On error estimates for solutions of the stationary thin obstacle problem

Darya Apushkinskaya

Saarland University, Saarbrücken

Based on joint work with Sergey Repin

200

Darya Apushkinskaya (UdS)

Error estimates for solutions

AANMPDE12, Strobl, 01.07.2019 1/28

Thin obstacle problem

Figure: The thin obstacle problem

Darya Apushkinskaya (UdS)

Error estimates for solutions

AANMPDE12, Strobl, 01.07.2019 2/28

Э

DQC

イロト イロト イヨト イヨト

Thin obstacle problem

$$J(\mathbf{v}) := \frac{1}{2} \int_{\Omega} |\nabla \mathbf{v}|^2 \to \min \qquad (\mathcal{P})$$
$$\mathbf{v} \in \mathbb{K} := \{ \mathbf{v} \in H^1(\Omega), \quad \mathbf{v} \ge \psi \text{ on } \mathcal{M}, \quad \mathbf{v} = \varphi \text{ on } \partial\Omega \},$$
$$\Omega \subset \mathbb{R}^n, \quad \partial\Omega \in Lip,$$
$$\varphi : \partial\Omega \to \mathbb{R}, \quad \varphi \in H^{1/2}(\partial\Omega),$$
$$\mathcal{M} \text{ is a smooth } (n-1) = \text{dimensional manifold in } \mathbb{R}^n$$

 \mathcal{M} is a smooth (n-1) – dimensional manifold in \mathbb{R}^n , which separates Ω into two Lipschitz subdomains Ω_{\pm} ,

$$\psi: \mathcal{M} \to \mathbb{R}, \quad \psi - \mathsf{smooth},$$

Remark.

ψ is called "thin obstacle".

Darya Apushkinskaya	(UdS)
---------------------	-------

Applications:

- Elastic membranes
- Continuum mechanics
- Financial mathematics (*if the random variations of an underlying asset changes discontinuously*)

Э

イロト イポト イヨト イヨト

Historical Review:

- Thin obstacle problems have been actively studied from the early 1970s.
- Regularity of minimizers: (Frehse'75, Frehse'77, Richardson'78, Caffarelli'79, Uraltseva'85, Athanasopoulos & Caffarelli'04, Guillen'09).
- Properties of the free boundaries: (Lewy'72, Athanasopoulos, Caffarelli & Salsa'08, Caffarelli, Salsa & Silvestre'08, Garofalo & Petrosyan'09, Koch, Petrosyan & Shi'15, De Silva & Savin'16).

Known results:

1

2

$\Delta u = 0$ in Ω_{\pm} ,

u, in general, is not a harmonic in Ω ,

On M, we have the so-called complementarity conditions

$$u - \psi \ge 0,$$
 $\left[\frac{\partial u}{\partial \mathbf{n}}\right] \ge 0,$ $(u - \psi)\left[\frac{\partial u}{\partial \mathbf{n}}\right] = 0,$

イロト イポト イヨト イヨト 二日

Our goal:

- Let *u* be a minimizer of (\mathcal{P}) .
- For any $v \in \mathbb{K}$,

 $\|\nabla(u-v)\|_{2,\Omega} \leq \mathfrak{M}(v, \text{ data of } (\mathcal{P}), \text{ free functions})$ (1)

- 𝔐 is fully computable
- *u* and the coincidence set $\{u = \psi\}$ do not enter in \mathfrak{M}
- M depends continuously on its arguments
- $\mathfrak{M} = \mathbf{0} \quad \Leftrightarrow \quad \mathbf{v} = \mathbf{u}$
- If $\{u = \psi\} \subset \{v = \psi\}$ then estimate (1) is sharp.

$$\frac{1}{2} \|\nabla (v - u)\|_{2,\Omega}^2 \leqslant J(v) - J(u), \qquad \forall v \in \mathbb{K}$$

Darya Apushkinskaya (UdS)

Error estimates for solutions

AANMPDE12, Strobl, 01.07.2019 8/28

Perturbed problem:

X

$$J_{\lambda}(\mathbf{v}) := J(\mathbf{v}) - \int_{\mathcal{M}} \lambda (\mathbf{v} - \psi) \to \min \qquad (\mathcal{P}_{\lambda})$$
$$\mathbf{v} \in \varphi + H_0^1(\Omega) := \{ \mathbf{w} = \varphi + \mathbf{v} : \mathbf{v} \in H_0^1(\Omega) \},$$
$$\mathbf{v} \in \Lambda := \{ \lambda \in L^2(\mathcal{M}) : \lambda(\mathbf{x}) \ge \mathbf{0} \text{ a.e. on } \mathcal{M} \}$$

Remark.

