Bilinear forms for first-order systems

Martin Berggren, Linus Hägg

Department of Computing Science
Umeå University, Sweden

July 42019

Background: the text-book finite-element 'protocol'

(i) Boundary-value problem:

$$
\begin{align*}
\mathscr{L} u=f & \text { in } \Omega, \tag{PDE}\\
\mathscr{B} u=g & \text { on } \partial \Omega
\end{align*}
$$

(ii) Reformulation:

$$
\begin{align*}
& \text { Find } u \in V \text { such that } \\
& a(v, u)=l(v) \quad \forall v \in L \tag{VP}
\end{align*}
$$

(iii) Discretization:

Find $u_{h} \in V_{h}$ such that

$$
\begin{equation*}
a\left(v_{h}, u_{h}\right)=l\left(v_{h}\right) \quad \forall v_{h} \in L_{h} \tag{FEM}
\end{equation*}
$$

Typically, (VP) interpreted as the meaning of (PDE)

Well-posedness ${ }^{1}$

- l linear, continuous on L
- a bilinear and continuous on $L \times V$
- a defines a bounded linear operator $A: V \rightarrow L^{\prime}$
(VP) well posed if and only if
(i) $\exists \alpha>0$ such that, for each $u \in V$,

$$
\sup _{\substack{v \in L \\ v \neq 0}} \frac{a(v, u)}{\|v\|_{L}} \geq \alpha\|u\|_{V}
$$

\Rightarrow The range of A is closed.
(ii) If $v \in L$ satifies

$$
a(v, u)=0 \quad \forall u \in V
$$

then $v=0$.
$\Rightarrow A$ surjective.

Notable exception from the 'protornl'I

 Discontinuous Galerkin (DG) methods for hyperbolic equations ${ }^{2}$ Standard model problem):$$
\begin{aligned}
\beta \cdot \nabla u+\rho u & =f & & \text { in } \Omega, \\
u & =g & & \text { on } \Gamma_{-}
\end{aligned}
$$

Assuming $\rho(\boldsymbol{x}) \geq \rho_{0}>0, \nabla \cdot \boldsymbol{\beta}=0$.

$$
\begin{aligned}
\Gamma_{-(+)} & =\{\boldsymbol{x} \in \partial \Omega \mid \boldsymbol{n} \cdot \boldsymbol{\beta}<(>) 0\} \\
\Gamma_{0} & =\{\boldsymbol{x} \in \partial \Omega \mid \boldsymbol{n} \cdot \boldsymbol{\beta}=0\}
\end{aligned}
$$

- In DG literature, for well-posedness of hyperbolic problems, if at all discussed, reference to "theory for Friedrichs systems"
- Numerical method not based on discretization of a variational formulation!

[^0]
DG methods for hyperbolic equations

Variational form only for the discrete problem! Basic idea:

- Let V_{h} be a space of finite-dimensional, weakly differentiable (for now) functions
- Define $a_{h}\left(v_{h}, u_{h}\right)=l_{h}\left(v_{h}\right)$ for $u_{h}, v_{h} \in V_{h}$, where

$$
\begin{aligned}
a_{h}\left(v_{h}, u_{h}\right) & =\int_{\Omega} v_{h}\left(\boldsymbol{\beta} \cdot \nabla u_{h}+\rho u_{h}\right)-\int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta} v_{h} u_{h} \\
l_{h}\left(v_{h}\right) & =\int_{\Omega} v_{h} f-\int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta} v_{h} g
\end{aligned}
$$

Note:

- Variational expression consistent with BVP (i.e. $\left.a_{h}\left(v_{h}, u\right)=l_{h}\left(v_{h}\right)\right)$
- Boundary condition weakly imposed

DG methods for hyperbolic equations

System matrix positive definite: for $u_{h} \neq 0$,

$$
\begin{aligned}
a_{h}\left(u_{h}, u_{h}\right) & =\int_{\Omega} u_{h}\left(\boldsymbol{\beta} \cdot \nabla u_{h}+\rho u_{h}\right)-\int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta}\left(u_{h}\right)^{2} \\
& =\frac{1}{2} \int_{\partial \Omega} \boldsymbol{n} \cdot \boldsymbol{\beta}\left(u_{h}\right)^{2}+\int_{\Omega} \rho\left(u_{h}\right)^{2}-\int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta}\left(u_{h}\right)^{2} \\
& =\int_{\Omega} \rho\left(u_{h}\right)^{2}+\frac{1}{2} \int_{\partial \Omega}|\boldsymbol{n} \cdot \boldsymbol{\beta}|\left(u_{h}\right)^{2}>0
\end{aligned}
$$

