

# Localized pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra (and polygons)

N. Behringer, D. Leykekhman, B. Vexler



#### 12<sup>th</sup> Workshop on Analysis and Advanced Numerical Methods for Partial Differential Equations 01.07.2019

# Outline



2. Idea of the proof

# Outline



2. Idea of the proof



$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Schatz/Wahlbin 1977 (interior error estimates)

$$\|u - u_h\|_{L^{\infty}(\Omega_1)} \le C_d \left( h' |\ln h|^r |u|_{W^{1,\infty}(\Omega_2)} + \|u - u_h\|_{L^2(\Omega_2)} \right)$$

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Schatz/Wahlbin 1977 (interior error estimates)

$$\|u - u_h\|_{L^{\infty}(\Omega_1)} \le C_d \left( h^{l} |\ln h|^r |u|_{W^{l,\infty}(\Omega_2)} + \|u - u_h\|_{L^2(\Omega_2)} \right)$$

- Optimal control
  - Sparse optimal control

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Schatz/Wahlbin 1977 (interior error estimates)

$$\|u - u_h\|_{L^{\infty}(\Omega_1)} \le C_d \left( h^l |\ln h|^r |u|_{W^{l,\infty}(\Omega_2)} + \|u - u_h\|_{L^2(\Omega_2)} \right)$$

- Optimal control
  - Sparse optimal control
  - Control constrained pointwise tracking

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Schatz/Wahlbin 1977 (interior error estimates)

$$\|u - u_h\|_{L^{\infty}(\Omega_1)} \le C_d \left( h^{l} |\ln h|^r |u|_{W^{l,\infty}(\Omega_2)} + \|u - u_h\|_{L^2(\Omega_2)} \right)$$

- Optimal control
  - Sparse optimal control
  - Control constrained pointwise tracking
  - Optimal control with state constraints

ПΠ

#### The situation for the elliptic problem

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Schatz/Wahlbin 1977 (interior error estimates)

For  $\Omega_1 \Subset \Omega_2 \Subset \Omega$ ,  $dist(\Omega_1, \partial \Omega_2) \ge d$ ,  $dist(\Omega_2, \partial \Omega) \ge d$ , then

$$\|u - u_h\|_{L^{\infty}(\Omega_1)} \le C_d \left( h' |\ln h|^r |u|_{W^{1,\infty}(\Omega_2)} + \|u - u_h\|_{L^2(\Omega_2)} \right)$$

- Optimal control
  - Sparse optimal control
  - Control constrained pointwise tracking
  - Optimal control with state constraints



4

ПΠ

### The situation for the elliptic problem

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Schatz/Wahlbin 1977 (interior error estimates)

For  $\Omega_1 \Subset \Omega_2 \Subset \Omega$ ,  $dist(\Omega_1, \partial \Omega_2) \ge d$ ,  $dist(\Omega_2, \partial \Omega) \ge d$ , then

$$\|u - u_h\|_{L^{\infty}(\Omega_1)} \le C_d \left( h' |\ln h|^r |u|_{W^{1,\infty}(\Omega_2)} + \|u - u_h\|_{L^2(\Omega_2)} \right)$$

- Optimal control
  - Sparse optimal control
  - Control constrained pointwise tracking
  - Optimal control with state constraints
- $L^{\infty}$  error estimates on graded meshes



4

ПΠ

# The situation for the elliptic problem

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

Schatz/Wahlbin 1977 (interior error estimates)

$$\|u - u_h\|_{L^{\infty}(\Omega_1)} \le C_d \left( h' |\ln h|^r |u|_{W^{1,\infty}(\Omega_2)} + \|u - u_h\|_{L^2(\Omega_2)} \right)$$

- Optimal control
  - Sparse optimal control
  - Control constrained pointwise tracking
  - Optimal control with state constraints
- $L^{\infty}$  error estimates on graded meshes
- ► (Local) L<sup>∞</sup> error estimates for the parabolic problem (e.g. heat equation)