(*P*_λ) is uniquely solvable for any λ ∈ Λ since φ + H¹₀(Ω) is the affine subspace of H¹(Ω).

Let u_{λ} be the minimizer of (\mathcal{P}_{λ}) . Then

$$J(u) = \inf_{\nu \in \mathbb{K}} J(\nu) = \inf_{\nu \in \varphi + V_0(\Omega)} \sup_{\lambda \in \Lambda} J_\lambda(\nu) \ge \sup_{\lambda \in \Lambda} \inf_{\nu \in \varphi + V_0(\Omega)} J_\lambda(\nu)$$
$$\ge J_\lambda(u_\lambda) \quad \forall \lambda \in \Lambda.$$

Dual perturbed problem

$$\begin{aligned} J_{\lambda}^{*}(y^{*}) &= \int_{\Omega} \left(y^{*} \cdot \nabla \varphi - \frac{1}{2} |y^{*}|^{2} \right) dx - \int_{\mathcal{M}} \lambda \left(\varphi - \psi \right) \to \max \qquad (\mathcal{P}_{\lambda}^{*}) \\ y^{*} &\in L^{2}(\Omega, \mathbb{R}^{n}) \\ \lambda &\in \Lambda := \{ \lambda \in L^{2}(\mathcal{M}) \, : \, \lambda(x) \geqslant 0 \text{ a.e. on } \mathcal{M} \} \end{aligned}$$

Consider

$$oldsymbol{Q}^*_{\lambda,\mathcal{M}} := ig\{ oldsymbol{y}^* \in L^2\left(\Omega,\mathbb{R}^n
ight): \ ext{div}\ oldsymbol{y}^* = oldsymbol{0} \quad ext{in} \quad \Omega_{\pm}, \qquad [oldsymbol{y}^*\cdotoldsymbol{n}] = \lambda ig\}$$

Remark.

$$oldsymbol{y}^{*}
otin oldsymbol{Q}^{*}_{\lambda,\mathcal{M}} \quad \Rightarrow \quad oldsymbol{J}^{*}_{\lambda}(oldsymbol{y}^{*}) = -\infty$$

Darya Apushkinskaya (UdS)

E

DQC

<ロト < 回ト < 回ト < 回ト

Dual perturbed problem

$$J_{\lambda}^{*}(y^{*}) = \int_{\Omega} \left(y^{*} \cdot \nabla \varphi - \frac{1}{2} |y^{*}|^{2} \right) dx - \int_{\mathcal{M}} \lambda \left(\varphi - \psi \right) \to \max \qquad (\mathcal{P}_{\lambda}^{*})$$
$$y^{*} \in Q_{\lambda,\mathcal{M}}^{*} := \left\{ y^{*} \in L^{2}\left(\Omega, \mathbb{R}^{n}\right) : \int_{\Omega} y^{*} \cdot \nabla w dx = \int_{\mathcal{M}} \lambda w d\mu \quad \forall w \in H_{0}^{1}\left(\Omega\right) \right\}$$
$$\lambda \in \Lambda := \left\{ \lambda \in L^{2}(\mathcal{M}) : \lambda(x) \ge 0 \text{ a.e. on } \mathcal{M} \right\}$$

Remark.

•
$$(\mathcal{P}^*_{\lambda})$$
 is uniquely solvable for any $\lambda \in \Lambda$.

$$J_{\lambda}(u_{\lambda}) = \inf_{v \in \varphi + V_0(\Omega)} J_{\lambda}(v) = \sup_{y^* \in Q^*_{\lambda,\mathcal{M}}} J^*_{\lambda}(y^*) = J^*_{\lambda}(y^*_{\lambda})$$

E

DQC

<ロト < 回ト < 回ト < 回ト

Summary 1.

