The Navier-Stokes equations -

Werner Varnhorn
Institute of Mathematics - Kassel University - Germany varnhorn@mathematik.uni-kassel.de

Workshop AANMPDE 10
Paleochora, Crete
October 5, 2017

> Ludwig PrandtI $(1875-1953)$

"'Fluid dynamicists were divided into hydraulic engineers who observed what could not be explained, and mathematicians who explained things that could not be observed."'

Sir Cyril Hinshelwood (1897-1967)

Sir Horace Lamb
(1849-1934)

Sir Horace Lamb
(1849-1934)

Sydney Goldstein (1903-1989)

Sir Horace Lamb $(1849-1934)$
"'You can read all of Lamb without realizing that water is wet!"'

Sydney Goldstein (1903-1989)

Jean D'Alembert (1717-1783)

"'Opuscules mathématiques"'

Osborne Reynolds (1842-1912)

Ludwig Prandtl (1875-1953)

Sir Geoffrey Taylor
(1886-1975)

Zuse Z4 (1950) with Ferrit kernel storage and multiple punch card reader

Pont des Invalides Paris, original drawing by Navier (1823)

Pont des Invalides Paris, original drawing by Navier (1823)

In 1826, September 6, the right pylon of Navier's bridge collapsed, caused by cracks in a water pipe!

"A mathematical problem is called well-posed, if there exists a solution which is uniquely determined and depends continuously on the data."

Jacques Hadamard (1865-1963)

Henri Navier
(1785-1836)

Henri Navier
(1785-1836)

Saint-Venant
(1797-1886)

Henri Navier
(1785-1836)

Saint-Venant
(1797-1886)

Sir Gabriel Stokes (1819-1903)

The equations of motion:

Henri Navier:
Mémoire sur les lois du mouvement des fluides (1822)
Saint-Venant:
Mémoire sur la dynamique des fluides (1834)
Gabriel Stokes:
On the Theories of the Internal Friction of Fluids in Motion (1845)

The equations of motion:

Claude Louis Marie Henri Navier:
Mémoire sur les lois du mouvement des fluides (1822)
Adhémar Jean Claude Barré de Saint-Venant:
Mémoire sur la dynamique des fluides (1834)
Sir George Gabriel Stokes:
On the Theories of the Internal Friction of Fluids in Motion (1845)

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$
∂G smooth

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad v=0$
$\ln t=0: \quad v=\boldsymbol{v}_{\mathbf{0}}$
$\boldsymbol{v}=\boldsymbol{v}(t, \boldsymbol{x}):$ velocity field

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$
$\boldsymbol{v}=\boldsymbol{v}(t, \boldsymbol{x}):$ velocity field
$p=p(t, \boldsymbol{x})$: kinematic pressure

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$
$\boldsymbol{v}=\boldsymbol{v}(t, \boldsymbol{x}):$ velocity field
$p=p(t, \boldsymbol{x})$: kinematic pressure
$\boldsymbol{f}=\boldsymbol{f}(t, \boldsymbol{x})$: external force density

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$
$\boldsymbol{v}=\boldsymbol{v}(t, \boldsymbol{x}):$ velocity field
$p=p(t, \boldsymbol{x})$: kinematic pressure
$\boldsymbol{f}=\boldsymbol{f}(t, \boldsymbol{x})$: external force density
$\nu>0: \quad$ kinematic viscosity

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad v=v_{0}$
$\boldsymbol{v}=\boldsymbol{v}(t, \boldsymbol{x}):$ velocity field
$p=p(t, \boldsymbol{x})$: kinematic pressure
$\boldsymbol{f}=\boldsymbol{f}(t, \boldsymbol{x})$: external force density
$\nu>0$: kinematic viscosity
$\boldsymbol{v}_{\mathbf{0}}=\boldsymbol{v}_{\mathbf{0}}(\boldsymbol{x}):$ initial velocity

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$
$\partial_{t}:$
partial time derivative

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0$: $\quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$ partial time derivative Laplace operator

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\nabla p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$
$\partial_{t}:$
partial time derivative
Laplace operator
gradient

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \nabla) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$

$\partial_{t}:$	partial time derivative
$\Delta:$	Laplace operator
$\boldsymbol{\nabla}:$	gradient
$(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}:$	nonlinear Term

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$

Balance of forces

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\nabla \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$

Balance of forces
Conservation of mass

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On ∂G :

$$
\boldsymbol{v}=0
$$

$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$

Balance of forces
Conservation of mass
No-slip condition on the boundary

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

$$
\begin{aligned}
\text { On } \partial G: & \boldsymbol{v}=0 \\
\ln t=0: & \boldsymbol{v}=\boldsymbol{v}_{0}
\end{aligned}
$$

Balance of forces
Conservation of mass
No-slip condition on the boundary
Initial condition

The Navier-Stokes equations:

For $(t, \boldsymbol{x}) \in(0, T) \times G$:

$$
\begin{aligned}
\partial_{t} \boldsymbol{v}-\nu \Delta \boldsymbol{v}+(\boldsymbol{v} \cdot \boldsymbol{\nabla}) \boldsymbol{v}+\boldsymbol{\nabla} p & =\boldsymbol{f} \\
\boldsymbol{\nabla} \cdot \boldsymbol{v} & =0
\end{aligned}
$$

On $\partial G: \quad \boldsymbol{v}=0$
$\ln t=0: \quad \boldsymbol{v}=\boldsymbol{v}_{\mathbf{0}}$

Given:
$\boldsymbol{f}=\boldsymbol{f}(t, \boldsymbol{x}), \nu>0, \boldsymbol{v}_{\mathbf{0}}=\boldsymbol{v}_{\mathbf{0}}(\boldsymbol{x})$
Construct:
$\boldsymbol{v}=\boldsymbol{v}(t, \boldsymbol{x}), p=p(t, \boldsymbol{x})$.

Mathematical Difficulties:

Mathematical Difficulties:

- Nonlinear system: Uniqueness? Global Existence?

Mathematical Difficulties:

- Nonlinear system: Uniqueness? Global Existence?
- No variational formulation

Mathematical Difficulties:

- Nonlinear system: Uniqueness? Global Existence?
- No variational formulation
- No maximum principle

Mathematical Difficulties:

- Nonlinear system: Uniqueness? Global Existence?
- No variational formulation
- No maximum principle
- No boundary values for the pressure p

Mathematical Difficulties:

- Nonlinear system: Uniqueness? Global Existence?
- No variational formulation
- No maximum principle
- No boundary values for the pressure p
- No time derivative for $p: \nabla p(x, t)=\nabla(p(x, t)+q(t))$

Mathematical Difficulties:

- Nonlinear system: Uniqueness? Global Existence?
- No variational formulation
- No maximum principle
- No boundary values for the pressure p
- No time derivative for $p: \nabla p(x, t)=\nabla(p(x, t)+q(t))$
- The pressure acts non-locally

Mathematical Difficulties:

- Nonlinear system: Uniqueness? Global Existence?
- No variational formulation
- No maximum principle
- No boundary values for the pressure p
- No time derivative for $p: \nabla p(x, t)=\nabla(p(x, t)+q(t))$
- The pressure acts non-locally
- Non-classical parabolic system

Consequences?

Consequences?

- Carlo Miranda (Naples, Italy):

The Navier-Stokes equations mean an open door to hell!

Consequences?

- Carlo Miranda (Naples, Italy): The Navier-Stokes equations mean an open door to hell!
- Kyuya Masuda (Tohoku, Sendai, Japan): The Navier-Stokes equations are like a jungle with rare fruits hanging in high trees.

Consequences?

