Pathfollowing and a Posteriori Error Estimators for An Optimal Control Problem With BV-Functions

Dominik Hafemeyer

dominik.hafemeyer@tum.de, Chair for Optimal Control - Technical University of Munich

joint work with **Florian Kruse** florian.kruse@uni-graz.at Institute of Mathematics and Scientific Computing - University of Graz

Abstract: In this talk we consider an optimal control problem, or rather a regularization, with a state $y \in H_0^1(\Omega)$ and a control $u \in BV(\Omega)$ of bounded variation on a sufficiently smooth domain $\Omega \subset \mathbb{R}^n$, $n \in \{2, 3\}$:

$$\begin{cases} \min_{\substack{(y,u)\in H_0^1(\Omega)\times BV(\Omega)}} \frac{1}{2} \|y - y_\Omega\|_{L^2(\Omega)}^2 + \beta |u|_{BV(\Omega)},\\ \text{such that} - \Delta y = u \text{ and } y|_{\partial\Omega} = 0. \end{cases}$$
(P)

Here $y_{\Omega} \in L^2(\Omega)$ is some desired state and $\beta > 0$. This problem suffers from two nonsmoothnesses: The term $|u|_{BV(\Omega)} = \int_{\Omega} d|\nabla u|$ and $u \in BV(\Omega)$. For $\gamma > 0$ and $\delta > 0$ we introduce a regularization of (P)

$$\begin{cases} \min_{\substack{(y,u)\in H_0^1(\Omega)\times H^1(\Omega)}} \frac{1}{2} \|y-y_\Omega\|_{L^2(\Omega)}^2 + \beta \int_\Omega \sqrt{\delta} + |\nabla u|_2^2 \, dx + \frac{\gamma}{2} \|u\|_{H^1(\Omega)}^2, \\ \text{such that} - \Delta y = u \text{ and } y|_{\partial\Omega} = 0. \end{cases}$$
(P_{\gamma,\delta})

The first optimality conditions for $(P_{\gamma,\delta})$ show that optimal solutions of $(P_{\gamma,\delta})$ have higher regularity than just $H^1(\Omega)$. We show that this implies locally quadratic convergence of the Newton method for solving $(P_{\gamma,\delta})$. The smooth formulation also allows us to deduce two a posteriori error estimators for the errors caused by γ and δ respectively. Based on these error estimators and locally quadratic convergent Newton method we present a pathfollowing strategy solving (P) up to a desired error.

We will provide numerical examples illustrating the structure of the problems, the algorithmic performance and the effectivity of the error estimators for the regularization errors.