For any $\lambda \in \Lambda$ we have

$$J(u) \geqslant J_{\lambda}(u_{\lambda}) = J_{\lambda}^{*}(y_{\lambda}^{*}).$$

Therefore,

$$J(v) - J(u) \leq J(v) - J_{\lambda}^{*}(y_{\lambda}^{*}) = J(v) - \sup_{y^{*} \in Q_{\lambda,\mathcal{M}}^{*}} J_{\lambda}^{*}(y^{*})$$
$$= J(v) + \inf_{y^{*} \in Q_{\lambda,\mathcal{M}}^{*}} (-J_{\lambda}^{*}(y^{*})) = \inf_{y^{*} \in Q_{\lambda,\mathcal{M}}^{*}} [J(v) - J_{\lambda}^{*}(y^{*})]$$

and, consequently,

$$J(v) - J(u) \leqslant J(v) - J^*_{\lambda}(y^*) \qquad \forall v \in \mathbb{K}, \ \lambda \in \Lambda, \ y^* \in \mathcal{Q}^*_{\lambda,\mathcal{M}}.$$

э

590

イロト イロト イヨト イヨト

Since $y^* \in Q^*_{\lambda,\mathcal{M}}$ and $v - \varphi \in H^1_0(\Omega)$ for any $v \in \mathbb{K}$, we find that

$$\int_{\Omega} y^* \cdot \nabla \varphi dx = \int_{\Omega} y^* \cdot \nabla v dx - \int_{\Omega} y^* \cdot \nabla (v - \varphi) dx$$
$$= \int_{\Omega} y^* \cdot \nabla v dx - \int_{\mathcal{M}} \lambda (v - \varphi) d\mu.$$

Then

$$\begin{split} J(\mathbf{v}) - J_{\lambda}^{*}(\mathbf{y}^{*}) &= \int_{\Omega} \left(\frac{1}{2} |\nabla \mathbf{v}|^{2} + \frac{1}{2} |\mathbf{y}^{*}|^{2} - \mathbf{y}^{*} \cdot \nabla \varphi \right) d\mathbf{x} + \int_{\mathcal{M}} \lambda(\varphi - \psi) d\mu \\ &= \frac{1}{2} \int_{\Omega} |\nabla \mathbf{v} - \mathbf{y}^{*}|^{2} d\mathbf{x} + \int_{\mathcal{M}} \lambda(\mathbf{v} - \psi) d\mu. \end{split}$$

Darya Apushkinskaya (UdS)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ 三 少 < ○</p>
AANMPDE12, Strobl. 01.07.2019 13/28

First form of the majorant

For any $v \in \mathbb{K}$ we have

$$\|\nabla(\boldsymbol{v}-\boldsymbol{u})\|_{2,\Omega}^{2} \leq \|\nabla\boldsymbol{v}-\boldsymbol{y}^{*}\|_{2,\Omega}^{2} + 2\int_{\mathcal{M}} \lambda(\boldsymbol{v}-\psi) \, \boldsymbol{d}\mu,$$

where λ and y^* are arbitrary functions in Λ and $Q^*_{\lambda,\mathcal{M}}$, respectively.

$$\Lambda := \{\lambda \in L^{2}(\mathcal{M}) : \lambda(x) \ge 0 \text{ a.e. on } \mathcal{M}\}$$
$$Q_{\lambda,\mathcal{M}}^{*} := \{y^{*} \in L^{2}(\Omega, \mathbb{R}^{n}) : \int_{\Omega} y^{*} \cdot \nabla w dx = \int_{\mathcal{M}} \lambda w d\mu \quad \forall w \in H_{0}^{1}(\Omega)\}$$

Darya Apushkinskaya (UdS)

AANMPDE12, Strobl, 01.07,2019 14/28

590

イロト イポト イヨト イヨト 二日

Remark:

Assume that

$$\{x \in \mathcal{M} : u(x) = \psi(x)\} \subset \{x \in \mathcal{M} : v(x) = \psi(x)\}.$$

In this case, the estimate

$$\|\nabla(\mathbf{v}-\mathbf{u})\|_{2,\Omega}^{2} \leq \|\nabla\mathbf{v}-\mathbf{y}^{*}\|_{2,\Omega}^{2} + 2\int_{\mathcal{M}} \lambda(\mathbf{v}-\psi) d\mu$$
(2)

is sharp in the sense that $\exists y^* = \nabla u$ and $\lambda = [\nabla u \cdot \mathbf{n}]$ such that the inequality holds in (2) as the equality.