- Carlo Miranda (Naples, Italy): The Navier-Stokes equations mean an open door to hell!
- Kyuya Masuda (Tohoku, Sendai, Japan): The Navier-Stokes equations are like a jungle with rare fruits hanging in high trees.
But these fruits are delicious!

Clay Mathematics Institute:

Millennium Price Problem (1 Million \$)
"'Although the Navier-Stokes equations were written down in the 19th Century, our understanding of them remains minimal. The challenge is to make substantial progress toward a mathematical theory, which will unlock the secrets hidden in the Navier-Stokes equations."'

... only 5 problems left?

Home | News | Poincare Conjecture: Grigory Perelman | Navier-Stokes Equation

... only 5 problems left?

Home | News I Poincare Conjecture: Grigory Perelman | Navier-Stokes Equation

... only 5 problems left?

Home | News | Poincare Conjecture: Grigory Perelman | Navier-Stokes Equation

Penny Smith withdrew her paper "Immortal smooth solution of the 3 space dimensional Navier-Stokes system" in 2006, October 6, due to a "serious flaw"!

ASTANA. January 10, 2014, 16:33 (10:33 GMT). BNews.kz Photo resource enu.kz

Academician from Astana Mukhtarbai Otelbayev has solved one of seven most difficult mathematical millennium problems, the press service of the Eurasian National University reports.
Mukhtarbay Otelbaev, Prof. Dr., Academician of the NAS of the RK, Director of the Eurasian Mathematical Institute of L.N. Gumilyov Eurasian National University, completed and published paper "Existence of a strong solution of the Navier-Stokes equations" in the press. The importance of the publication is that this problem is included in the 7 most complex mathematical problems, which are called "millennium problems". Note that for the solution of each of these problems Clay Mathematics Institute in early 2000 announced a prize of $\$ 1$ million. Currently, only one of the seven Millennium problems (Poincaré conjecture) is solved. The Fields Prize for her decision was awarded to G.Perelman. Full Article of Muhtarbay Otelbaev was published in "Mathematical Journal" (2013, v. 13 , № 4 (50)) http://www.math.kz/index.php/ru/513.

To my shame, on page 56 the inequality (6.34) is incorrect, therefore,
 the proposition 6.3 (p. 54) isn't proved!

Navier-Stokes Equations-Millennium Prize Problems

Asset A. Durmagambetov, Leyla S. Fazilova
System Research "Factor" Company, Astana, Kazakhstan
Email: asset.durmagambet@gmail.com

Received 6 February 2015; accepted 24 February 2015; published 27 February 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/
(c) (i) Open Access

Abstract

In this work, we present final solving Millennium Prize Problems formulated by Clay Math. Inst., Cambridge. A new uniform time estimation of the Cauchy problem solution for the Navier-Stokes equations is provided. We also describe the loss of smoothness of classical solutions for the Navi-er-Stokes equations.

Fundamental contributions since 1900 :

- Jean Leray: Sur le mouvement d'un liquide visqueux emplissant l'espace. Acta Math. 63 (1934)
- Eberhard Hopf: Über die Anfangsrandwertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4 (1951)
- A. A. Kiselev und O. A. Ladyzhenskaya: On existence and uniqueness of the solution of the nonstationary problem for a viscous incompressible fluid. Izv. Akad. Nauk. SSSR 21 (1957)
- James Serrin: The initial value problem for he Navier-Stokes equations. Univ. Wisconsin Press 9 (1963)

Weak solutions

Weak solutions

$$
E_{k i n} \cong\|v(t, \cdot)\|^{2}=\int_{G}|v(t, x)|^{2} \mathrm{~d} x
$$

Weak solutions

$$
E_{k i n} \cong\|v(t, \cdot)\|^{2}=\int_{G}|v(t, x)|^{2} \mathrm{~d} x
$$

Weyl:

$$
\begin{aligned}
L^{2}(G) & =\mathcal{H}^{0}(G) \oplus \mathcal{G}(G) \\
u & =v+\nabla p
\end{aligned}
$$

with

$$
\begin{aligned}
\mathcal{H}^{0}(G) & =\{v \mid \nabla \cdot v=0 \text { in } G, v \cdot N=0 \text { on } \partial G\} \\
& =\overline{C_{0, \sigma}^{\infty}(G)} \\
\mathcal{G}(G) & =\{v \mid v=\nabla p \text { in } G\}
\end{aligned}
$$

Weak solutions

$$
E_{k i n} \cong\|v(t, \cdot)\|^{2}=\int_{G}|v(t, x)|^{2} \mathrm{~d} x
$$

Weyl:

$$
\begin{aligned}
L^{2}(G) & =\mathcal{H}^{0}(G) \oplus \mathcal{G}(G) \\
u & =v+\nabla p
\end{aligned}
$$

with

$$
\begin{aligned}
\mathcal{H}^{0}(G) & =\{v \mid \nabla \cdot v=0 \text { in } G, v \cdot N=0 \text { on } \partial G\} \\
& =\overline{C_{0, \sigma}^{\infty}(G)}\|\cdot\| \\
\mathcal{G}(G) & =\{v \mid v=\nabla p \text { in } G\}
\end{aligned}
$$

Hence: $\quad(v, \nabla p)_{L^{2}}=\int_{G} v(x) \cdot \nabla p(x) \mathrm{d} t=0$

Weak solutions

Let

$$
P: L^{2}(G) \longrightarrow \mathcal{H}^{0}(G)
$$

Then:

$$
\begin{array}{rlrl}
P v & =v & \text { if } & v \in \mathcal{H}^{0}(G) \\
P \nabla p=0 & \text { if } & \nabla p \in \mathcal{G}(G) .
\end{array}
$$

Weak solutions

Let

$$
P: L^{2}(G) \longrightarrow \mathcal{H}^{0}(G)
$$

Then:

$$
\begin{aligned}
P v & =v & \text { if } & v \in \mathcal{H}^{0}(G) \\
P \nabla p & =0 & \text { if } & \nabla p \in \mathcal{G}(G) .
\end{aligned}
$$

Navier-Stokes equations $\ln (0, T) \times G$:

$$
\partial_{t} v-\nu P \Delta v+P(v \cdot \nabla v)=P f
$$

For $t=0$:

$$
v=v_{0} \in \mathcal{H}^{0}(G)
$$

Weak solutions

Let

$$
P: L^{2}(G) \longrightarrow \mathcal{H}^{0}(G)
$$

Then:

$$
\begin{array}{rlrl}
P v & =v & \text { if } & v \in \mathcal{H}^{0}(G) \\
P \nabla p=0 & \text { if } & \nabla p \in \mathcal{G}(G) .
\end{array}
$$

Navier-Stokes equations $\ln (0, T) \times G$:

$$
\partial_{t} v-\nu P \Delta v+P(v \cdot \nabla v)=P f
$$

For $t=0$:

$$
v=v_{0} \in \mathcal{H}^{0}(G)
$$

Theorem (Leray-Hopf): Let $T>0$. For $v_{0} \in \mathcal{H}^{0}(G), \nu>0$ and $f \in L^{2}\left(0, T ; L^{2}(G)\right)$ there is at least one weak solution v of the Navier-Stokes equations.

"There is at least ...
... one weak solution of (NS)!"

