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Ludwig Prandtl
(1875 – 1953)



”‘Fluid dynamicists were divided into
hydraulic engineers
who observed what could not be
explained,
and mathematicians
who explained things that could not
be observed.”’

Sir Cyril Hinshelwood
(1897 – 1967)
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Jean D’Alembert
(1717 – 1783)

”‘Opuscules mathématiques”’



Osborne Reynolds
(1842 – 1912)

Ludwig Prandtl
(1875 – 1953)

Sir Geo↵rey Taylor
(1886 – 1975)



Zuse Z4 (1950) with Ferrit kernel storage
and multiple punch card reader



Pont des Invalides Paris, original drawing by Navier (1823)

In 1826, September 6, the
right pylon of Navier’s bridge
collapsed, caused by cracks in
a water pipe!
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Jacques Hadamard
(1865 – 1963)

”A mathematical

problem is called

well-posed, if there

exists a solution

which is uniquely de-

termined and depends

continuously on the

data.”



Henri Navier
(1785 – 1836)

Saint-Venant
(1797 – 1886)

Sir Gabriel Stokes
(1819 – 1903)
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The equations of motion:

Henri Navier:
Mémoire sur les lois du mouvement des fluides (1822)

Saint-Venant:
Mémoire sur la dynamique des fluides (1834)

Gabriel Stokes:
On the Theories of the Internal Friction of Fluids in Motion
(1845)



The equations of motion:

Claude Louis Marie Henri Navier:
Mémoire sur les lois du mouvement des fluides (1822)

Adhémar Jean Claude Barré de Saint-Venant:
Mémoire sur la dynamique des fluides (1834)

Sir George Gabriel Stokes:
On the Theories of the Internal Friction of Fluids in Motion
(1845)



The Navier-Stokes equations:
For (t,x) 2 (0, T )⇥G:

@
t

v � ⌫�v + (v ·r)v +rp = f

r · v = 0

On @G : v = 0

In t = 0 : v = v0

v = v(t,x) : velocity field
p = p(t,x) : kinematic pressure
f = f(t,x) : external force density
⌫ > 0 : kinematic viscosity
v0 = v0(x) : initial velocity

@G smooth

G ⇢ R3
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The Navier-Stokes equations:
For (t,x) 2 (0, T )⇥G:

@
t

v � ⌫�v + (v ·r)v +rp = f

r · v = 0

On @G : v = 0

In t = 0 : v = v0

Given:
f = f(t,x), ⌫ > 0, v0 = v0(x)

Construct:
v = v(t,x), p = p(t,x).

@G smooth

G ⇢ R3



Mathematical Di�culties:

I Nonlinear system: Uniqueness? Global Existence?

I No variational formulation

I No maximum principle

I No boundary values for the pressure p

I No time derivative for p: rp(x, t) = r(p(x, t) + q(t))

I The pressure acts non-locally

I Non-classical parabolic system
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Consequences?

I Carlo Miranda (Naples, Italy):
The Navier-Stokes equations mean an open door to hell!

I Kyuya Masuda (Tohoku, Sendai, Japan):
The Navier-Stokes equations are like a jungle with rare
fruits hanging in high trees.
But these fruits are delicious!
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Clay Mathematics Institute:
Millennium Price Problem (1 Million $)

”‘Although the Navier-Stokes equations were
written down in the 19th Century, our
understanding of them remains minimal. The
challenge is to make substantial progress toward a
mathematical theory, which will unlock the secrets
hidden in the Navier-Stokes equations.”’



. . . only 5 problems left?

Penny Smith withdrew her paper ”Im-
mortal smooth solution of the 3 space
dimensional Navier-Stokes system” in
2006, October 6, due to a ”serious
flaw”!
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ASTANA. January 10, 2014, 16:33 (10:33 GMT). BNews.kz 
Photo resource enu.kz 
 

Academician from Astana Mukhtarbai 
Otelbayev has solved one of seven most 
difficult mathematical millennium problems, 
the press service of the Eurasian National 
University reports. 
Mukhtarbay Otelbaev, Prof. Dr., Academician of 
the NAS of the RK, Director of the Eurasian 
Mathematical Institute of L.N. Gumilyov 
Eurasian National University, completed and 
published paper “Existence of a strong solution 
of the Navier-Stokes equations" in the 
press.��The importance of the publication is 
that this problem is included in the 7 most 
complex mathematical problems, which are 
called “millennium problems". Note that for the 
solution of each of these problems Clay 
Mathematics Institute in early 2000 announced 
a prize of $ 1 million. Currently, only one of the 
seven Millennium problems (Poincaré 
conjecture) is solved. The Fields Prize for her 
decision was awarded to G.Perelman.��Full 
Article of Muhtarbay Otelbaev was published in 
"Mathematical Journal" (2013, v.13 , № 4 (50)) 
http://www.math.kz/index.php/ru/513.!