Darya Apushkinskaya (UdS)

3

Sac

イロト 不同ト イヨト イヨト

Extension of the set of functions

$$H(\Omega_{\pm},\mathsf{div}):=\{q^*\in L^2(\Omega,\mathbb{R}^n):\mathsf{div}\,(q^*\big|_{\Omega_{\pm}})\in L^2(\Omega_{\pm}),\quad [q^*\cdot\mathbf{n}]\in L^2(\mathcal{M})\}$$

Let $q^* \in H(\Omega_{\pm}, \operatorname{div})$ and $\lambda \in \Lambda$. For any $v \in \mathbb{K}$ and $y^* \in Q^*_{\lambda, \mathcal{M}}$ we have

$$\|
abla \mathbf{v} - \mathbf{y}^*\|_{2,\Omega} \leqslant \|
abla \mathbf{v} - \mathbf{q}^*\|_{2,\Omega} + \|\mathbf{q}^* - \mathbf{y}^*\|_{2,\Omega}$$

Darya Apushkinskaya (UdS)

Sac

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Advanced form of the majorant - 1

Let $q^* \in H(\Omega_{\pm}, \text{div})$ and $\lambda \in \Lambda$. For any $y^* \in Q^*_{\lambda, \mathcal{M}}$ we have

$$\begin{split} \| \boldsymbol{q}^* - \boldsymbol{y}^* \|_{2,\Omega} \leqslant C_{\mathcal{F}_{\Omega_+}} \| \mathrm{div}\, \boldsymbol{q}^* \|_{2,\Omega_+} + C_{\mathcal{F}_{\Omega_-}} \| \mathrm{div}\, \boldsymbol{q}^* \|_{2,\Omega_-} \ &+ C_{\mathcal{T}_{\mathcal{T}_{\mathcal{M}}}} \| \lambda - [\boldsymbol{q}^* \cdot \mathbf{n}] \|_{2,\mathcal{M}}. \end{split}$$

590

Advanced form of the majorant - 2

Let $q^* \in H(\Omega_{\pm}, {
m div})$ and $\lambda \in \Lambda$ satisfy the additional restrictions

$$\int_{\Omega_+} \operatorname{div} \boldsymbol{q}^* \boldsymbol{dx} = \int_{\Omega_-} \operatorname{div} \boldsymbol{q}^* \boldsymbol{dx} = \boldsymbol{0} \quad \text{and} \quad \int_{\mathcal{M}} (\lambda - [\boldsymbol{q}^* \cdot \boldsymbol{n}]) \boldsymbol{d\mu} = \boldsymbol{0}.$$

Then, for any $\alpha \in [0, 1]$, we have

$$\|\boldsymbol{q}^*-\boldsymbol{y}^*\|_{2,\Omega}^2 \leqslant (\mathfrak{D}_-(\boldsymbol{q}^*)+\alpha\mathfrak{m}_-(\boldsymbol{q}^*))^2 + (\mathfrak{D}_+(\boldsymbol{q}^*)+(1-\alpha)\mathfrak{m}_+(\boldsymbol{q}^*))^2,$$

where $\mathfrak{D}_{\pm}(q^*) := \mathcal{C}_{\mathcal{P}_{\Omega_{\pm}}} \| \operatorname{div} q^* \|_{2,\Omega_{\pm}} \text{ and } \mathfrak{m}_{\pm}(q^*) = \mathcal{C}_{\mathcal{P}_{\mathcal{M}}}(\Omega_{\pm}) \| \lambda - [q^* \cdot \mathbf{n}] \|_{2,\mathcal{M}}.$

Remark

 α can be defined in the optimal way.