Weak solutions

Def: Let $v_{0} \in \mathcal{H}^{0}(G), f \in L^{2}\left(0, T ; L^{2}(G)\right)$. A function

$$
v \in L^{\infty}\left(0, T ; \mathcal{H}^{0}(G) \cap L^{2}\left(0, T ; \mathcal{H}^{1}(G)\right)\right.
$$

is called a weak solution of the NSE, if

$$
\begin{gathered}
\int_{0}^{T}\left(\left(-v, \phi_{t}\right)_{L^{2}}+\nu(\nabla v, \nabla \phi)_{L^{2}}-(v \cdot \nabla \phi, v)_{L^{2}}\right) \mathrm{d} t \\
=\left(v_{0}, \varphi(0)\right)_{L^{2}}+\int_{0}^{T}(f, v) \mathrm{d} t
\end{gathered}
$$

for all $\phi \in C_{0}^{\infty}\left([0, t) ; C_{0, \sigma}^{\infty}(G)\right)$,
and if the energy inequality

$$
\|v(t)\|^{2}+2 \nu \int_{0}^{T}\|\nabla v(\tau)\|^{2} \mathrm{~d} \tau \leq\left\|v_{0}\right\|^{2}+\int_{0}^{t}(f(\tau), v(\tau)) \mathrm{d} \tau
$$

holds.

Strong solutions:

Strong solutions:

A weak solution u of (NS) is called a strong solution of (NS), if there are numbers s, q (the so-called Serrin exponents) with

$$
2<s<\infty, \quad 3<q<\infty, \quad \frac{2}{s}+\frac{3}{q}=1
$$

such that additionally Serrin's condition

$$
u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)
$$

is satisfied.

"Strong solutions are unique!"

Masuda 1984
Kozono \& Sohr 1996
Serrin 1963

Strong solutions are regular:

Strong solutions are regular:

Let

$$
\begin{aligned}
& \partial \Omega \in C^{\infty}, \quad F \in C^{\infty}((0, T) \times \bar{\Omega}), \\
& u \text { strong solution of }(\mathrm{NS})
\end{aligned}
$$

Strong solutions are regular:

Let

$$
\begin{aligned}
& \partial \Omega \in C^{\infty}, \quad F \in C^{\infty}((0, T) \times \bar{\Omega}), \\
& u \text { strong solution of }(\mathrm{NS}),
\end{aligned}
$$

then

$$
u \in C^{\infty}((0, T) \times \bar{\Omega}), \quad p \in C^{\infty}((0, T) \times \bar{\Omega}) .
$$

Strong solutions are regular:

Let

$$
\begin{aligned}
& \partial \Omega \in C^{\infty}, \quad F \in C^{\infty}((0, T) \times \bar{\Omega}), \\
& u \text { strong solution of }(\mathrm{NS})
\end{aligned}
$$

then

$$
u \in C^{\infty}((0, T) \times \bar{\Omega}), \quad p \in C^{\infty}((0, T) \times \bar{\Omega})
$$

Serrin 1962, 1963
Heywood 1980, 1988
Galdi \& Maremonti 1988
Beirao da Veiga 1995, 1997
Neustupa 1999

Serrin versus Leray-Hopf

Serrin class
of strong solutions:
Existence?
Uniqueness !
Regularity!

Leray-Hopf class
of weak solutions:

Existence!

Uniqueness ?
Regularity?

Let us collect:

Let us collect:

> For $\mathrm{n}=2$ (planar flow), the Navier-Stokes equations are well posed (Serrin)

Let us collect:

> For $\mathrm{n}=2$ (planar flow), the Navier-Stokes equations are well posed (Serrin)

For $\mathrm{n}=3$, there exists a global (in time) weak solution (Leray - Hopf)

Let us collect:

> For $\mathrm{n}=2$ (planar flow), the Navier-Stokes equations are well posed (Serrin)
> For $\mathrm{n}=3$, there exists a global (in time) weak solution (Leray - Hopf)
> Due to lack of regularity, uniqueness of weak solutions ($\mathrm{n}=3$) is unknown up to now (Millennium-Problem!)

Let us collect:

> For $\mathrm{n}=2$ (planar flow), the Navier-Stokes equations are well posed (Serrin)
> For $\mathrm{n}=3$, there exists a global (in time) weak solution (Leray - Hopf)
> Due to lack of regularity, uniqueness of weak solutions ($\mathrm{n}=3$) is unknown up to now (Millennium-Problem!)
> For $\mathrm{n}=3$, there exists a local (in time) unique strong solution (Kiselev - Ladyzhenskaya)

Let us collect:

> For $\mathrm{n}=2$ (planar flow), the Navier-Stokes equations are well posed (Serrin)
> For $\mathrm{n}=3$, there exists a global (in time) weak solution (Leray - Hopf)
> Due to lack of regularity, uniqueness of weak solutions ($\mathrm{n}=3$) is unknown up to now (Millennium-Problem!)
> For $\mathrm{n}=3$, there exists a local (in time) unique strong solution (Kiselev - Ladyzhenskaya)
> For $\mathrm{n}=3$ and sufficiently small data, there exists a global (in time) unique strong solution

Let us collect:

> For $\mathrm{n}=2$ (planar flow), the Navier-Stokes equations are well posed, hence blow-up not possible!
$>$ For $\mathrm{n}=3$, there exists a global (in time) weak solution (Leray - Hopf)
> Due to lack of regularity, uniqueness of weak solutions ($\mathrm{n}=3$) is unknown up to now (Millennium-Problem!)
> For $\mathrm{n}=3$, there exists a local (in time) unique strong solution, hence blow-up possible!
> For $\mathrm{n}=3$ and sufficiently small data, there exists a global (in time) unique strong solution

Strong solutions locally in time:

Strong solutions locally in time:

Theorem (Prodi 1962, Heywood 1981): Let in addition $\nabla v_{0} \in L^{2}(G)$ and $f \in L^{2}\left(0, T ; H^{1}(G)\right)$. Then there is a time $T^{*}=T^{*}\left(\left\|\nabla v_{0}\right\|, \nu, f\right)>0$ such that there exists a unique strong solution v of the NSE in $\left(0, T^{*}\right) \times G$.

Strong solutions locally in time:

Theorem (Prodi 1962, Heywood 1981): Let in addition $\nabla v_{0} \in L^{2}(G)$ and $f \in L^{2}\left(0, T ; H^{1}(G)\right)$. Then there is a time $T^{*}=T^{*}\left(\left\|\nabla v_{0}\right\|, \nu, f\right)>0$ such that there exists a unique strong solution v of the NSE in $\left(0, T^{*}\right) \times G$.

Construct an a-priori estimate for

$$
t \longrightarrow\|\nabla v(t, \cdot)\|^{2}, \quad 0 \leq t \leq T
$$

Energy equation $(f=0)$:

$$
\left(\partial_{t} v(t)-\nu \Delta v(t)+v(t) \cdot \nabla v(t)+\nabla p(t), v(t)\right)_{L^{2}}=0
$$

L^{2}-orthogonality

$$
(v(t) \cdot \nabla v(t), v(t))_{L^{2}}=0
$$

implies

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|v(t)\|^{2}+\nu\|\nabla v(t)\|^{2}=0
$$

Integration:

$$
\|v(t)\|^{2}+2 \nu \int_{0}^{t}\|\nabla v(s)\|^{2} \mathrm{~d} s=\left\|v_{0}\right\|^{2}
$$

implies

$$
\int_{0}^{T}\|\nabla v(t)\|^{2} \mathrm{~d} t<\infty
$$

Gradient estimate $(f=0)$

$$
\left(\partial_{t} v(t)-\nu \Delta v(t)+v(t) \cdot \nabla v(t)+\nabla p(t),-P \Delta v(t)\right)_{L^{2}}=0
$$

Estimate

$$
|(v(t) \cdot \nabla v(t),-P \Delta v(t))| \leq \frac{\nu}{2}\|P \Delta v(t)\|^{2}+K_{n}\|\nabla v(t)\|^{2 n}
$$

implies

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|\nabla v(t)\|^{2}+\nu\|P \Delta v(t)\|^{2} \leq \begin{cases}K_{2}\|\nabla v(t)\|^{4} & (n=2) \\ K_{3}\|\nabla v(t)\|^{6} & (n=3)\end{cases}
$$