Thus, the linear system is solvable

DG methods for hyperbolic equations

- Stability for a_{h} as above too weak in practice
- Therefore:
- Relax continuity; let V_{h} be piecewise polynomials
- Impose interelement continuity weakly, analogous to BC
- Yields improved coercivity property

$$
\begin{gathered}
a_{h}\left(u_{h}, u_{h}\right)=\int_{\Omega} \rho\left(u_{h}\right)^{2}+\frac{1}{2} \sum_{K \in \mathscr{T}_{\partial} \partial K^{-}} \int_{\Gamma_{+}}|\boldsymbol{n} \cdot \boldsymbol{\beta}| \llbracket u_{h} \rrbracket^{2}+\frac{1}{2} \int_{\Gamma_{+}}|\boldsymbol{n} \cdot \boldsymbol{\beta}|\left(u_{h}\right)^{2} \\
\llbracket u_{h} \rrbracket=u_{h}^{+}-u_{h}^{-}
\end{gathered}
$$

- RHS discrete version of the norm

$$
\|u\|^{2}=\int_{\Omega} \rho u^{2}+\int_{\Omega}(\beta \cdot \nabla u)^{2}
$$

A proper variational formulation?

Recall discrete expression

$$
\int_{\Omega} v_{h}\left(\boldsymbol{\beta} \cdot \nabla u_{h}+\rho u_{h}\right)-\int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta} v_{h} u_{h}=\int_{\Omega} v_{h} f-\int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta} v_{h} g
$$

- Data in $L^{2}(\Omega) \times L^{2}\left(\Gamma_{-} ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|\right)$
- Suggests test space $L=L^{2}(\Omega) \times L^{2}\left(\Gamma_{-} ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|\right)$
- Differential operator $T u=\boldsymbol{\beta} \cdot \nabla u+\rho u$
- Suggests solutions bounded in $\|u\|_{W}^{2}=\|u\|_{L^{2}(\Omega)}^{2}+\|T u\|_{L^{2}(\Omega)}^{2}$
- Boundary integral requires traces of u in $L^{2}\left(\Gamma_{-} ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|\right)$
- Our approach inspired by and developed from
A. Ern, J.-L. Guermond, G. Caplain. An Intrinsic Criterion for the Bijectivity of Hilbert Operators Related to Friedrichs' Systems. Comm. Partial Differential Equations 32:317-341, 2007

The proposed variational formulation

- Domain Ω open, bounded, connected with Lipschitz boundary
- Function spaces

$$
\begin{aligned}
L & =L^{2}(\Omega) \times L^{2}\left(\Gamma_{-} ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|\right) \\
W & =\left\{u \in L^{2}(\Omega) \mid T u \in L^{2}(\Omega)\right\}
\end{aligned}
$$

- Functions in W admits traces only in $H^{-1 / 2}(\partial \Omega)$ in general
- However, traces in $L^{2}(\partial \Omega ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|)$ when $\operatorname{dist}\left(\Gamma_{-}, \Gamma_{+}\right)>0$ (Ern, Guermond, SINUM, 2006)
- Thus, assume $\operatorname{dist}\left(\Gamma_{-}, \Gamma_{+}\right)>0$ and choose solution space $V=W$
- Denote by $\gamma_{-}\left(\gamma_{+}\right)$the trace operators $V \rightarrow L^{2}\left(\Gamma_{-} ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|\right)$ $\left(V \rightarrow L^{2}\left(\Gamma_{+} ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|\right)\right)$

The proposed variational formulation

For $v=\left(v_{0}, v_{1}\right) \in L$, define

$$
\begin{aligned}
a(v, u) & =\int_{\Omega} v_{0}(\underbrace{\boldsymbol{\beta} \cdot \nabla u+\rho u}_{T u})-\int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta} v_{1} u \quad u \in V \\
a^{*}(v, u) & =\int_{\Omega} v_{0}(\underbrace{-\boldsymbol{\beta} \cdot \nabla u+\rho u}_{\tilde{T} u})+\int_{\Gamma_{+}} \boldsymbol{n} \cdot \boldsymbol{\beta} v_{1} u \quad u \in V^{*}=V \\
l(v) & =\int_{\Omega} v_{0} f-\int_{\Gamma_{-}}^{\boldsymbol{n} \cdot \boldsymbol{\beta} v_{1} g}
\end{aligned}
$$

where a^{*} satifies, $\forall u, v \in V$,

$$
a^{*}\left(\left(u, \gamma_{+} u\right), v\right)=a\left(\left(v, \gamma_{-} v\right), u\right)
$$