Darya Apushkinskaya (UdS)

Error estimates for solutions

AANMPDE12, Strobl. 01.07.2019 18/28

Э

Sac

イロト イポト イヨト イヨト

Advanced form of the majorant - 3

Let $q^* \in H(\Omega_{\pm}, div)$ and $\lambda \in \Lambda$ satisfy only the restriction

$$\int_{\mathcal{M}} (\lambda - [\boldsymbol{q}^* \cdot \boldsymbol{n}]) \boldsymbol{d}\mu = \boldsymbol{0}. \tag{3}$$

Then, for any $\alpha \in [0, 1]$, we have

$$\|\boldsymbol{q}^* - \boldsymbol{y}^*\|_{2,\Omega}^2 \leqslant (\mathfrak{D}_{-}^{\mathsf{F}}(\boldsymbol{q}^*) + \alpha \mathfrak{m}_{-}(\boldsymbol{q}^*))^2 + (\mathfrak{D}_{+}^{\mathsf{F}}(\boldsymbol{q}^*) + (1-\alpha)\mathfrak{m}_{+}(\boldsymbol{q}^*))^2,$$

where $\mathfrak{D}^F_{\pm}(q^*) := \mathcal{C}_{\mathcal{F}_{\Omega_{\pm}}} \| \operatorname{div} q^* \|_{2,\Omega_{\pm}} \text{ and } \mathfrak{m}_{\pm}(q^*) = \mathcal{C}_{\mathcal{P}_{\mathcal{M}}}(\Omega_{\pm}) \| \lambda - [q^* \cdot \mathbf{n}] \|_{2,\mathcal{M}}.$

Darya Apushkinskaya (UdS)

Example: Ω_+ and Ω_-

Let Ω_{\pm} be the triangles in \mathbb{R}^2 defined as in figure below, let $\mathcal{M} := \{x_2 = 0\}$, and let $\psi \equiv 0$.

Example: exact solution *u*

$$u(x_1, x_2) = \operatorname{Re}\left((x_1 + i|x_2|)^{3/2}\right)$$
 is the explicit solution in \mathbb{R}^2

Setting the boundary condition φ on $\partial\Omega$ as the trace of Re $((x_1 + i|x_2|)^{3/2})$, we see that *u* is the exact solution in the bounded domain Ω as well.

Figure: The exact solution u in Ω

Darya Apushkinskaya (UdS)

Error estimates for solutions

AANMPDE12, Strobl, 01.07.2019 21/28

Example: properties of u

1

2

3

 $\Delta u = 0$ in Ω_+ . $u(x_1, 0) = \begin{cases} 0, & \text{if } x_1 \leq 0, \\ x_1^{3/2}, & \text{if } x_1 > 0 \end{cases}$ $\left\lceil \frac{\partial u}{\partial \mathbf{n}} \right\rceil = \begin{cases} 3\sqrt{-x_1}, & \text{if } x_1 < 0, \\ 0, & \text{if } x_1 \ge 0. \end{cases}$

Darya Apushkinskaya (UdS)

Error estimates for solutions

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ Sac AANMPDE12, Strobl, 01.07.2019

22/28

Example.

$$v_1(x_1, x_2) := u(x_1, x_2) + \begin{cases} x_2^2(x_2 - x_1 - a)(x_2 + x_1 - a), & \text{if } x_2 \ge 0, \\ x_2^2(x_2 - x_1 + a)(x_2 + x_1 + a), & \text{if } x_2 < 0. \end{cases}$$

Figure: $v_1 - u$

Darya Apushkinskaya (UdS)

Error estimates for solutions

AANMPDE12, Strobl, 01.07.2019 23/28

イロト イロト イヨト イヨト

900

E

Example.

$$\begin{split} \|\nabla(\mathbf{v}_{1}-\mathbf{u})\|_{2,\Omega} &\leq \mathfrak{M}_{1}(\mathbf{v}_{1},\boldsymbol{q}^{*},\lambda,\psi),\\ \mathfrak{M}_{1}(\mathbf{v}_{1},\boldsymbol{q}^{*},\lambda,\psi) := \|\nabla\mathbf{v}_{1}-\boldsymbol{q}^{*}\|_{2,\Omega} + \sqrt{2} \left(\int_{\mathcal{M}} \lambda(\mathbf{v}_{1}-\psi)d\mu\right)^{1/2} \\ &+ C_{F_{\Omega_{+}}} \|\operatorname{div}\boldsymbol{q}^{*}\|_{2,\Omega_{+}} + C_{F_{\Omega_{-}}} \|\operatorname{div}\boldsymbol{q}^{*}\|_{2,\Omega_{-}} + C_{\mathcal{T}_{\mathcal{M}}} \|\lambda - [\boldsymbol{q}^{*}\cdot\mathbf{n}]\|_{2,\mathcal{M}}, \end{split}$$