Gradient estimate $(f=0)$

$$
\left(\partial_{t} v(t)-\nu \Delta v(t)+v(t) \cdot \nabla v(t)+\nabla p(t),-P \Delta v(t)\right)_{L^{2}}=0
$$

Estimate

$$
|(v(t) \cdot \nabla v(t),-P \Delta v(t))| \leq \frac{\nu}{2}\|P \Delta v(t)\|^{2}+K_{n}\|\nabla v(t)\|^{2 n}
$$

implies

$$
\frac{\mathrm{d}}{\mathrm{dt}}\|\nabla v(t)\|^{2}+\nu\|P \Delta v(t)\|^{2} \leq \begin{cases}K_{2}\|\nabla v(t)\|^{4} & (n=2) \\ K_{3}\|\nabla v(t)\|^{6} & (n=3)\end{cases}
$$

$$
\psi^{\prime}(t) \quad \leq \begin{cases}K_{2} \psi^{2}(t) & (n=2) \\ K_{3} \psi^{3}(t) & (n=3)\end{cases}
$$

Differential inequality $(n=2)$

Differential inequality $(n=2)$

Assume

$$
t \longrightarrow \psi(t):=\|\nabla v(t, \cdot)\|^{2}
$$

$$
\left(0 \leq t<T^{*}\right)
$$

solves DI
with IC

$$
\begin{aligned}
& \psi^{\prime}(t) \leq K_{2} \psi^{2}(t) \\
& \psi(0)=\left\|\nabla v_{0}\right\|^{2}
\end{aligned}
$$

Differential inequality $(n=2)$

Assume $\quad t \longrightarrow \psi(t):=\|\nabla v(t, \cdot)\|^{2} \quad\left(0 \leq t<T^{*}\right)$
solves DI
with IC

$$
\begin{aligned}
& \psi^{\prime}(t) \leq K_{2} \psi^{2}(t) \\
& \psi(0)=\left\|\nabla v_{0}\right\|^{2}
\end{aligned}
$$

Differential equation $(n=2)$

Differential equation $(n=2)$

Consider
DE
with IC

$$
\begin{aligned}
& \phi^{\prime}(t)=K_{2} \phi^{2}(t) \\
& \phi(0)=\left\|\nabla v_{0}\right\|^{2}
\end{aligned}
$$

Differential equation $(n=2)$

Consider

DE
with IC

$$
\begin{aligned}
\phi^{\prime}(t) & =K_{2} \phi^{2}(t) \\
\phi(0) & =\left\|\nabla v_{0}\right\|^{2}
\end{aligned}
$$

Then

$$
t \longrightarrow \phi(t)=\frac{1}{\frac{1}{\left\|\nabla v_{0}\right\|^{2}}-K_{2} \cdot t}, \quad\left(0 \leq t<T=\frac{1}{K_{2} \cdot\left\|\nabla v_{0}\right\|^{2}}\right)
$$

Differential equation $(n=2)$

Consider

DE
with IC

$$
\begin{aligned}
\phi^{\prime}(t) & =K_{2} \phi^{2}(t) \\
\phi(0) & =\left\|\nabla v_{0}\right\|^{2}
\end{aligned}
$$

Then

$$
t \longrightarrow \phi(t)=\frac{1}{\frac{1}{\left\|\nabla v_{0}\right\|^{2}}-K_{2} \cdot t}, \quad\left(0 \leq t<T=\frac{1}{K_{2} \cdot\left\|\nabla v_{0}\right\|^{2}}\right)
$$

Note: $\quad \int_{0}^{T} \phi(t) \mathrm{d} t=\infty$

Differential inequality $(\mathrm{n}=3)$

Differential inequality $(\mathrm{n}=3)$

Assume

$$
\begin{aligned}
t \longrightarrow \psi(t) & :=\|\nabla v(t, \cdot)\|^{2} \\
\psi^{\prime}(t) & \leq K_{3} \psi^{3}(t) \\
\psi(0) & =\left\|\nabla v_{0}\right\|^{2}
\end{aligned}
$$

$$
\left(0 \leq t<T^{*}\right)
$$

solves DI
with IC

Differential equation ($\mathrm{n}=3$)

$$
t \longrightarrow \phi(t)=\frac{1}{\sqrt{\frac{1}{\left\|\nabla v_{0}\right\|^{4}}-2 \cdot K_{3} \cdot t}}
$$

solves DE

$$
\phi^{\prime}(t)=K_{3} \phi^{3}(t), \quad\left(0 \leq t<T=\frac{1}{2 K_{3} \cdot\left\|\nabla v_{0}\right\|^{4}}\right)
$$

with IC

$$
\phi(0)=\left\|\nabla v_{0}\right\|^{2}
$$

Differential equation $(\mathrm{n}=3)$

$$
t \longrightarrow \phi(t)=\frac{1}{\sqrt{\frac{1}{\left\|\nabla v_{0}\right\|^{4}}-2 \cdot K_{3} \cdot t}}
$$

solves DE

$$
\phi^{\prime}(t)=K_{3} \phi^{3}(t), \quad\left(0 \leq t<T=\frac{1}{2 K_{3} \cdot\left\|\nabla v_{0}\right\|^{4}}\right)
$$

with IC

$$
\phi(0)=\left\|\nabla v_{0}\right\|^{2}
$$

Catastrophy: $\quad \int_{0}^{T} \phi(t) \mathrm{d} t=\frac{1}{K_{3}\left\|v_{0}\right\|^{2}}<\infty$

Question:

Question:

Let u be a weak solution of (NS) with data

$$
u_{0} \in L_{\sigma}^{2}(\Omega), \quad f=\nabla \cdot F, \quad F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) .
$$

Question:

Let u be a weak solution of (NS) with data

$$
u_{0} \in L_{\sigma}^{2}(\Omega), \quad f=\nabla \cdot F, \quad F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) .
$$

What additional regularity of the data is sufficient for u to be a strong solution in some intervall $(0, T), 0<T \leq \infty$,

Question:

Let u be a weak solution of (NS) with data

$$
u_{0} \in L_{\sigma}^{2}(\Omega), \quad f=\nabla \cdot F, \quad F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) .
$$

What additional regularity of the data is sufficient for u to be a strong solution in some intervall $(0, T), 0<T \leq \infty$, i.e. what additional regularity of the data implies

$$
u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)
$$

for some

$$
2<s<\infty, \quad 3<q<\infty, \quad \frac{2}{s}+\frac{3}{q}=1 \quad ?
$$

Stokes Operator A_{q} :

Stokes Operator A_{q} :

Let $1<q<\infty$:

- $P_{q}: L^{q}(\Omega) \rightarrow L_{\sigma}^{q}(\Omega)$ Helmholtz projection $\left(P:=P_{2}\right)$

Stokes Operator A_{q} :

Let $1<q<\infty$:

- $P_{q}: L^{q}(\Omega) \rightarrow L_{\sigma}^{q}(\Omega)$ Helmholtz projection $\left(P:=P_{2}\right)$
- $A_{q}=-P_{q} \Delta: \mathcal{D}\left(A_{q}\right) \rightarrow L_{\sigma}^{q}(\Omega)$ Stokes operator

$$
\left(A:=A_{2}\right)
$$

$$
\mathcal{D}\left(A_{q}\right)=W^{2, q}(\Omega) \cap W_{0}^{1, q}(\Omega) \cap L_{\sigma}^{q}(\Omega)
$$

$$
\mathcal{R}\left(A_{q}\right)=L_{\sigma}^{q}(\Omega)
$$

Stokes Operator A_{q} :

Let $1<q<\infty$:

