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Mathematical models of viscous fluids

(x , t) ∈ Q := Ω× (0,T ), f ∈ L2(Ω). Find u, p, σ such that

Equation of motion ρ
∂u
∂t

+ ui
∂u
∂xi
− divσ = f

Incompressibility div u = 0

Constitutive law σ = −pI + τ, τ ∈ ∂W (ε)

Initial and boundary conditions

u (x , t) = 0 (x , t) ∈ ∂1Ω× (0,+∞) ,

σν = F (x , t) ∈ ∂2Ω× (0,+∞) ,

u (x , 0) = ϕ (x) x ∈ Ω.



We discuss three questions:

What we can really know about the quality of an
approximation?

How to get a fully computable a posteriori estimate for
Stokes, Oseen, and Navier–Stokes problems?

Variational (Raleigh-Ritz type) principles for computing
the Inf-sup constant.

Proofs and details can be found in:

S. R. Estimates of the distance to the set of divergence free fields,
Zapiski. Nauchn. Semin. Steklov Inst. (POMI), 2014

S. R. On variational representations of the constant in the Inf-Sup
condition for the Stokes problem, J. Math. Sci., 2016

S. R. Estimates of the distance to the set of solenoidal vector fields and
applications to a posteriori error control, Comput. Math. Appl. Math.,
2015
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Steady state problems. Generalized solution u ∈ S0(Ω)

∫
Ω

π(u) : ∇w dx =

∫
Ω

f · w dx ∀w ∈ S0(Ω), (1)

where π(u) := σD(u)− κ(u), σD(u) = ν∇u.
Stokes problem: κ(u) = 0.
Oseen problem: κ(u) = a⊗ u.
Navier–Stokes problem: κ(u) = u ⊗ u.

Approximation v ∈ S0(Ω), generates the functional

Lv (w) :=

∫
Ω

(
f · w − π(v) : ∇w

)
dx , w ∈ S0(Ω)

which contains all available (really computable) information.



Therefore, the quantity

|Lv | := sup
w∈S0

Lv (w)

‖w‖S0

contains all we could potentially know about v .

|Lv | itself is not computable! because it requires computations
with infinite amount of test functions. Nevertheless, this difficulty
can be partially overcome because we are able to deduce two sided

bounds of |Lv |, which are indeed computable.

The question we need to discuss now is ”what we could really
obtain from the knowledge of |Lv |?”
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It is easy to see that

|Lv | = µπ(v , u),

µπ(v , u) := sup
w∈S0

∫
Ω

(π(u)− π(v)) : ∇w dx

‖w‖S0

It is easy to see that the µπ(v , u) is nonnegative and symmetric.
Also, it satisfies the triangle inequality

µπ(u, v) ≤ µπ(u,w) + µπ(v ,w).

µπ(v , u) is a certain measure (pseudometric) of the distance
between v and u.
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Since |Lv | contains all available information on the quality of
the approximate solution v , µπ(v , u) is in a natural (and

maximal) measure for the quantitative analysis.

For the Stokes problem,

µπ(u, v) = ν‖∇(u − v)‖
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For the Oseen problem, we have∫
Ω

(a⊗ w) : ∇w dx −
∫
Ω

Div(a⊗ w) · w dx = −
∫
Ω

(a · ∇w) · w dx

= −
∫
Ω

a · (∇w · w) dx = −1

2

∫
Ω

a · ∇(|w |2) dx = 0.

Therefore,

sup
w∈S1,2

0 (Ω,Rd )

∫
Ω

(ν∇(u − v) : ∇w − (a⊗ (u − v)) : ∇w) dx

‖∇w‖
≥ ν‖∇(u − v)‖

µπ(u, v) ≥ ν‖∇(u − v)‖



For the NS problem we can only prove that
µπ(v , u) ≥ c‖∇(v − u)‖, c > 0
provided that ∇v is sufficiently small and the bound of this
”smallness” depends on ν.

In general, µπ generated by NS equation is not a metric.



Comment: computational verification of non–uniqueness

”Whether or not there exists a unique flow u starting with the
initial velocity u0 and smoothly evolving in time from zero to 1?”

Millennium Problem

stated by the Clay Mathematical Institute in 2000.

Assume that we have
(A) a computable functional M+(v) such that

µπ(u, v) ≤ M+(v),

and M+(u) = 0 for any generalized solution.