Theorem
The variational problem

$$
\begin{aligned}
& \text { Find } u \in V \text { such that } \\
& a(v, u)=l(v) \quad \forall v \in L
\end{aligned}
$$

Proof strategy

1. Continuity of a, a^{*}, l (by construction)
2. V, V^{*} are closed
3. $C^{1}(\bar{\Omega})$ is dense in V
4. Boundary traces of functions in V are in $L^{2}(\partial \Omega ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|)$
5. Inf-sup in L : $\exists \alpha>0$ st.

$$
\begin{array}{ll}
\sup _{v \in L \backslash\{0\}} \frac{a(v, u)}{\|v\|} \geq \alpha\left(\|u\|_{L^{2}(\Omega)}^{2}+\|u\|_{L^{2}\left(\Gamma_{-} ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|\right)}^{2}\right)^{1 / 2} & \forall u \in V \\
\sup _{v \in L \backslash\{0\}} \frac{a^{*}(v, u)}{\|v\|} \geq \alpha\left(\|u\|_{L^{2}(\Omega)}^{2}+\|u\|_{L^{2}\left(\Gamma_{+} ;|\boldsymbol{n} \cdot \boldsymbol{\beta}|\right)}^{2}\right)^{1 / 2} & \forall u \in V^{*} \tag{}
\end{array}
$$

6. Inf-sup in $V: \exists \alpha>0$ s.t.

$$
\sup _{v \in L \backslash\{0\}} \frac{a(v, u)}{\|v\|} \geq \alpha\|u\|_{V} \quad \forall u \in V
$$

7. Surjectivity: if $v \in L$ such that

$$
a(v, u)=0 \quad \forall u \in V
$$

then $v=0$. Here, the "adjoint" inf-sup property $\left({ }^{*}\right)$ in L is utilized.

Inf-sup

In L : for $u \in V$, let $\hat{u}=\left(u, \gamma_{-} u\right)$. Then

$$
\begin{aligned}
a(\hat{u}, u) & =\int_{\Omega} u[(\boldsymbol{\beta} \cdot \nabla) u+\rho u]-\int_{\Gamma_{-}} \boldsymbol{n} \cdot \beta u^{2} \\
& =\frac{1}{2} \int_{\partial \Omega}|\boldsymbol{n} \cdot \boldsymbol{\beta}| u^{2}+\int_{\Omega} \rho u^{2} \geq \frac{1}{2}\|\hat{u}\|_{L}^{2}
\end{aligned}
$$

from which the condition follows.
In V : let $\hat{v}=(\boldsymbol{\beta} \cdot \nabla u+\rho u, 0)(u \neq 0)$

$$
a(\hat{v}, u)=\left[\int_{\Omega}(\beta \cdot \nabla u+\rho u)^{2}\right]^{1 / 2}=\|T u\|,
$$

which together with the condition in L yields the result.

Surjectivity

Recall

$$
a(v, u)=\int_{\Omega} v_{0}(\boldsymbol{\beta} \cdot \nabla u+\rho u)-\int_{\Gamma_{-}} \boldsymbol{n} \cdot \boldsymbol{\beta} v_{1} u
$$

Let $v \in L$ such that $a(v, u)=0, \forall u \in V$. Two properties of $v=\left(v_{0}, v_{1}\right)$ follow:

$$
-(\boldsymbol{\beta} \cdot \nabla) v_{0}+\rho v_{0}=\tilde{T} v_{0}=0 \quad \text { (by def. of weak derivative) }
$$

$$
\Rightarrow v \in W=V
$$

$$
v_{0}=\left\{\begin{array}{ll}
0 & \text { on } \Gamma_{+}, \\
v_{1} & \text { on } \Gamma_{-}
\end{array} \quad\right. \text { (after integration by parts) }
$$

$\tilde{T} v_{0}=0$ and $\gamma_{+} v_{0}=0 \Rightarrow v_{0}=0$ by inf-sup condition in L of a^{*}. Thus $v_{1}=0$ by above.