#### **Problem statement**

Let  $\Omega \subset \mathbb{R}^3$  be a convex polyhedral domain and  $\vec{V}_h$  and  $M_h$  suitable finite element spaces for the Stokes problem (e.g. Taylor-Hood FEs).

| Stokes equation and discretization                           |                                                                                                        |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| $(ec{u}, p) \in H^1_0(arOmega)^3 	imes L^2_0(arOmega)$ solve | $(\vec{u}_h, p_h) \in \vec{V}_h 	imes M_h$ satisfy                                                     |
| $-\Delta ec{u} +  abla p = ec{f}$ in $arOmega$               | $(\nabla \vec{u}_h, \nabla \vec{v}_h) - (p_h, \nabla \cdot \vec{v}_h) + (\nabla \cdot \vec{u}_h, q_h)$ |
| $ abla \cdot \vec{u} = 0$ in $\Omega$                        | $= (\vec{f} \ \vec{V}_{k})  \forall (\vec{V}_{k} \ a_{k}) \in \vec{V}_{k} \times M_{k}$                |
| $\vec{u} = \vec{0}$ on $\partial \Omega$                     |                                                                                                        |

Discretization error estimate: global

$$\|\vec{u}_h - \vec{u}\|_{L^{\infty}(\Omega)} \leq \inf_{(\vec{v}_h, q_h) \in \vec{V}_h \times M_h} C |\ln h| \Big( |\ln h| \|\vec{u} - \vec{v}_h\|_{L^{\infty}(\Omega)} + h \|p - q_h\|_{L^{\infty}(\Omega)} \Big)$$

#### **Problem statement**

Let  $\Omega \subset \mathbb{R}^3$  be a convex polyhedral domain and  $\vec{V}_h$  and  $M_h$  suitable finite element spaces for the Stokes problem (e.g. Taylor-Hood FEs).

| Stokes equation and discretization                            |                                                                                                        |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| $(\vec{u}, p) \in H^1_0(\Omega)^3 \times L^2_0(\Omega)$ solve | $(ec{u}_h,  ho_h) \in ec{V}_h 	imes M_h$ satisfy                                                       |
| $-\Delta \dot{u} + \nabla p = t$ in $\Omega$                  | $(\nabla \vec{u}_h, \nabla \vec{v}_h) - (p_h, \nabla \cdot \vec{v}_h) + (\nabla \cdot \vec{u}_h, q_h)$ |
| $ abla \cdot \vec{u} = 0$ in $\Omega$                         | $= (ec{f},ec{v}_h)  orall (ec{v}_h, q_h) \in ec{V}_h 	imes M_h$                                       |
| $\vec{u} = \vec{0}$ on $\partial \Omega$                      |                                                                                                        |

#### Discretization error estimate: local

$$\begin{aligned} \Omega_{1} \subset \Omega_{2} \subset \Omega \text{ with } dist(\bar{\Omega}_{1}, \partial\Omega_{2}) \geq d \\ \|\vec{u}_{h} - \vec{u}\|_{L^{\infty}(\Omega_{1})} \leq \inf_{(\vec{v}_{h}, q_{h}) \in \vec{V}_{h} \times M_{h}} \left[ C \|\mathbf{n} h\| (\|\mathbf{n} h\| \|\vec{u} - \vec{v}_{h}\|_{L^{\infty}(\Omega_{2})} + h \|p - q_{h}\|_{L^{\infty}(\Omega_{2})} ) + \\ C_{d} \|\mathbf{n} h\| (h \|\vec{u} - \vec{v}_{h}\|_{H^{1}(\Omega)} + \|\vec{u} - \vec{v}_{h}\|_{L^{2}(\Omega)} + h \|p - q_{h}\|_{L^{2}(\Omega)} ) \right] \end{aligned}$$



R. G. Durán, R. H. Nochetto, and J. P. Wang. Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D.

Math. Comp., 51(184):491-506, 1988

V. Girault, R. H. Nochetto, and L. R. Scott. Maximum-norm stability of the finite element Stokes projection.

J. Math. Pures Appl. (9), 84(3):279–330, 2005

J. Guzmán and D. Leykekhman. Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra.

Math. Comp., 81(280):1879-1902, 2012

V. Girault, R. H. Nochetto, and L. R. Scott. Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra.



R. G. Durán, R. H. Nochetto, and J. P. Wang. Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D.

Math. Comp., 51(184):491–506, 1988 Two dimensions, global,  $L^{\infty}(\Omega)$ ,  $W^{1,\infty}(\Omega)$ .