 
 

To my shame, 
on page 56 the 
inequality (6.34)  
is incorrect, 
therefore,  
the proposition 6.3 
(p. 54) isn’t proved!!





Fundamental contributions since 1900:

I Jean Leray: Sur le mouvement d’un liquide visqueux
emplissant l’espace. Acta Math. 63 (1934)

I Eberhard Hopf: Über die Anfangsrandwertaufgabe für die
hydrodynamischen Grundgleichungen. Math. Nachr. 4
(1951)

I A. A. Kiselev und O. A. Ladyzhenskaya: On existence and
uniqueness of the solution of the nonstationary problem
for a viscous incompressible fluid. Izv. Akad. Nauk. SSSR
21 (1957)

I James Serrin: The initial value problem for he
Navier-Stokes equations. Univ. Wisconsin Press 9 (1963)





Weak solutions
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⇠= kv(t, ·)k2 =

Z

G

|v(t, x)|2 dx

Weyl:

L2(G) = H0(G)� G(G)

u = v +rp

with

H0(G) = {v|r · v = 0 in G, v ·N = 0 on @G}
= C1

0,�(G)
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G(G) = {v|v = rp in G}

Hence: (v,rp)L2 =
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G
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Weak solutions
Let

P : L2(G) �! H0(G)

Then:

Pv = v if v 2 H0(G)

Prp = 0 if rp 2 G(G).

Navier-Stokes equations
In (0, T )⇥G:

@tv � ⌫P�v + P (v ·rv) = Pf

For t = 0:
v = v0 2 H0(G)

Theorem (Leray-Hopf): Let T > 0. For v0 2 H0(G), ⌫ > 0
and f 2 L2(0, T ;L2(G)) there is at least one weak solution v
of the Navier-Stokes equations.
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Leray 1933, 1934

... one weak solution of (NS)!”

“There is at least ...

Hopf 1951



Weak solutions
Def: Let v0 2 H0(G), f 2 L2(0, T ;L2(G)). A function

v 2 L1(0, T ;H0(G) \ L2(0, T ;H1(G))

is called a weak solution of the NSE, if
Z T

0

✓��v,�t

�
L2 + ⌫

�rv,r��
L2 �

�
v ·r�, v�

L2

◆
dt

=
�
v0,'(0)

�
L2 +

Z T

0

�
f, v

�
dt

for all � 2 C1
0

�
[0, t);C1

0,�(G)
�
,

and if the energy inequality

kv(t)k2 + 2⌫

Z T

0

krv(⌧)k2 d⌧  kv0k2 +
Z t

0

�
f(⌧), v(⌧)

�
d⌧

holds.



Strong solutions:

A weak solution u of (NS) is called a strong solution of (NS),
if there are numbers s, q (the so-called Serrin exponents) with

2 < s < 1, 3 < q < 1,
2

s
+

3

q
= 1

such that additionally Serrin’s condition

u 2 Ls(0, T ;Lq(⌦))

is satisfied.
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Serrin 1963

“Strong solutions
are unique!”

Masuda 1984
Kozono & Sohr 1996



Strong solutions are regular:

Let
@⌦ 2 C1, F 2 C1�

(0, T )⇥ ⌦
�
,

u strong solution of (NS),

then

u 2 C1�
(0, T )⇥ ⌦

�
, p 2 C1�

(0, T )⇥ ⌦
�
.

Serrin 1962, 1963
Heywood 1980, 1988
Galdi & Maremonti 1988
Beirao da Veiga 1995, 1997
Neustupa 1999
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Serrin versus Leray-Hopf

Serrin class

of strong solutions:

Existence ?

Uniqueness !

Regularity !

Leray-Hopf class

of weak solutions:

Existence !

Uniqueness ?

Regularity ?

22 / 1
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Let us collect: 
 
! For n = 2 (planar flow), the Navier-Stokes equations are 

 well posed, hence blow-up not possible! 
 

! For n = 3, there exists a global (in time) weak solution 
 (Leray – Hopf) 

 

! Due to lack of regularity, uniqueness of weak  solutions  
 (n = 3) is unknown up to now (Millennium-Problem!) 

 

! For n = 3, there exists a local (in time) unique strong 
 solution, hence blow-up possible! 

 

! For n = 3 and sufficiently small data, there exists a global 
 (in time) unique strong solution 
 

 



Strong solutions locally in time:

Theorem (Prodi 1962, Heywood 1981): Let in addition
rv0 2 L2(G) and f 2 L2(0, T ;H1(G)). Then there is a time
T ⇤ = T ⇤(krv0k, ⌫, f) > 0 such that there exists a unique
strong solution v of the NSE in (0, T ⇤)⇥G.

Construct an a-priori estimate for

t �! krv(t, ·)k2, 0  t  T
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Question:

Let u be a weak solution of (NS) with data

u

0

2 L

2

�(⌦) , f = r · F, F 2 L

2

�

0,1;L2(⌦)
�

.