The acoustic wave equation

$\Omega \in \mathbb{R}^{d}$, open, bounded, connected with a smooth boundary; $T<+\infty$

$$
\begin{align*}
\partial_{t} \boldsymbol{u}+\nabla p & =f & & \text { in } Q=\Omega \times(0, T) \tag{1a}\\
\partial_{t} p+\nabla \cdot \boldsymbol{u} & =0 & & \text { in } Q=\Omega \times(0, T) \tag{1b}\\
p-\boldsymbol{n} \cdot \boldsymbol{u}-\alpha(p+\boldsymbol{n} \cdot \boldsymbol{u}) & =g & & \text { on } \Sigma=\partial \Omega \times(0, T), \tag{1c}\\
\boldsymbol{u}=\boldsymbol{u}_{\mathrm{S}}, \quad p & =p_{\mathrm{s}} & & \text { on } \Sigma_{0}=\Omega \times\{0\} \tag{1d}
\end{align*}
$$

Condition (1c) in alternative form:

$$
(1-\alpha) p-(1+\alpha) \boldsymbol{n} \cdot \boldsymbol{u}=g
$$

Restriction: $\alpha \in L^{\infty}(\partial \Omega),|\alpha| \leq \alpha_{M}<1$ Here

$$
\begin{gathered}
\xi=\binom{\xi_{1}}{\xi_{2}} \in \mathbb{R}^{d+1}, \quad T=\left(\begin{array}{cc}
\partial_{t} & \nabla \\
\nabla \cdot & \partial_{t}
\end{array}\right), \quad T \xi=\binom{\partial_{t} \xi_{1}+\nabla \xi_{2}}{\partial_{t} \xi_{2}+\nabla \cdot \xi_{1}}, \\
\tilde{T}=-T=\left(\begin{array}{cc}
-\partial_{t} & -\nabla \\
-\nabla \cdot & -\partial_{t}
\end{array}\right), \quad \gamma \gamma_{\Sigma}^{ \pm} \xi=\left.\left(\xi_{2} \pm \boldsymbol{n} \cdot \xi_{1}\right)\right|_{\Sigma}
\end{gathered}
$$

Acoustic wave equation: variational formulation

 Let $\eta=\left(\hat{\eta}, \eta_{\Sigma}, \eta_{1}\right), \eta \in L^{2}(Q)^{d+1} \times L^{2}(\Sigma) \times L^{2}(\Omega)^{d+1}$$$
\begin{aligned}
a(\eta, \xi) & =\int_{Q} \hat{\eta}^{T} T \xi+\int_{\Sigma} \eta_{\Sigma}\left[\gamma_{\Sigma} \xi-\alpha \gamma_{\Sigma}^{+} \xi\right]+\int_{\Sigma_{0}} \eta_{l}^{T} \xi \\
l(\eta) & =\int_{Q} \hat{\eta}^{T} f+\int_{\Sigma} \eta_{\Sigma} g+\int_{\Sigma_{0}} \eta_{1}^{T} \xi_{0} \\
a^{*}(\eta, \xi)= & \int_{Q} \hat{\eta}^{T} \tilde{T} \xi+\int_{\Sigma} \eta_{\Sigma}\left[\gamma_{\Sigma}^{+} \xi-\alpha \gamma_{\Sigma}^{-} \xi\right]-\int_{\Sigma_{T}} \eta_{1}^{T} \xi
\end{aligned}
$$

Graph space:

$$
W=\left\{\xi \in L^{2}(Q)^{d+1} \mid T \xi \in L^{2}(Q)^{d+1}\right\}
$$

Admits traces in $H^{-1 / 2}(\partial Q)$. Therefore following spaces well defined:

$$
\begin{aligned}
V & =\left\{\xi \in W \mid \gamma_{\Sigma}^{-} \xi \in L^{2}(\Sigma), \gamma_{\Sigma_{0}} \xi \in L^{2}(\Omega)^{d+1}\right\} \\
V^{*} & =\left\{\xi \in W \mid \gamma_{\Sigma}^{+} \xi \in L^{2}(\Sigma), \gamma_{\Sigma_{T}} \xi \in L^{2}(\Omega)^{d+1}\right\}
\end{aligned}
$$

Acoustic wave equation: steps of well-posedness proof

Lemma
V, V^{*} are closed.
Straightforward to prove.
Lemma
$C^{1}(\bar{Q})^{d+1}$ is dense in V and V^{*}
Not straightforward! The proof uses a density result by Rauch (1985).
Lemma
The trace operators $\gamma_{\Sigma}^{+}: C^{1}(\bar{Q})^{d+1} \rightarrow L^{2}(\Sigma)$,
$\gamma_{\Sigma_{T}}: C^{1}(\bar{Q})^{d+1} \rightarrow L^{2}(\Omega)^{d+1}$ defined by

$$
\begin{aligned}
& \gamma_{\Sigma}^{+} \xi=\left.\left(\xi_{2}+\boldsymbol{n} \cdot \xi_{1}\right)\right|_{\Sigma} \\
& \gamma_{\Sigma_{T}}=\left.\xi\right|_{t=T}
\end{aligned}
$$

extend uniquely to continuous operators on V.
Thus, integration by parts holds with $L^{2}(\partial Q)$ boundary integrals