V. Girault, R. H. Nochetto, and L. R. Scott. Maximum-norm stability of the finite element Stokes projection.

J. Math. Pures Appl. (9), 84(3):279–330, 2005

J. Guzmán and D. Leykekhman. Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra.

Math. Comp., 81(280):1879-1902, 2012

V. Girault, R. H. Nochetto, and L. R. Scott. Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra.



R. G. Durán, R. H. Nochetto, and J. P. Wang. Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D.

Math. Comp., 51(184):491–506, 1988 Two dimensions, global,  $L^{\infty}(\Omega)$ ,  $W^{1,\infty}(\Omega)$ .

V. Girault, R. H. Nochetto, and L. R. Scott. Maximum-norm stability of the finite element Stokes projection.

J. Math. Pures Appl. (9), 84(3):279–330, 2005 Three dimensions, global,  $W^{1,\infty}$ , more than convexity.

J. Guzmán and D. Leykekhman. Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra.

Math. Comp., 81(280):1879-1902, 2012

V. Girault, R. H. Nochetto, and L. R. Scott. Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra.



R. G. Durán, R. H. Nochetto, and J. P. Wang. Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D.

Math. Comp., 51(184):491–506, 1988 Two dimensions, global,  $L^{\infty}(\Omega)$ ,  $W^{1,\infty}(\Omega)$ .

V. Girault, R. H. Nochetto, and L. R. Scott. Maximum-norm stability of the finite element Stokes projection.

J. Math. Pures Appl. (9), 84(3):279–330, 2005 Three dimensions, global,  $W^{1,\infty}$ , more than convexity.

J. Guzmán and D. Leykekhman. Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra.

Math. Comp., 81(280):1879–1902, 2012 Three dimensions, global,  $W^{1,\infty}(\Omega)$ , technique I.

V. Girault, R. H. Nochetto, and L. R. Scott. Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra.



R. G. Durán, R. H. Nochetto, and J. P. Wang. Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D.

Math. Comp., 51(184):491–506, 1988 Two dimensions, global,  $L^{\infty}(\Omega)$ ,  $W^{1,\infty}(\Omega)$ .

V. Girault, R. H. Nochetto, and L. R. Scott. Maximum-norm stability of the finite element Stokes projection.

J. Math. Pures Appl. (9), 84(3):279–330, 2005 Three dimensions, global,  $W^{1,\infty}$ , more than convexity.

J. Guzmán and D. Leykekhman. Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra.

Math. Comp., 81(280):1879–1902, 2012 Three dimensions, global,  $W^{1,\infty}(\Omega)$ , technique I.

V. Girault, R. H. Nochetto, and L. R. Scott. Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra.

Numer. Math., 131(4):771-822, 2015

Three dimensions, global,  $W^{1,\infty}(\Omega)$ , technique II.



R. G. Durán, R. H. Nochetto, and J. P. Wang. Sharp maximum norm error estimates for finite element approximations of the Stokes problem in 2-D.

Math. Comp., 51(184):491–506, 1988 Two dimensions, global,  $L^{\infty}(\Omega)$ ,  $W^{1,\infty}(\Omega)$ .

V. Girault, R. H. Nochetto, and L. R. Scott. Maximum-norm stability of the finite element Stokes projection.

J. Math. Pures Appl. (9), 84(3):279–330, 2005 Three dimensions, global,  $W^{1,\infty}$ , more than convexity.

J. Guzmán and D. Leykekhman. Pointwise error estimates of finite element approximations to the Stokes problem on convex polyhedra.

Math. Comp., 81(280):1879–1902, 2012 Three dimensions, global,  $W^{1,\infty}(\Omega)$ , technique I.