(B) we have found two very accurate approximations v1 and v2

satisfying

M+(vi ) ≤ ε, i = 1, 2

In principle, this can always be achieved with the help of
sufficiently powerful computers.
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It seems that we have straightforward way:
We wish to verify that v1 and v2 approximate two different
solutions u1 and u2 by showing that

µπ(v1, v2)− µπ(v1, u1)︸ ︷︷ ︸−µπ(v2, u2)︸ ︷︷ ︸ ≥ µπ(v1, v2)− 2ε > 0.

computable error v1 error v2

However, regardless of the computational efforts focused on
computations of v1 and v2 and accuracy verification via M+, the

required (positive) result will never be achieved!

Indeed, if the problem is uniquely solvable, then a numerical
method is unable to establish the opposite.
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On the other hand, if the problem indeed possesses two different
solutions, then∫

Ω

(π(u1)− π(u2)) : ∇w dx = 0 ∀w ∈ S0.

Hence
µπ(u1, u2) = 0

and the left hand side will be always nonpositive.

µπ(v1, v2) ≤ µπ(v1, u1) + µπ(u1, u2) + µπ(v2, u2)

A pessimistic conclusion: the question of uniqueness or
non–uniqueness cannot be verified numerically if we are based only

on analysis of numerical (e.g., Galerkin) approximations to
generalized solutions and does not attract more sophisticated

arguments.



Computable bounds of Lv . Steady state equations

Key idea (earlier used in many other problems...):

The functional Lv should be split and transformed using
suitable integration by parts relations.

Let Y := ∇S0(Ω) (i.e., Y contains tensor valued functions, which
are gradients of all the functions in S0) and V and V∗ be another
pair of mutually conjugate Banach spaces such that V0 ∈ V,
V∗ ⊂ S∗0

‖w‖V ≤ CF (Ω)‖w‖S0 ∀w ∈ S0(Ω), (2)

(In our case norm of S0 is ‖∇w‖.)



Lv (w) =

∫
Ω

(f + Divτ) · w dx +

∫
Ω

(τ − π(v) + qI) : ∇w dx . (3)

Here

τ ∈ HDiv(Ω) := {τ ∈ Y ∗, | Divτ ∈ V∗}, (4)

and q is a scalar function such that qI ∈ Y ∗.
Hence, we find that for v ∈ S0(Ω), τ ∈ HDiv, and q:

|Lv | ≤ CF (Ω)‖f + Divτ‖V∗ + ‖τ − π(v) + qI‖Y ∗,

(5)



Extension to v ∈ V0

µπ(v , u) ≤ µπ(v0, u) + µπ(v , v0) ∀v0 ∈ S0(Ω)

and

µπ(v , v0) := sup
v0∈S0

∫
Ω

(π(v0)− π(v)) : ∇v0 dx

‖v0‖S0

≤ ‖π(v)− π(v0)‖Y ∗ ,

we find that

µπ(v , u) ≤ CF (Ω)‖f + Divτ‖V ∗

+ ‖τ − π(v) + qI‖Y ∗ + 2 inf
v0∈S0(Ω)

‖π(v)− π(v0)‖Y ∗ . (6)

For problems with Newtonian type potentials this problem can be
reduced to

inf
v0∈S0(Ω)

‖∇(v − v0)‖L2(Ω,M d×d ) =: Π
S1,2

0
(v)



Navier–Stokes problem: π(v) = ν∇v − v ⊗ v

Let v0 ∈ S1,2
0 (Ω,Rd).

‖π(v)− π(v0)‖ ≤ ν‖∇(v − v0)‖+ ‖v ⊗ v − v0 ⊗ v0‖

v ⊗ v − v0⊗ v0 = (v − v0)⊗ v + v ⊗ (v − v0)− (v − v0)⊗ (v − v0).
Hence

‖π(v)−π(v0)‖ ≤ ν‖∇(v0−v)‖+2‖v‖4,Ω‖v0−v‖4,Ω+‖v0−v‖2
4,Ω.