Acoustic wave equation: inf-sup conditions

Lemma (inf-sup in L)

$$
\begin{aligned}
& \exists \alpha=C \min \left(1 / T, 1-\alpha_{M}\right) \text { s.t. } \forall \xi \in V, \\
& \sup _{\eta \in L \backslash\{0\}} \frac{a(\eta, \xi)}{\|\eta\|} \geq \alpha\left(\|\xi\|_{L^{2}(Q)^{d+1}}^{2}+\left\|\gamma_{\Sigma}^{-} \xi\right\|_{L^{2}(\Sigma)}^{2}+\left\|\gamma_{\Sigma_{0}} \xi\right\|_{L^{2}(\Omega)^{d+1}}^{2}\right)^{1 / 2} \\
& \quad \text { and } \forall \xi \in V^{*}, \\
& \sup _{\eta \in L \backslash\{0\}} \frac{a^{*}(\eta, \xi)}{\|\eta\|} \geq \alpha\left(\|\xi\|_{L^{2}(Q)^{d+1}}^{2}+\left\|\gamma_{\Sigma}^{+} \xi\right\|_{L^{2}(\Sigma)}^{2}+\left\|\gamma_{\Sigma_{T}} \xi\right\|_{L^{2}(\Omega)^{d+1}}^{2}\right)^{1 / 2}
\end{aligned}
$$

Proven by (for a) choosing $\eta=\left(e^{-t / T} \xi, \frac{1}{2} e^{-t / T} \gamma_{\Sigma}^{-} \xi, \gamma_{\Sigma_{0}} \xi\right)$, which gives the lower bound after integration by parts.

Acoustic wave equation: inf-sup and surjectivity

Lemma (inf-sup in V)
$\exists \alpha>0$ s.t. $\forall \xi \in V$,

$$
\sup _{\eta \in L \backslash\{0\}} \frac{a(\eta, \xi)}{\|\eta\|} \geq \alpha\|\xi\|_{V} \quad \forall \xi \in V
$$

Choosing $\eta=(T \xi, 0,0)^{T}$ gives $\|T \xi\|_{L^{2}(Q)^{d+1}}$ as lower bound, which together with the bound in L yields the result.

Surjectivity proof same as before, but algebraically messier

Acoustic wave equation; well-posedness

$$
\begin{array}{rlrl}
\partial_{t} \boldsymbol{u}+\nabla p & =f & & \text { in } Q=\Omega \times(0, T) \\
\partial_{t} p+\nabla \cdot \boldsymbol{u}=0 & & \text { in } Q=\Omega \times(0, T) \\
p-\boldsymbol{n} \cdot \boldsymbol{u}-\alpha(p+\boldsymbol{n} \cdot \boldsymbol{u})=g & & \text { on } \Sigma=\partial \Omega \times(0, T) \\
\boldsymbol{u}=\boldsymbol{u}_{\mathrm{s}}, \quad p & =p_{\mathrm{s}} & & \text { on } \Sigma_{0}=\Omega \times\{0\}
\end{array}
$$

Theorem
The system admits a unique solution in V satisfying

$$
\|(\boldsymbol{u}, p)\|_{V} \leq \frac{1}{\alpha}\left\|\left(f, g, \boldsymbol{u}_{s}, p_{s}\right)\right\|_{L}
$$

where $\alpha=C \min \left(1 / T, 1-\alpha_{M}\right)$

Final words

- Ongoing work, no manuscripts yet!
- Closes a "gap" in the typical protocol for FE analysis
- The variational form, although simple and natural, appears to be new
- Difference from Ern, Guermond, Caplain:
- They strongly enforce homogeneous characteristic BC in definition of $V \subset W$
- We weakly enforce nonhomogeneous $B C$ through the bilinear form
- Next step:
- Explore the method for additional problems (equations, boundary conditions)
- Construct numerical methods based on the bilinear form

[^0]: ${ }^{2}$ Reed \& Hill (1973), Lesaint \& Raviart (1974)