V. Girault, R. H. Nochetto, and L. R. Scott. Max-norm estimates for Stokes and Navier-Stokes approximations in convex polyhedra.

Numer. Math., 131(4):771-822, 2015

Three dimensions, global,  $W^{1,\infty}(\Omega)$ , technique II.

Our results: Global results in three dimensions  $(L^{\infty}(\Omega))$ , local results in two and three dimensions  $(L^{\infty}(\Omega), W^{1,\infty}(\Omega))$ 

# Outline



2. Idea of the proof



#### Selected ingredients for the proof

For the Ritz projection  $R_h \vec{z}$  of  $\vec{z} \in H^1_0(\Omega)^3$  into the finite element space given by

$$(\nabla R_h \vec{z}, \nabla \vec{v}_h) = (\nabla \vec{z}, \nabla \vec{v}_h) \quad \forall \vec{v}_h \in \vec{V}_h$$

that for  $\vec{z} \in H_0^1(\Omega)^3 \cap L^\infty(\Omega)^3$  the solution of the Laplace equation, it holds that  $\|R_h \vec{z}\|_{L^\infty(\Omega)} \leq C |\ln h| \|\vec{z}\|_{L^\infty(\Omega)}.$ 



#### Selected ingredients for the proof

For the Ritz projection  $R_h \vec{z}$  of  $\vec{z} \in H^1_0(\Omega)^3$  into the finite element space given by

$$(\nabla R_h \vec{z}, \nabla \vec{v}_h) = (\nabla \vec{z}, \nabla \vec{v}_h) \quad \forall \vec{v}_h \in \vec{V}_h$$

that for  $\vec{z} \in H_0^1(\Omega)^3 \cap L^\infty(\Omega)^3$  the solution of the Laplace equation, it holds that  $\|R_h \vec{z}\|_{L^\infty(\Omega)} \leq C |\ln h| \|\vec{z}\|_{L^\infty(\Omega)}.$ 

A space fulfilling this assumption holds would be e.g. the space of Taylor-Hood finite elements of order greater or equal three.



#### Selected ingredients for the proof

For the Ritz projection  $R_h \vec{z}$  of  $\vec{z} \in H^1_0(\Omega)^3$  into the finite element space given by

$$(\nabla R_h \vec{z}, \nabla \vec{v}_h) = (\nabla \vec{z}, \nabla \vec{v}_h) \quad \forall \vec{v}_h \in \vec{V}_h$$

that for  $\vec{z} \in H^1_0(\Omega)^3 \cap L^\infty(\Omega)^3$  the solution of the Laplace equation, it holds that

 $\|R_h \vec{z}\|_{L^{\infty}(\Omega)} \leq C |\ln h| \|\vec{z}\|_{L^{\infty}(\Omega)}.$ 

A space fulfilling this assumption holds would be e.g. the space of Taylor-Hood finite elements of order greater or equal three.

To start off the proof, we define a regularized Green's function

$$\begin{aligned} -\Delta \vec{g} + \nabla \lambda &= \delta_h \vec{e}_i & \text{ in } \Omega, \\ \nabla \cdot \vec{g} &= 0 & \text{ in } \Omega, \\ \vec{g} &= \vec{0} & \text{ on } \partial \Omega. \end{aligned}$$

Here  $\delta_h \in C_0^1(T_{\vec{x}_0})$ ,  $T_{\vec{x}_0}$  the cell where the maximum of  $|\vec{u}_h|$  is attained, which satisfies for every  $\vec{v}_h \in \vec{V}_h$ :

$$\vec{v}_{h,i}(\vec{x}_0) = (\vec{v}_h, \delta_h \vec{e}_i)_{T_{\vec{x}_0}}.$$



$$\begin{split} |\vec{u}_{h,i}(\vec{x}_0)| &= |(\vec{u}_h, \delta_h \vec{e}_i)_{\mathcal{T}_{\vec{x}_0}}| = |(\nabla \vec{u}_h, \nabla \vec{g}_h) - (\rho_h, \nabla \cdot \vec{g}_h) + (\nabla \cdot \vec{u}_h, \lambda_h)| \\ &= |(\nabla \vec{u}, \nabla \vec{g}_h) - (\rho, \nabla \cdot \vec{g}_h)| \end{split}$$



