oy IVl L2(®) L2(T—:|n ﬂl))
a*(v,u) ( 5 5 1/2 .
> o | flu + Jul] . Yuev* (%)
vty 0] T + o, )
Inf-sup in V: 3o > 0 s.t.
a(. u) > allu|y YueV
ver\{oy IVl

Surjectivity: if v € L such that
a(v,u) =0 Yu eV,
then v = 0. Here, the “adjoint” inf-sup property (*) in L is utilized.
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Inf-sup

InL: forueV,letu = (u,y_u). Then

a(i,u) = /u[(ﬂ-V)u + pu] —/n-,Bu2
r_

Q
=1/|n-ﬂ|u2+/pu2> Lhap
2 — oML
Q2 Q
from which the condition follows.
InV:letd = (B-Vu+ pu,0) @ #0)
1/2
a(d.u) = /(ﬂ~w+pu)2 = | Tul.
Q

which together with the condition in L yields the result.
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Surjectivity

Recall

a(v,u)z/gvo(ﬂ-Vu+pu)—fF n-Bviu

Let v € L such thata(v,u) = 0, Yu € V. Two properties of v = (vg, v1)
follow:

—(B-V)vg+ pvo = Tvg =0 (by def. of weak derivative)
veW=V

0 onT
vo = { T/ (after integration by parts)

vy onIl_

Tvo =0and y, vy = 0 = vo = 0 by inf-sup condition in L of a*.
Thus v; = 0 by above. Ol
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The acoustic wave equation
Q € R4, open, bounded, connected with a smooth boundary; T < +oc0

diu+Vp=f inQ=Qx(0,T) (1a)
dp+V-u=0 in 0 =Qx(0,7T) (1b)
p—n-u—o(p+tn-u)=g on X =0Q x(0,7), (1o
u = us, P = Ds on Xo = Q x {0} (1d)

Condition (1c¢) in alternative form:
l—-a)p—(Q4+a)n-u=g

Restriction: o € L®(0RQ), || <apy < 1

Here
& d+1 (9 V _ [ 0:&, + V&
éz)ER , T_(V~ 3;)’ Tg_(atéerVJ;'l)’
P--r= (g D)) - @Enes)s
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Acoustic wave equation: variational formulation
Letn = (7, ng.m), n € LA(Q)T! x L2(2) x L2(Q)?+!

an§) = [ 76+ [ ns vzt - argel + [ ol

o z o
I(n) = /nf+fnzg+fm €o
o
a*(n,é)=/ﬁTTé+/nz e —arse) - [ e
0 b sr

Graph space:
= {120y | TE e L2(0)"* |
Admits traces in H~'/2(3Q). Therefore following spaces well defined:
v={¢eW |ygE € LX(D).yp,§ € LA

= e Wiyie e LX) vy, € L@
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Acoustic wave equation: steps of well-posedness proof
Lemma
V, V* are closed.

Straightforward to prove.

Lemma

C1(0)?+! s dense in V and V*

Not straightforward! The proof uses a density result by Rauch (1985).
Lemma

The trace operators y5: C1(0)?+! — L2(¥%),

ys,: CHQ)T! — L2(Q)?*! defined by

yaf=(E2+n-&)ly

Vsr = S|t=T
extend uniquely to continuous operators on V.
Thus, integration by parts holds with L2(dQ) boundary integrals
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Acoustic wave equation: inf-sup conditions

Lemma (inf-sup in L)

Joe =Cmin(1/T,1 —apy) s.t. VE€ V,
sup a(n, &)

ner\(oy Il
and V& e V¥,

*

wp @D

ner\ioy Il

2 — 112 2 /2
Z o (||E||L2(Q)d+l + ”ng”LZ(E) + HVEOE”LZ(Q)d-H)

1/2

> o (16022 gyasn + IVEER ) + 175, 6122 a1 )

Proven by (for a) choosing n = (e_’/Té, le7t/Tyzt, yzoé), which gives
the lower bound after integration by parts.
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Acoustic wave equation: inf-sup and surjectivity

Lemma (inf-sup in V)
do >0s.t. VEE TV,

48 S ely veEev
ner\ior Il

Choosing n = (T§,0,0)7 gives || T&| 12(gya+1 as lower bound, which
together with the bound in L yields the result. O]

Surjectivity proof same as before, but algebraically messier
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Acoustic wave equation; well-posedness

du+Vp=f inQ =Qx(0,7T)
p+V-u=0 inQ=Qx(0,T)

p—n-u—a(p+n-u)=g on X =0dQ x(0,7)
u = us, P = ps on Xp = Q x {0}

Theorem
The system admits a unique solution in V satisfying

1
1. pllv = = lI(f.g.us. polL.

where o = C min(1/T,1 — apr)
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Final words

Ongoing work, no manuscripts yet!
Closes a “gap” in the typical protocol for FE analysis

°
°
@ The variational form, although simple and natural, appears to be new
e Difference from Ern, Guermond, Caplain:

o They strongly enforce homogeneous characteristic BC in definition of
Vcw
o We weakly enforce nonhomogeneous BC through the bilinear form

Next step:

e Explore the method for additional problems (equations, boundary
conditions)
e Construct numerical methods based on the bilinear form
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