- $P_{q}: L^{q}(\Omega) \rightarrow L_{\sigma}^{q}(\Omega)$ Helmholtz projection $\left(P:=P_{2}\right)$
- $A_{q}=-P_{q} \Delta: \mathcal{D}\left(A_{q}\right) \rightarrow L_{\sigma}^{q}(\Omega)$ Stokes operator

$$
\left(A:=A_{2}\right)
$$

$$
\mathcal{D}\left(A_{q}\right)=W^{2, q}(\Omega) \cap W_{0}^{1, q}(\Omega) \cap L_{\sigma}^{q}(\Omega)
$$

$$
\mathcal{R}\left(A_{q}\right)=L_{\sigma}^{q}(\Omega)
$$

- Semigroup $e^{-t A_{q}}, t \geq 0$ generated by A_{q} in $L_{\sigma}^{q}(\Omega)$

Fractional Powers A_{q}^{α} :
Let $1<q<\infty,-1 \leq \alpha \leq 1$:

- $A_{q}^{\alpha}: \mathcal{D}\left(A_{q}^{\alpha}\right) \rightarrow L_{\sigma}^{q}(\Omega)$ fractional power of A_{q}
- $\mathcal{D}\left(A_{q}^{\alpha}\right) \subset L_{\sigma}^{q}(\Omega)$
- $\mathcal{R}\left(A_{q}^{\alpha}\right)=L_{\sigma}^{q}(\Omega), \quad 0 \leq \alpha \leq 1$

Fractional Powers A_{q}^{α} :

Let $1<q<\infty,-1 \leq \alpha \leq 1$:

- $A_{q}^{\alpha}: \mathcal{D}\left(A_{q}^{\alpha}\right) \rightarrow L_{\sigma}^{q}(\Omega)$ fractional power of A_{q}
- $\mathcal{D}\left(A_{q}^{\alpha}\right) \subset L_{\sigma}^{q}(\Omega)$
- $\mathcal{R}\left(A_{q}^{\alpha}\right)=L_{\sigma}^{q}(\Omega), \quad 0 \leq \alpha \leq 1$

Moreover:

- $\left(A_{q}^{\alpha}\right)^{-1}=A_{q}^{-\alpha}$
- $\left(A_{q}\right)^{\prime}=A_{q^{\prime}} \quad$ with $\frac{1}{q}+\frac{1}{q^{\prime}}=1$

Sufficient regularity conditions on u_{0} :

Sufficient regularity conditions on u_{0} :

- $u_{0} \in \mathcal{D}(A)$, Kiselev \& Ladyzhenskaya 1957

Sufficient regularity conditions on u_{0} :

- $u_{0} \in \mathcal{D}(A)$, Kiselev \& Ladyzhenskaya 1957
- $u_{0} \in \mathcal{D}\left(A^{1 / 2}\right)$, Prodi 1962, Heywood 1980

Sufficient regularity conditions on u_{0} :

- $u_{0} \in \mathcal{D}(A)$, Kiselev \& Ladyzhenskaya 1957
- $u_{0} \in \mathcal{D}\left(A^{1 / 2}\right)$, Prodi 1962, Heywood 1980
- $u_{0} \in \mathcal{D}\left(A^{1 / 4}\right)$, Fujita \& Kato 1964

Sufficient regularity conditions on u_{0} :

- $u_{0} \in \mathcal{D}(A)$, Kiselev \& Ladyzhenskaya 1957
- $u_{0} \in \mathcal{D}\left(A^{1 / 2}\right)$, Prodi 1962, Heywood 1980
- $u_{0} \in \mathcal{D}\left(A^{1 / 4}\right)$, Fujita \& Kato 1964

Note: $\mathcal{D}\left(A^{1 / 4}\right) \subset L_{\sigma}^{3}(\Omega)$

Sufficient regularity conditions on u_{0} :

- $u_{0} \in L_{\sigma}^{q}\left(\mathbb{R}^{n}\right), q>n$, Fabes, Jones \& Rivière 1972

Sufficient regularity conditions on u_{0} :

- $u_{0} \in L_{\sigma}^{q}\left(\mathbb{R}^{n}\right), q>n$, Fabes, Jones \& Rivière 1972
- $u_{0} \in L_{\sigma}^{q}(\Omega), q>3$, Miyakawa 1981

Sufficient regularity conditions on u_{0} :

- $u_{0} \in L_{\sigma}^{q}\left(\mathbb{R}^{n}\right), q>n$, Fabes, Jones \& Rivière 1972
- $u_{0} \in L_{\sigma}^{q}(\Omega), q>3$, Miyakawa 1981
- $u_{0} \in L_{\sigma}^{n}\left(\mathbb{R}^{n}\right)$, Kato 1984

Sufficient regularity conditions on u_{0} :

- $u_{0} \in L_{\sigma}^{q}\left(\mathbb{R}^{n}\right), q>n$, Fabes, Jones \& Rivière 1972
- $u_{0} \in L_{\sigma}^{q}(\Omega), q>3$, Miyakawa 1981
- $u_{0} \in L_{\sigma}^{n}\left(\mathbb{R}^{n}\right)$, Kato 1984
- $u_{0} \in L_{\sigma}^{3}(\Omega)$, Giga 1986

Sufficient regularity conditions on u_{0} :

- $u_{0} \in L_{\sigma}^{q}\left(\mathbb{R}^{n}\right), q>n$, Fabes, Jones \& Rivière 1972
- $u_{0} \in L_{\sigma}^{q}(\Omega), q>3$, Miyakawa 1981
- $u_{0} \in L_{\sigma}^{n}\left(\mathbb{R}^{n}\right)$, Kato 1984
- $u_{0} \in L_{\sigma}^{3}(\Omega)$, Giga 1986
- $u_{0} \in L_{\sigma}^{3, \infty}(\Omega) \&$ smallness, Kozono \& Yamazaki 1995

Sufficient regularity conditions on u_{0} :

- $u_{0} \in L_{\sigma}^{q}\left(\mathbb{R}^{n}\right), q>n$, Fabes, Jones \& Rivière 1972
- $u_{0} \in L_{\sigma}^{q}(\Omega), q>3$, Miyakawa 1981
- $u_{0} \in L_{\sigma}^{n}\left(\mathbb{R}^{n}\right)$, Kato 1984
- $u_{0} \in L_{\sigma}^{3}(\Omega)$, Giga 1986
- $u_{0} \in L_{\sigma}^{3, \infty}(\Omega) \&$ smallness, Kozono \& Yamazaki 1995
- $u_{0} \in \mathbb{H}_{q, 0, \sigma}^{-2 / s}(\Omega), 2 / s+3 / q=1$, Amann 2000

$$
\begin{aligned}
\mathcal{D}(A) & \subset \mathcal{D}\left(A^{1 / 2}\right) \\
& \subset \mathcal{D}\left(A^{1 / 4}\right) \\
& \subset L_{\sigma}^{3}(\Omega) \\
& \subset \mathbb{H}_{q, 0, \sigma}^{-2 / s}(\Omega)
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{D}(A) & \subset \mathcal{D}\left(A^{1 / 2}\right) \\
& \subset \mathcal{D}\left(A^{1 / 4}\right) \\
& \subset L_{\sigma}^{3}(\Omega) \\
& \subset \mathbb{H}_{q, 0, \sigma}^{2 / /}(\Omega) \\
& \subset \mathbb{M}_{\mathrm{opt}} ?
\end{aligned}
$$

Question:

Question:

What is the weakest possible condition on the data u_{0} and f to get a (local) strong solution of (NS)?

Question:

What is the weakest possible condition on the data u_{0} and f to get a (local) strong solution of (NS)?

Can we formulate conditions on the data u_{0} and f which are sufficient and necessary for u to be a (local) strong solution of (NS)?