What additional regularity of the data is sufficient for u to
be a strong solution in some intervall (0, T ), 0 < T  1,
i.e. what additional regularity of the data implies

u 2 L

s(0, T ;Lq(⌦))

for some

2 < s < 1, 3 < q < 1,

2

s

+
3

q

= 1 ?
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Stokes Operator A
q

:

Let 1 < q < 1:

I
Pq : Lq(⌦) ! L

q
�(⌦) Helmholtz projection

(P := P

2

)

I
Aq = �Pq� : D(Aq) ! L

q
�(⌦) Stokes operator

(A := A

2

)
I D(Aq) = W 2,q(⌦) \ W 1,q

0 (⌦) \ Lq
�(⌦)

I R(Aq) = Lq
�(⌦)

I Semigroup e

�tAq
, t � 0 generated by Aq in L

q
�(⌦)
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Fractional Powers A↵

q

:

Let 1 < q < 1, �1  ↵  1:
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↵
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↵
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q
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q +
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Question:

What is the weakest possible condition on the data
u

0

and f to get a (local) strong solution of (NS)?

Can we formulate conditions on the data u

0

and f which
are sufficient and necessary for u to be a (local) strong
solution of (NS)?
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Theorem 1:

Let
I ⌦ ⇢ R3 be a bounded domain with @⌦ 2 C

2,1,
I 2 < s < 1, 3 < q < 1 with 2

/s + 3

/q = 1,
I

u

0

2 L

2

�(⌦), f = r · F with
F 2 L

2(0,1;L2(⌦)) \ L

s/2
�

0,1;Lq/2(⌦)
�

.
Then:

1. The condition

~
ˆ 1

0

�

�

e

�tA
u

0

�

�

s

q
dt < 1

is sufficient and necessary for the existence of a unique
strong solution u 2 L

s(0, T ;Lq(⌦)) of (NS) with data
u

0

, f in some intervall [0, T ), 0 < T  1.
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2. Let u be a weak solution of (NS) in [0,1)⇥ ⌦ with
data u

0

, f , and let
ˆ 1
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e
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u
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q
dt = 1.

Then for every 0 < T  1, Serrin’s condition
u 2 L

s(0, T ;Lq(⌦)) does not hold, and in every
intervall [0, T ), 0 < T  1, the system (NS) does not
have a strong solution with data u

0

, f and Serrin
exponents s, q.
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Remark 1:

I 1. means:

u 2 L

s(0, T ;Lq(⌦)) , v 2 L

s(0,1;Lq(⌦)) ,

v(t) := e

�tA
u

0

is the solution of a
homogeneous linear Stokes system.

I 2. means:

u
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2 L

2

�(⌦) ,

ˆ 1

0
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�tA
u

0

�
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s

q
dt = 1

for all Serrin exponents s, q
)
For all q, s and all 0 < T  1, (NS)
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Theorem 1B:

Let
I ⌦ ⇢ R3 be a bounded domain with @⌦ 2 C

2,1,
I 2 < s < 1, 3 < q < 1 with 2
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u

0

2 L

2

�(⌦), f = r · F with
F 2 L
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s/2
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0,1;Lq/2(⌦)
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.
Then:

1. The condition
u

0

2 B�2/s
q,s (⌦)

is sufficient and necessary for the existence of a unique
strong solution u 2 L

s(0, T ;Lq(⌦)) on (NS) with data
u

0

, f in some intervall [0, T ), 0 < T  1.
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2. Let u be a weak solution of (NS) in [0,1)⇥ ⌦ with
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0

, f and Serrin
exponents s, q.
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General domains ⌦ ⇢ R3 (s = 8, q = 4):

I ⌦ bounded or unbounded, @⌦ bounded or unbounded
@⌦ smooth or non-smooth (corners, edges, cracks, ...)

I In this general case, there is no Stokes operator Aq in
L

q
�(⌦), q 6= 2.

I However, Theorem 1 and Theorem 2 remain true also
for general domains ⌦ ⇢ R3 in the case s = 8, q = 4
(2/8 + 3

/4 = 1), since here only the L

2-approach for the
Stokes Operator is used.

I Moreover, in this case the constant " = "(⌦, q) from
Theorem 2 does not depend on ⌦ and is therefore an
absolute constant.
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Theorem 4:

Let
I ⌦ ⇢ R3 be a general domain with boundary @⌦,
I

u

0

2 L

2

�(⌦), f = r · F with
F 2 L

2(0,1;L2(⌦)) \ L

4(0,1;L2(⌦)).
Then:

The condition ˆ 1

0

�

�

e

�tA
u

0

�

�

8

4

dt < 1

is sufficient and necessary for the existence of a unique
strong solution u 2 L

8(0, T ;L4(⌦)) of (NS) with data
u

0

, f in some intervall [0, T ), 0 < T  1.
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Theorem 5:

Let
I ⌦ ⇢ R3 be a general domain with boundary @⌦,
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then (NS) has a unique strong solution u 2 L

8(0, T ;L4(⌦))
with data u

0

, f .
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