Due to embedding of W 1,2 to L4, we have the estimate

‖v0 − v‖4,Ω ≤ γ(Ω)‖∇(v0 − v)‖



We have a majorant of the distance to the set of divergence free
fields in terms of µπ generated by NS problem:

inf
v0∈S1,2

0 (Ω,Rd )
‖π(v)− π(v0)‖

≤ Π
S1,2

0
(v)
(
ν + 2γ(Ω)‖v‖2

4,Ω + γ2(Ω)Π
S1,2

0
(v)
)
. (7)



We arrive at the following result:

Theorem (Distance to a Hopf’s solution u)

For v ∈ V0, we have the estimate

µπ(v , u) ≤ CFΩ‖f + Divτ‖+

+‖τ − ν∇v + v ⊗ v + qI‖

+ΠS1,2
0

(v)
(
ν + 2γ(Ω)‖v‖2

4,Ω + γ2(Ω)ΠS1,2
0

(v)
)
.

The right hand side contains only known functions!

It remains to find Π
S1,2

0
(v)!
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Stability Theorem/Lemma [Aziz-Babuska, Ladyzhenskaya–Solonnikov, Nečas]

Theorem

For any f ∈ L2(Ω) such that {f }Ω = 0, there exists a function

wf ∈ W 1,2
0 (Ω,Rd) such that

divwf = f and ‖∇wf ‖ ≤ κΩ‖f ‖, (8)

where κΩ is a positive constant depending on Ω.

inf
p∈L̃2(Ω)

{p}Ω=0, p 6=0

sup
w∈V0

w 6=0

∫
Ω p divw dx

‖p‖ ‖∇w‖
≥ cΩ. (9)



Lemma (Distance to S1,q
0 (Ω,Rd))

For any v ∈W 1,q
0 (Ω,Rd),

d(v , S1,q
0 (Ω,Rd)) ≤ κΩ,q‖divv‖q,Ω. (10)

Lemma (Estimate based on decomposition)

Assume v ∈W 1,q(Ω,Rd) satisfies

{divv}Ωi
= 0 i = 1, 2, ...,N,

and divv ∈ Lδ(Ω), where δ ≥ q. Then, there exists
v0 ∈W 1,γ(Ω,Rd) such that divv0 = 0, v0 = v on Γ, and

‖∇(v − v0)‖Ω,q ≤
N∑
i=1

κΩi ,q|Ωi |
1
q
− 1
δ ‖divv‖Ωi ,q. (11)



κΩi ,q (or cΩi
) are required

C. Horgan and L. Payne, On inequalities of Korn, Friedrichs and
Babuska–Aziz., Arch. Ration. Mech. Anal., 1983.
G. Stoyan. Towards Discrete Velte Decompositions and Narrow Bounds for
Inf-Sup Constants, Computers and Mathematics with Applications, 1999
M. Dobrowolski. On the LBB constant on stretched domains, Math. Nachr.,
2003
M. Kessler. Die Ladyzhenskaya–Konstante in der numerischen Behandlung von
Stromungsproblemen. Doktorgrades der Bayerischen Univ. Wurzburg 2000.
M.A. Olshanskii and E.V. Chizhonkov. On the best constant in the inf sup
condition for prolonged rectangular domains, Matematicheskie Zametki, 2000
L. E. Payne. A bound for the optimal constant in an inequality of
Ladyzhenskaya and Solonnikov, IMA Journal of Appl. Math., 2007

M. Costabel and M. Dauge. On the inequalities of Babuska–Aziz, Friedrichs
and Horgan–Payne, Arch. Ration. Mech. Anal., 2015



cΩ = inf
φ∈L̃2(Ω)

||||||φ ||||||
‖φ‖

= inf
φ∈L̃2(Ω)
‖φ‖=1

||||||φ |||||| ,

where

||||||φ |||||| := sup
w∈V0

∫
Ω

φ divw dx

‖∇w‖
= ‖∇uφ‖,

where ∫
Ω

(∇uφ : ∇w + φdivw) dx = 0 ∀w ∈ V0.



A variational principle for cΩ

Lemma

cΩ = inf
φ∈L̃2(Ω)
‖φ‖=1

inf
τ0∈S
‖τ0 − φI‖, (12)

where S :=
{
τ0 ∈ U |

∫
Ω

τ0 : ∇w dx = 0 ∀w ∈ V0

}
.

1. We apply duality arguments in order to estimate ‖∇uφ‖, which
is the minimizer of the functional

Jφ(w) :=

∫
Ω

(
1

2
‖∇w‖2 + φdivw) dx and Jφ(uφ) = −1

2
‖∇uφ‖2.



Notice that Jφ(w) = sup
τ∈U:=L2(Ω,M d×d )

Lφ(w , τ),

Lφ(w , τ) :=

∫
Ω

(−1

2
|τ |2 + τ : ∇w + φdivw) dx .