Theorem 1:

Theorem 1:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with

$$
F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, \infty ; L^{q / 2}(\Omega)\right)
$$

Theorem 1:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with

$$
F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, \infty ; L^{q / 2}(\Omega)\right)
$$

Then:

Theorem 1:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with

$$
F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, \infty ; L^{q / 2}(\Omega)\right)
$$

Then:

1. The condition

$$
\circledast \int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t<\infty
$$

is sufficient and necessary for the existence of a unique strong solution $u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)$ of (NS) with data u_{0}, f in some intervall $[0, T), 0<T \leq \infty$.
2. Let u be a weak solution of (NS) in $[0, \infty) \times \Omega$ with data u_{0}, f, and let

$$
\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t=\infty
$$

2. Let u be a weak solution of (NS) in $[0, \infty) \times \Omega$ with data u_{0}, f, and let

$$
\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t=\infty
$$

Then for every $0<T \leq \infty$, Serrin's condition $u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)$ does not hold, and in every intervall $[0, T), 0<T \leq \infty$, the system (NS) does not have a strong solution with data u_{0}, f and Serrin exponents s, q.

Remark 1:

Remark 1:

- 1. means:

$$
\begin{aligned}
& u \in L^{s}\left(0, T ; L^{q}(\Omega)\right) \Leftrightarrow v \in L^{s}\left(0, \infty ; L^{q}(\Omega)\right), \\
& v(t):=e^{-t A} u_{0} \text { is the solution of a } \\
& \text { homogeneous linear Stokes system. }
\end{aligned}
$$

Remark 1:

- 1. means:

$$
\begin{aligned}
& u \in L^{s}\left(0, T ; L^{q}(\Omega)\right) \Leftrightarrow v \in L^{s}\left(0, \infty ; L^{q}(\Omega)\right), \\
& v(t):=e^{-t A} u_{0} \text { is the solution of a } \\
& \text { homogeneous linear Stokes system. }
\end{aligned}
$$

- 2. means:
$u_{0} \in L_{\sigma}^{2}(\Omega), \int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t=\infty$
for all Serrin exponents s, q
\Rightarrow
For all q, s and all $0<T \leq \infty$, (NS) has no strong solution $u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)$ with data u_{0}, f.

Remark 2:

$$
\left\|e^{-t A} u_{0}\right\|_{q}<\infty \text { for } u_{0} \in L_{\sigma}^{2}(\Omega) \text { and } q>3 \text { if } t>0
$$

Remark 2:

$\left\|e^{-t A} u_{0}\right\|_{q}<\infty$ for $u_{0} \in L_{\sigma}^{2}(\Omega)$ and $q>3$ if $t>0$:
Use (A_{q} generates bounded analytic semigroup $\left.e^{-t A_{q}}\right)$

$$
\begin{aligned}
& \left\|A_{q}^{\alpha} e^{-t A_{q}} v\right\|_{q} \leq c t^{-\alpha} e^{-\delta t}\|v\|_{q} \text { for } v \in L_{\sigma}^{q}(\Omega) \\
& 0 \leq \alpha \leq 1, t>0, c=c(\Omega, q), \delta=\delta(\Omega, q)
\end{aligned}
$$

Remark 2:

$\left\|e^{-t A} u_{0}\right\|_{q}<\infty$ for $u_{0} \in L_{\sigma}^{2}(\Omega)$ and $q>3$ if $t>0$:
Use (A_{q} generates bounded analytic semigroup $\left.e^{-t A_{q}}\right)$

$$
\begin{aligned}
& \left\|A_{q}^{\alpha} e^{-t A_{q}} v\right\|_{q} \leq c t^{-\alpha} e^{-\delta t}\|v\|_{q} \text { for } v \in L_{\sigma}^{q}(\Omega) \\
& 0 \leq \alpha \leq 1, t>0, c=c(\Omega, q), \delta=\delta(\Omega, q)
\end{aligned}
$$

to obtain

$$
\begin{aligned}
\left\|e^{-t A} u_{0}\right\|_{q} & =\left\|A^{\alpha} e^{-t A} A^{-\alpha} u_{0}\right\|_{q}=\left\|A_{q}^{\alpha} e^{-t A_{q}} A^{-\alpha} u_{0}\right\|_{q} \\
& \leq c t^{-\alpha} e^{-\delta t}\left\|A^{-\alpha} u_{0}\right\|_{q} \leq c t^{-\alpha} e^{-\delta t}\left\|u_{0}\right\|_{2}
\end{aligned}
$$

$$
\left\|A^{-\alpha} u_{0}\right\|_{q} \leq c\left\|u_{0}\right\|_{2}
$$

$$
\left\|A^{-\alpha} u_{0}\right\|_{q} \leq c\left\|u_{0}\right\|_{2}
$$

Use Sobolev embedding

$$
\begin{gathered}
\|v\|_{q} \leq c\left\|A_{p}^{\alpha} u_{0}\right\|_{p}, v \in \mathcal{D}\left(A_{p}^{\alpha}\right), c=c(\Omega, q) \\
1<p \leq q, \quad 0 \leq \alpha=\frac{3}{2}\left(\frac{1}{p}-\frac{1}{q}\right) \leq 1
\end{gathered}
$$

$$
\left\|A^{-\alpha} u_{0}\right\|_{q} \leq c\left\|u_{0}\right\|_{2}
$$

Use Sobolev embedding

$$
\begin{gathered}
\|v\|_{q} \leq c\left\|A_{p}^{\alpha} u_{0}\right\|_{p}, v \in \mathcal{D}\left(A_{p}^{\alpha}\right), c=c(\Omega, q) \\
1<p \leq q, \quad 0 \leq \alpha=\frac{3}{2}\left(\frac{1}{p}-\frac{1}{q}\right) \leq 1
\end{gathered}
$$

to obtain

$$
\begin{gathered}
\left\|A^{-\alpha} u_{0}\right\|_{q} \leq c\left\|u_{0}\right\|_{2} \\
3<q<\infty, \quad \frac{1}{4}<\alpha=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{q}\right)<\frac{3}{4}
\end{gathered}
$$

Remark 3:

Remark 3:

The estimate

$$
\left\|e^{-t A} u_{0}\right\|_{q} \leq c e^{-\delta t}\left\|u_{0}\right\|_{2}, \quad t>0
$$

Remark 3:

The estimate

$$
\left\|e^{-t A} u_{0}\right\|_{q} \leq c e^{-\delta t}\left\|u_{0}\right\|_{2}, \quad t>0
$$

shows for every $\varepsilon>0$:

$$
\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t<\infty \quad \Leftrightarrow \quad \int_{0}^{\varepsilon}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t<\infty
$$

hence only integrability on $(0, \varepsilon)$ is important.

Theorem 2:

Theorem 2:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with
$F \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, T ; L^{q / 2}(\Omega)\right), 0<T \leq \infty$.

Theorem 2:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with $F \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, T ; L^{q / 2}(\Omega)\right), 0<T \leq \infty$.

Then there exists a constant $\varepsilon=\varepsilon(\Omega, q)>0$ with:

Theorem 2:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with

$$
F \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, T ; L^{q / 2}(\Omega)\right), 0<T \leq \infty .
$$

Then there exists a constant $\varepsilon=\varepsilon(\Omega, q)>0$ with:
If
$\circledast \circledast\left(\int_{0}^{T}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t\right)^{1 / s}+\left(\int_{0}^{T}\|F(t)\|_{q / 2}^{s / 2} d t\right)^{2 / s} \leq \varepsilon$,
then (NS) has a unique strong solution $u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)$ with data u_{0}, f.

Question:

Question:

Who is this gentleman?

Question:

Oleg

Vladimirowitsch Besov

Who is this gentleman?