$$\begin{split} |\vec{u}_{h,i}(\vec{x}_0)| &= |(\vec{u}_h, \delta_h \vec{e}_i)_{T_{\vec{x}_0}}| = |(\nabla \vec{u}_h, \nabla \vec{g}_h) - (p_h, \nabla \cdot \vec{g}_h) + (\nabla \cdot \vec{u}_h, \lambda_h)| \\ &= |(\nabla \vec{u}, \nabla \vec{g}_h) - (p, \nabla \cdot \vec{g}_h)| \\ &= |(\nabla R_h \vec{u}, \nabla \vec{g}_h) - (p, \nabla \cdot (\vec{g}_h - \vec{g}))| \end{split}$$



$$\begin{split} |\vec{u}_{h,i}(\vec{x}_0)| &= |(\vec{u}_h, \delta_h \vec{e}_i)_{T_{\vec{x}_0}}| = |(\nabla \vec{u}_h, \nabla \vec{g}_h) - (p_h, \nabla \cdot \vec{g}_h) + (\nabla \cdot \vec{u}_h, \lambda_h)| \\ &= |(\nabla \vec{u}, \nabla \vec{g}_h) - (p, \nabla \cdot \vec{g}_h)| \\ &= |(\nabla R_h \vec{u}, \nabla \vec{g}_h) - (p, \nabla \cdot (\vec{g}_h - \vec{g}))| \end{split}$$

For the first term we get

$$\begin{split} |(\nabla R_h \vec{u}, \nabla \vec{g}_h)| &= |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g})) - (R_h \vec{u}, \Delta \vec{g})| \\ &= |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g})) - (R_h \vec{u}, -\delta_h \vec{e}_i + \nabla \lambda)| \\ &\leq h^{-1} \|R_h \vec{u}\|_{L^{\infty}(\Omega)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} + \|R_h \vec{u}\|_{L^{\infty}(\Omega)} \Big(C + \|\nabla \lambda\|_{L^1(\Omega)}\Big) \\ &\leq Ch^{-1} |\ln h| \|\vec{u}\|_{L^{\infty}(\Omega)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} \\ &+ C |\ln h| \|\vec{u}\|_{L^{\infty}(\Omega)} \Big(1 + \|\nabla \lambda\|_{L^1(\Omega)}\Big) \end{split}$$

9



$$\begin{split} |\vec{u}_{h,i}(\vec{x}_0)| &= |(\vec{u}_h, \delta_h \vec{e}_i)_{T_{\vec{x}_0}}| = |(\nabla \vec{u}_h, \nabla \vec{g}_h) - (p_h, \nabla \cdot \vec{g}_h) + (\nabla \cdot \vec{u}_h, \lambda_h)| \\ &= |(\nabla \vec{u}, \nabla \vec{g}_h) - (p, \nabla \cdot \vec{g}_h)| \\ &= |(\nabla R_h \vec{u}, \nabla \vec{g}_h) - (p, \nabla \cdot (\vec{g}_h - \vec{g}))| \end{split}$$

For the first term we get

$$\begin{aligned} |(\nabla R_h \vec{u}, \nabla \vec{g}_h)| &= |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g})) - (R_h \vec{u}, \Delta \vec{g})| \\ &= |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g})) - (R_h \vec{u}, -\delta_h \vec{e}_i + \nabla \lambda)| \\ &\leq h^{-1} \|R_h \vec{u}\|_{L^{\infty}(\Omega)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} + \|R_h \vec{u}\|_{L^{\infty}(\Omega)} \Big(C + \|\nabla \lambda\|_{L^1(\Omega)}\Big) \\ &\leq Ch^{-1} |\ln h| \|\vec{u}\|_{L^{\infty}(\Omega)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} \\ &+ C |\ln h| \|\vec{u}\|_{L^{\infty}(\Omega)} \Big(1 + \|\nabla \lambda\|_{L^1(\Omega)}\Big) \end{aligned}$$