2. We have

− 1

2
‖∇uφ‖2 = inf

v∈V0

sup
τ∈U

Lφ(w , τ) ≥ sup
τ∈U

inf
v∈V0

Lφ(w , τ). (13)

Since

inf
w∈V0

Lφ(w , τ) = −1

2
‖τ‖2 + inf

w∈V0

∫
Ω

(φI + τ) : ∇w dx ,

we see that infimum is finite if and only if

τ + φI ∈ S :=

τ0 ∈ U |
∫
Ω

τ0 : ∇w dx = 0 ∀w ∈ V0

 ,

i.e,Divτ0 = 0 in a generalized form.



Hence τ must have the form τ = τ0 − φI, and

inf
w∈V0

Lφ(w , τ) = −1

2
‖τ0 − φI‖2.

Then

J(uφ) = inf
w∈V0

J(w) = −1

2
‖∇uφ‖2 ≥ sup

τ0∈S
−1

2
‖τ0 − φI‖2

‖∇uφ‖2 ≤ − sup
τ0∈S
{−‖τ0 − φI‖2} = inf

τ0∈S
‖τ0 − φI‖2 (14)



3. To prove the opposite, we set τ0 = ∇uφ + φI. For any w ∈ V0,∫
Ω

τ0 : ∇w dx =

∫
Ω

(∇uφ : ∇w + φdivw) dx = 0,

and, therefore, τ0 ∈ S. We conclude that

inf
τ0∈S
‖τ0 − φI‖ ≤ ‖∇uφ‖. (15)

From (14) and (15), it follows that

||||||φ |||||| = inf
τ0∈S
‖τ0 − φI‖



We see that

cΩ = inf
φ∈L̃2(Ω)
‖φ‖=1

inf
τ0∈S
‖τ0 − φI‖.

(16)

cΩ is the distance between two sets of tensor functions:
S1 contains spheric tensors qI, ‖q‖ = 1, q ∈ L̃2.

SDiv contains tensor functions τ such that Divτ = 0



Comment:
1. Notice that the intersection of these two sets is empty.
Assume that there exists φ with zero mean such that ‖φ‖ = 1 and∫

Ω

φI : ∇w dx = 0 ∀w ∈ V0.

Then ∫
Ω

φdivw dx = 0.

For φ we can find wφ ∈ V0 such that divwφ = φ and therefore
‖φ‖ = 0. We arrive at a contradiction.
2. It is easy to see that cΩ ≤ 1. Set τij = 0 for i 6= j τ11 = 0,
τjj = φ, φ = φ(x1).



Other forms of the variational principle

I. We can narrower the set S

c2
Ω = inf

φ∈L̃2(Ω)
‖φ‖=1

inf
τ0∈S+∩ S̃

{
‖τD

0 ‖
2 + d‖

1

d
Spτ0 − φ‖2

}
,

where S̃ := {τ0 ∈ S, | {Spτ0}Ω = 0},

S+ :=

{
τ0 ∈ S, | ‖Spτ0‖ ≤ d , ‖τD0 ‖ ≤

√
d

2

}
.



II. We can exclude the function φ

c2
Ω = inf

τ0∈S

{
‖τD

0 ‖
2 +

1

d
(‖Spτ0‖ − d)2

}
.

or

c2
Ω = inf

τ0∈S+∩ S̃

{
‖τD

0 ‖
2 +

1

d
(‖Spτ0‖ − d)2

}
.



II. We can exclude the function φ

c2
Ω = inf

τ0∈S

{
‖τD

0 ‖
2 +

1

d
(‖Spτ0‖ − d)2

}
.
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c2
Ω = inf

τ0∈S+∩ S̃

{
‖τD

0 ‖
2 +

1

d
(‖Spτ0‖ − d)2

}
.



III. τ0 ∈ S can be replaced by τ ∈ Q := H(Ω,Div).

inf
τ0∈S
‖τ0 − τ‖ ≤ CF‖Divτ‖.

Therefore, we have

c2
Ω = inf

φ∈L̃2(Ω)
‖φ‖=1

inf
τ∈Q
α>0

{
α
(
‖τD‖2 +d

∥∥ 1
d Spτ−φ

∥∥2
)

+ α−1
α

C 2
F (Ω)‖Divτ‖2

}



Thanks for attention