Besov Spaces:

Besov Spaces:

$$
\left(\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t\right)^{1 / s} \approx\left\|u_{0}\right\|_{\mathbb{B}_{q, s}^{-2 / s}(\Omega)}
$$

Besov Spaces:

$$
\left(\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t\right)^{1 / s} \approx\left\|u_{0}\right\|_{\mathbb{B}_{q, s}^{-2 / s}(\Omega)}
$$

where

$$
\mathbb{B}_{q, s}^{-2 / s}(\Omega):=\left(\mathbb{B}_{q^{\prime}, s^{\prime}}^{2 / s}(\Omega)\right)^{\prime}, \quad q^{\prime}=\frac{q}{q-1}, \quad s^{\prime}=\frac{s}{s-1}
$$

Besov Spaces:

$$
\left(\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t\right)^{1 / s} \approx\left\|u_{0}\right\|_{\mathbb{B}_{q, s}^{-2 / s}(\Omega)}
$$

where

$$
\mathbb{B}_{q, s}^{-2 / s}(\Omega):=\left(\mathbb{B}_{q^{\prime}, s^{\prime}}^{2 / s}(\Omega)\right)^{\prime}, \quad q^{\prime}=\frac{q}{q-1}, \quad s^{\prime}=\frac{s}{s-1}
$$

with (Amann 2002)

$$
\begin{aligned}
\mathbb{B}_{q^{\prime}, s^{\prime}}^{2 / s}(\Omega): & =B_{q^{\prime}, s^{\prime}}^{2 / s}(\Omega) \cap L_{\sigma}^{q^{\prime}}(\Omega) \\
& =\left(L_{\sigma}^{q^{\prime}}, \mathcal{D}\left(A_{q^{\prime}}\right)\right)_{1 / s, s^{\prime}} \\
& =\left\{v \in B_{q^{\prime}, s^{\prime}}^{2 / s}(\Omega)|\nabla \cdot v=0, v \cdot \nu|_{\partial \Omega}=0\right\}
\end{aligned}
$$

$$
\left(\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t\right)^{1 / s}
$$

$$
\left(\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t\right)^{1 / s} \approx\left\|A_{q}^{-1} u_{0}\right\|_{\left(L_{\sigma}^{q}, \mathcal{D}\left(A_{q}\right)\right)_{1-\frac{1}{s}, s}}
$$

$$
\approx\left\|u_{0}\right\|_{\left(\mathcal{D}\left(A_{q^{\prime}}\right), L_{\sigma}^{q^{\prime}}\right)_{1-\frac{1}{s}, s^{\prime}}^{\prime}}
$$

$$
\left(\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t\right)^{1 / s} \approx\left\|A_{q}^{-1} u_{0}\right\|_{\left(L_{\sigma}^{q}, \mathcal{D}\left(A_{q}\right)\right)_{1-\frac{1}{s}, s}}
$$

$$
\approx\left\|u_{0}\right\|_{\left(\mathcal{D}\left(A_{q^{\prime}}\right), L_{\sigma}^{q^{\prime}}\right)_{1-\frac{1}{s}, s^{\prime}}^{\prime}}
$$

$$
\approx\left\|u_{0}\right\|_{\left(L_{\sigma}^{q^{\prime}}, \mathcal{D}\left(A_{q^{\prime}}\right)\right)_{\frac{1}{s}, s^{\prime}}^{\prime}}
$$

$$
\left(\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t\right)^{1 / s} \approx\left\|A_{q}^{-1} u_{0}\right\|_{\left(L_{\sigma}^{q}, \mathcal{D}\left(A_{q}\right)\right)_{1-\frac{1}{s}, s}}
$$

$$
\approx\left\|u_{0}\right\|_{\left(\mathcal{D}\left(A_{q^{\prime}}\right), L_{\sigma}^{q^{\prime}}\right)_{1-\frac{1}{s}, s^{\prime}}^{\prime}}
$$

$$
\approx\left\|u_{0}\right\|_{\left(L_{\sigma}^{q^{\prime}}, \mathcal{D}\left(A_{q^{\prime}}\right)\right)_{\frac{1}{s}, s^{\prime}}^{\prime}}
$$

$$
\left.\approx\left\|u_{0}\right\|_{\left(\mathbb{B}_{q^{\prime}, s^{\prime}}^{2 / s}\right.}\right)^{\prime}(\Omega)
$$

$$
\begin{aligned}
\left(\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{q}^{s} d t\right)^{1 / s} & \approx\left\|A_{q}^{-1} u_{0}\right\|_{\left(L_{\sigma}^{q}, \mathcal{D}\left(A_{q}\right)\right)_{1-\frac{1}{s}, s}} \\
& \approx\left\|u_{0}\right\|_{\left(\mathcal{D}\left(A_{q^{\prime}}\right), L_{\sigma}^{q^{\prime}}\right)_{1-\frac{1}{s}, s^{\prime}}^{\prime}} \\
& \approx\left\|u_{0}\right\|_{\left(L_{\sigma}^{q^{\prime}}, \mathcal{D}\left(A_{q^{\prime}}\right)\right)_{\frac{1}{s}, s^{\prime}}^{\prime}} \\
& \left.\approx\left\|u_{0}\right\|_{\left(\mathbb{B}_{q^{\prime}, s^{\prime}}^{2 / s}\right.}\right)^{\prime}(\Omega) \\
& \approx\left\|u_{0}\right\|_{\mathbb{B}_{q, s}^{-2 / s}(\Omega)}
\end{aligned}
$$

Theorem 1B:

Theorem 1B:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with
$F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, \infty ; L^{q / 2}(\Omega)\right)$.

Theorem 1B:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with

$$
F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, \infty ; L^{q / 2}(\Omega)\right)
$$

Then:

1. The condition

$$
u_{0} \in \mathbb{B}_{q, s}^{-2 / s}(\Omega)
$$

is sufficient and necessary for the existence of a unique strong solution $u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)$ on (NS) with data u_{0}, f in some intervall $[0, T), 0<T \leq \infty$.
2. Let u be a weak solution of (NS) in $[0, \infty) \times \Omega$ with data u_{0}, f, and let

$$
u_{0} \notin \mathbb{B}_{q, s}^{-2 / s}(\Omega)
$$

2. Let u be a weak solution of (NS) in $[0, \infty) \times \Omega$ with data u_{0}, f, and let

$$
u_{0} \notin \mathbb{B}_{q, s}^{-2 / s}(\Omega)
$$

Then for every $0<T \leq \infty$, Serrin's condition $u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)$ does not hold, and in every intervall $[0, T), 0<T \leq \infty$, the system (NS) does not have a strong solution with data u_{0}, f and Serrin exponents s, q.

Theorem 3:

Theorem 3:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with
$F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, \infty ; L^{q / 2}(\Omega)\right)$.

Theorem 3:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with

$$
F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, \infty ; L^{q / 2}(\Omega)\right)
$$

Then each of the following conditions are sufficient for the existence of a unique strong solution $u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)$ with data u_{0}, f in some intervall $[0, T)$ with $0<T \leq \infty$:

Theorem 3:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a bounded domain with $\partial \Omega \in C^{2,1}$,
- $2<s<\infty, 3<q<\infty$ with $2 / s+3 / q=1$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with

$$
F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{s / 2}\left(0, \infty ; L^{q / 2}(\Omega)\right)
$$

Then each of the following conditions are sufficient for the existence of a unique strong solution $u \in L^{s}\left(0, T ; L^{q}(\Omega)\right)$ with data u_{0}, f in some intervall $[0, T)$ with $0<T \leq \infty$:

1. $u_{0} \in \mathbb{B}_{q, s}^{-2 / s}(\Omega)$
2. $u_{0} \in L_{\sigma}^{3}(\Omega), q \leq s$
3. $u_{0} \in \mathcal{D}\left(A^{1 / 4}\right)$

Remarks:

Remarks:

1. The condition $u_{0} \in \mathbb{B}_{q, s}^{-2 / s}(\Omega)$ is optimal.

Remarks:

1. The condition $u_{0} \in \mathbb{B}_{q, s}^{-2 / s}(\Omega)$ is optimal.
2. Follows from $L_{\sigma}^{3}(\Omega) \subset \mathbb{B}_{q, s}^{-2 / s}(\Omega)$ if $q \leq s$ (Amann 2002).

