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We are concern with guaranteed error control of space–time Isogeometric Analysis (IgA)
numerical approximations of parabolic evolution equations in fixed and moving spatial
computational domains. The approach is discussed within the paradigm of classical linear
parabolic initial-boundary value problem (I-BVP) as model problem: find u : Q→ Rd such
that

∂tu−∆xu = f in Q, u = 0 on Σ, u = u0 on Σ0, (1)

where Q := Q ∪ ∂Q, Q := Ω × (0, T ), denote the space-time cylinder with a bounded
domain Ω ⊂ Rd, d ∈ {1, 2, 3}, having a Lipschitz boundary ∂Ω, and (0, T ) is a given time
interval, 0 < T < +∞. Here, the cylindrical surface is defined as ∂Q := Σ ∪Σ0 ∪ΣT with
Σ = ∂Ω× (0, T ), Σ0 = Ω× {0} and ΣT = Ω× {T}.

Following the spirit of the paper from Langer, Moore, and Neumüller, 2016, we con-
sider a stable IgA space-time scheme for variation formulation of (1), which is obtained
by testing it with auxilary function vh + δh ∂tvh, δh = θ h, vh ∈ V0h ⊂ H1

0,0(Q), where
θ is a positive constant and h is the global mesh-size parameter (with mesh denoted by
Kh). The obtained discrete bilinear forms are V0h-coercive on the IgA space with respect
to corresponding discrete energy norms, which together with boundedness property, con-
sistency and approximation results for the IgA spaces provides an a priori discretization
error estimates.

Finally, we derive the functional a posteriori error estimates for the discussed schemes
(see Repin, 2012), which apart from the quantitatively efficient indicators provides the
reliable and sharp error estimates. This type of error estimates can exploit the higher
smoothness of NURBS basis functions to its advantage. Since the obtained approximations
are generally Cp−1-continuous (provided that the inner knots have the multiplicity 1), this
automatically provides that its gradients are in H(Ω,div) space. Therefore, there is no
need in projecting it from ∇uh ∈ L2(Ω,Rd) into H(Ω, div).

The efficiency of the obtained error bounds is analysed from both the error estimation
(indication) and the computational expenses points of view. Several examples illustrate
that functional error estimates (alternatively referred to as the majorants and minorants of
deviation from an exact solution) perform a much sharper error control than, for instance,
residual-based error estimates. Simultaneously, assembling and solving routines for an
auxiliary variable reconstruction which generate the majorant of an error can be executed
several times faster than the routines for a primal unknown.
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