and for the second term

$$|(p, \nabla \cdot (\vec{g}_h - \vec{g}))| \leq C ||p||_{L^{\infty}(\Omega)} ||\nabla (\vec{g}_h - \vec{g})||_{L^1(\Omega)}$$



$$\begin{split} |\vec{u}_{h,i}(\vec{x}_0)| &= |(\vec{u}_h, \delta_h \vec{e}_i)_{T_{\vec{x}_0}}| = |(\nabla \vec{u}_h, \nabla \vec{g}_h) - (p_h, \nabla \cdot \vec{g}_h) + (\nabla \cdot \vec{u}_h, \lambda_h)| \\ &= |(\nabla \vec{u}, \nabla \vec{g}_h) - (p, \nabla \cdot \vec{g}_h)| \\ &= |(\nabla R_h \vec{u}, \nabla \vec{g}_h) - (p, \nabla \cdot (\vec{g}_h - \vec{g}))| \end{split}$$

For the first term we get

$$\begin{split} |(\nabla R_h \vec{u}, \nabla \vec{g}_h)| &= |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g})) - (R_h \vec{u}, \Delta \vec{g})| \\ &= |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g})) - (R_h \vec{u}, -\delta_h \vec{e}_i + \nabla \lambda)| \\ &\leq h^{-1} \|R_h \vec{u}\|_{L^{\infty}(\Omega)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} + \|R_h \vec{u}\|_{L^{\infty}(\Omega)} \Big(C + \|\nabla \lambda\|_{L^1(\Omega)}\Big) \\ &\leq Ch^{-1} |\ln h| \|\vec{u}\|_{L^{\infty}(\Omega)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} \\ &+ C |\ln h| \|\vec{u}\|_{L^{\infty}(\Omega)} \Big(1 + \|\nabla \lambda\|_{L^1(\Omega)}\Big) \end{split}$$

and for the second term

$$|(p, \nabla \cdot (\vec{g}_h - \vec{g}))| \leq C \|p\|_{L^{\infty}(\Omega)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)}$$

Then, estimates

$$\|\nabla(\vec{g}_h - \vec{g})\|_{L^1(\Omega)} \le Ch |\ln h|$$
 and  $\|\nabla\lambda\|_{L^1(\Omega)} \le C |\ln h|$  give the result.

Niklas Behringer

Localized pointwise error estimates for the Stokes problem

# Localization

Let  $x_0$  be where  $\|\vec{u}_h\|_{L^{\infty}(\Omega_1)}$  is maximal and consider the weight

$$\sigma = \sqrt{|\vec{x} - \vec{x}_0|^2 + \kappa^2 h^2}.$$

Note that  $\sigma^{-1} \sim d^{-1}$  for  $|\vec{x} - \vec{x}_0| \ge d$  and h small.

# ТШ

# Localization

Let  $x_0$  be where  $\|\vec{u}_h\|_{L^{\infty}(\Omega_1)}$  is maximal and consider the weight

$$\sigma = \sqrt{|\vec{x} - \vec{x}_0|^2 + \kappa^2 h^2}.$$

Note that  $\sigma^{-1} \sim d^{-1}$  for  $|\vec{x} - \vec{x}_0| \geq d$  and h small. Then, as before

 $|\vec{u}_{h,i}(\vec{x}_0)| = |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g})) - (R_h \vec{u}, -\delta_h \vec{e_i} + \nabla \lambda) - (p, \nabla \cdot (\vec{g}_h - \vec{g}))|.$ 



# Localization

Let  $x_0$  be where  $\|\vec{u}_h\|_{L^{\infty}(\Omega_1)}$  is maximal and consider the weight

$$\sigma = \sqrt{|\vec{x} - \vec{x}_0|^2 + \kappa^2 h^2}.$$

Note that  $\sigma^{-1} \sim d^{-1}$  for  $|\vec{x} - \vec{x}_0| \geq d$  and h small. Then, as before

$$|\vec{u}_{h,i}(\vec{x}_0)| = |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g})) - (R_h \vec{u}, -\delta_h \vec{e}_i + \nabla \lambda) - (\rho, \nabla \cdot (\vec{g}_h - \vec{g}))|.$$