Remarks:

1. The condition $u_{0} \in \mathbb{B}_{q, s}^{-2 / s}(\Omega)$ is optimal.
2. Follows from $L_{\sigma}^{3}(\Omega) \subset \mathbb{B}_{q, s}^{-2 / s}(\Omega)$ if $q \leq s$ (Amann 2002).
3. Use $\|v\|_{q} \leq c\left\|A^{\alpha} u_{0}\right\|_{2}$ for $v \in \mathcal{D}\left(A^{\alpha}\right), c=c(\Omega, q)$ with

$$
\alpha=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{q}\right)=\frac{1}{4}+\frac{1}{s} \text { to obtain }
$$

$$
\begin{aligned}
\left\|e^{-t A} u_{0}\right\|_{q, s ; \infty} & \leq c\left\|A^{\alpha} e^{-t A} u_{0}\right\|_{2, s ; \infty} \\
& =c\left\|A^{1 / s} e^{-t A} A^{1 / 4} u_{0}\right\|_{2, s ; \infty} \\
& \leq c\left\|A^{1 / 4} u_{0}\right\|_{2} .
\end{aligned}
$$

General domains $\Omega \subset \mathbb{R}^{3}(s=8, q=4)$:

General domains $\Omega \subset \mathbb{R}^{3}(s=8, q=4)$:

- Ω bounded or unbounded, $\partial \Omega$ bounded or unbounded $\partial \Omega$ smooth or non-smooth (corners, edges, cracks, ...)

General domains $\Omega \subset \mathbb{R}^{3}(s=8, q=4)$:

- Ω bounded or unbounded, $\partial \Omega$ bounded or unbounded $\partial \Omega$ smooth or non-smooth (corners, edges, cracks, ...)
- In this general case, there is no Stokes operator A_{q} in $L_{\sigma}^{q}(\Omega), q \neq 2$.

General domains $\Omega \subset \mathbb{R}^{3}(s=8, q=4)$:

- Ω bounded or unbounded, $\partial \Omega$ bounded or unbounded $\partial \Omega$ smooth or non-smooth (corners, edges, cracks, ...)
- In this general case, there is no Stokes operator A_{q} in $L_{\sigma}^{q}(\Omega), q \neq 2$.
- However, Theorem 1 and Theorem 2 remain true also for general domains $\Omega \subset \mathbb{R}^{3}$ in the case $s=8, q=4$ $(2 / 8+3 / 4=1)$, since here only the L^{2}-approach for the Stokes Operator is used.

General domains $\Omega \subset \mathbb{R}^{3}(s=8, q=4)$:

- Ω bounded or unbounded, $\partial \Omega$ bounded or unbounded $\partial \Omega$ smooth or non-smooth (corners, edges, cracks, ...)
- In this general case, there is no Stokes operator A_{q} in $L_{\sigma}^{q}(\Omega), q \neq 2$.
- However, Theorem 1 and Theorem 2 remain true also for general domains $\Omega \subset \mathbb{R}^{3}$ in the case $s=8, q=4$ $(2 / 8+3 / 4=1)$, since here only the L^{2}-approach for the Stokes Operator is used.
- Moreover, in this case the constant $\varepsilon=\varepsilon(\Omega, q)$ from Theorem 2 does not depend on Ω and is therefore an absolute constant.

Theorem 4:

Theorem 4:
Let

- $\Omega \subset \mathbb{R}^{3}$ be a general domain with boundary $\partial \Omega$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with
$F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{4}\left(0, \infty ; L^{2}(\Omega)\right)$.

Theorem 4:
Let

- $\Omega \subset \mathbb{R}^{3}$ be a general domain with boundary $\partial \Omega$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with
$F \in L^{2}\left(0, \infty ; L^{2}(\Omega)\right) \cap L^{4}\left(0, \infty ; L^{2}(\Omega)\right)$.
Then:
The condition

$$
\int_{0}^{\infty}\left\|e^{-t A} u_{0}\right\|_{4}^{8} d t<\infty
$$

is sufficient and necessary for the existence of a unique strong solution $u \in L^{8}\left(0, T ; L^{4}(\Omega)\right)$ of (NS) with data u_{0}, f in some intervall $[0, T), 0<T \leq \infty$.

Theorem 5:

Theorem 5:
Let

- $\Omega \subset \mathbb{R}^{3}$ be a general domain with boundary $\partial \Omega$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with
$F \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{4}\left(0, T ; L^{2}(\Omega)\right), 0<T \leq \infty$.

Theorem 5:

Let

- $\Omega \subset \mathbb{R}^{3}$ be a general domain with boundary $\partial \Omega$,
- $u_{0} \in L_{\sigma}^{2}(\Omega), f=\nabla \cdot F$ with

$$
F \in L^{2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{4}\left(0, T ; L^{2}(\Omega)\right), 0<T \leq \infty
$$

Then there exists an absolute constant $\varepsilon>0$ with:
If

$$
\left(\int_{0}^{T}\left\|e^{-t A} u_{0}\right\|_{4}^{8} d t\right)^{1 / 8}+\left(\int_{0}^{T}\|F(t)\|_{2}^{4} d t\right)^{1 / 4} \leq \varepsilon
$$

then (NS) has a unique strong solution $u \in L^{8}\left(0, T ; L^{4}(\Omega)\right)$ with data u_{0}, f.

Some recent references:

Farwig, Sohr, V.: On optimal initial value conditions for local strong solutions of the Navier-Stokes equations. Ann. Univ. Ferrara 2009

Farwig, Sohr, V.: A necessary and sufficient condition on local strong solvability of the Navier-Stokes system, Applic. Anal 2011

Medkova, V.: The Planar Dirichlet Problem for the Stokes Equations, Math. Meth. Appl. Sci 2011
Farwig, Sohr, V.: Extensions of Serrin's uniqueness and regularity conditions for the Navier-Stokes equations, J. Math. Fluid Mech. 2012

Medkova, Skopin, V.: The boundary value problems for the scalar Oseen equation. Math. Nachr 2012
V.: Time delay and material differences for non-stationary Navier-Stokes flow. Far East J. Appl. Math. 2012

Zanger, V.: On Approximation and Computation of Navier-Stokes Flow. J. Part. Diff. Eq. 2013
Kracmar, Medkova, Necasova, V.: A maximum modulus theorem for the Oseen problem.
Annali di Mat. Pura Applic. 2013
Simader, Sohr, V.: Necessary and sufficient conditions for the existence of Helmholtz decompositions in general domains. Annali Univ. Ferrara 2014

Farwig, Sohr, V.: Besov space regularity conditions for weak solutions of the Navier-Stokes equations.
J. Math. Fluid Mech. 2014

Asanalieva, Heutling, V.: Time delay and Lagrangian approximation for Navier-Stokes flow, Analysis 2015
Farwig, Sohr, V.: Local strong solutions of the nonhomogeneous Navier-Stokes system with control of the interval of existence. Topol. Meth., Nonl. Anal. 2015

Farwig, Simader Sohr, V.: General properties of the Helmholtz decomposition in spaces of Lq -type, Contemp. Math. 2016