Choose

$$\boldsymbol{q}^* := \nabla \boldsymbol{v}_1, \quad \lambda := \begin{bmatrix} \frac{\partial \boldsymbol{v}_1}{\partial \mathbf{n}} \end{bmatrix} \quad \Rightarrow \quad 1 \leqslant \frac{\mathfrak{M}_1\left(\boldsymbol{v}_1, \nabla \boldsymbol{v}_1, \begin{bmatrix} \frac{\partial \boldsymbol{v}_1}{\partial \mathbf{n}} \end{bmatrix}, \mathbf{0} \right)}{\|\nabla (\boldsymbol{v}_1 - \boldsymbol{u})\|_{2,\Omega}} \approx 2.382.$$

1

990

<ロト < 回ト < 回ト < ヨト < ヨト

Example.

Observe also that for $q^* = \nabla v_1$ and $\lambda = \left[\frac{\partial v_1}{\partial \mathbf{n}}\right]$ the assumption (3) is satisfied. Thus, for any $\alpha \in [0, 1]$ we can compute

$$\|\nabla(\mathbf{v}_1-\mathbf{u})\|_{2,\Omega} \leqslant \mathfrak{M}_3(\mathbf{v}_1, \nabla \mathbf{v}_1, \alpha, \left[\frac{\partial \mathbf{v}_1}{\partial \mathbf{n}}\right], \mathbf{0}),$$

$$\begin{split} \mathfrak{M}_{3}(\boldsymbol{v}_{1},\nabla\boldsymbol{v}_{1},\alpha,\left[\frac{\partial\boldsymbol{v}_{1}}{\partial\boldsymbol{\mathsf{n}}}\right],\boldsymbol{0}) &:= \|\nabla\boldsymbol{v}_{1}-\boldsymbol{q}^{*}\|_{2,\Omega} + \sqrt{2}\left(\int_{\mathcal{M}}\lambda(\boldsymbol{v}_{1}-\psi)\boldsymbol{d}\mu\right)^{1/2} \\ &+ \left[\boldsymbol{C}_{\boldsymbol{F}_{\Omega_{+}}}^{2}\|\operatorname{div}\boldsymbol{q}^{*}\|_{2,\Omega_{+}}^{2} + \boldsymbol{C}_{\boldsymbol{F}_{\Omega_{-}}}^{2}\|\operatorname{div}\boldsymbol{q}^{*}\|_{2,\Omega_{-}}^{2}\right]^{1/2}. \end{split}$$

$$1 \leqslant \frac{\mathfrak{M}_{3}\left(\boldsymbol{v}_{1}, \nabla \boldsymbol{v}_{1}, \alpha, \left[\frac{\partial \boldsymbol{v}_{1}}{\partial \mathbf{n}}\right], \mathbf{0}\right)}{\|\nabla(\boldsymbol{v}_{1} - \boldsymbol{u})\|_{2,\Omega}} \approx 1.684.$$

Darya Apushkinskaya (UdS)

Sar

Conclusions:

- In the above examples, rather simple functions *q*^{*} and λ provide quite realistic bounds of the error.
- In more complicated examples, so defined *q*^{*} and λ may be considered as a starting points for the iteration process of majorant minimization that generates a monotonically decreasing sequence of numbers, which are guaranteed upper bounds of the error.

くロ と く 戸 と く 三 と 一

References:

D.E. Apushkinskaya and S.I. Repin Thin obstacle problem: estimate of the distance to the exact solution Interfaces and Free Boundaries, vol. 20 (2018), No. 4, 483–595

Darya Apushkinskaya (UdS)

Error estimates for solutions

AANMPDE12, Strobl, 01.07.2019 27/28

Sar

イロト イポト イヨト イヨト

The Last Slide

Thank You!

Darya Apushkinskaya (UdS)

Error estimates for solutions

・ロト・西ト・ヨト・ヨー しょう

AANMPDE12, Strobl, 01.07.2019 28/28