We consider only the first term (the others follow similarly)

$$\begin{split} |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g}))| &\leq \|\nabla R_h \vec{u}\|_{L^{\infty}(\Omega_2)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} \\ &+ \|\sigma^{-3/2} \nabla R_h \vec{u}\|_{L^2(\Omega \setminus \Omega_2)} \|\sigma^{3/2} \nabla (\vec{g}_h - \vec{g})\|_{L^2(\Omega)} \\ &\leq Ch^{-1} |\ln h| \|\vec{u}\|_{L^{\infty}(\Omega_2)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} \\ &+ C_d h^{-1} |\ln h| \|\vec{u}\|_{L^2(\Omega \setminus \Omega_2)} \|\sigma^{3/2} \nabla (\vec{g}_h - \vec{g})\|_{L^2(\Omega)}. \end{split}$$



# Localization

Let  $x_0$  be where  $\|\vec{u}_h\|_{L^{\infty}(\Omega_1)}$  is maximal and consider the weight

$$\sigma = \sqrt{|\vec{x} - \vec{x}_0|^2 + \kappa^2 h^2}.$$

Note that  $\sigma^{-1} \sim d^{-1}$  for  $|\vec{x} - \vec{x}_0| \geq d$  and h small. Then, as before

$$|\vec{u}_{h,i}(\vec{x}_0)| = |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g})) - (R_h \vec{u}, -\delta_h \vec{e}_i + \nabla \lambda) - (\rho, \nabla \cdot (\vec{g}_h - \vec{g}))|.$$

We consider only the first term (the others follow similarly)

$$\begin{split} |(\nabla R_h \vec{u}, \nabla (\vec{g}_h - \vec{g}))| &\leq \|\nabla R_h \vec{u}\|_{L^{\infty}(\Omega_2)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} \\ &+ \|\sigma^{-3/2} \nabla R_h \vec{u}\|_{L^2(\Omega \setminus \Omega_2)} \|\sigma^{3/2} \nabla (\vec{g}_h - \vec{g})\|_{L^2(\Omega)} \\ &\leq Ch^{-1} |\ln h| \|\vec{u}\|_{L^{\infty}(\Omega_2)} \|\nabla (\vec{g}_h - \vec{g})\|_{L^1(\Omega)} \\ &+ C_d h^{-1} |\ln h| \|\vec{u}\|_{L^2(\Omega \setminus \Omega_2)} \|\sigma^{3/2} \nabla (\vec{g}_h - \vec{g})\|_{L^2(\Omega)}. \end{split}$$

The result follows by the respective estimates for

$$\|\nabla(\vec{g}_h - \vec{g})\|_{L^1(\Omega)}$$
 and  $\|\sigma^{3/2}\nabla(\vec{g}_h - \vec{g})\|_{L^2(\Omega)}$ .



# A word on the $L^1$ estimate of $\vec{g}_h - \vec{g}$

To prove the convergence result we use the well-known dyadic decomposition technique, where we split the domain in the following way. Put  $d_j = 2^{-j}$  and consider the decomposition

$$\Omega = \Omega_* \cup \bigcup_{j=0}^J \Omega_j,$$

where

$$\Omega_* = \{ \vec{x} \in \Omega : |\vec{x} - \vec{x}_0| \le Kh \},$$
  
$$\Omega_j = \{ \vec{x} \in \Omega : d_{j+1} \le |\vec{x} - \vec{x}_0| \le d_j \},$$

K is a sufficiently large constant to be chosen later and J is an integer such that

$$2^{-(J+1)} \le Kh \le 2^{-J}.$$

The convergence of  $\|\sigma^{3/2}\nabla(\vec{g}_h - \vec{g})\|_{L^2(\Omega)}$  follows then directly from the  $L^1$  estimate.

#### Thank you very much for your attention and (potential) questions!

Preprint available on http://www.igdk.eu/IGDK1754/Preprints

niklas.behringer@ma.tum.de