A convergent finite volume scheme for a cross-diffusion model for ion transport

Anita Gerstenmayer

Vienna University of Technology

PhD supervisor: Ansgar Jüngel

Joint work with Claire Chainais-Hillairet and Clément Cances, Université Lille 1

AANMPDE, 5.10.2017

Contents of this Talk

2 Numerical Analysis

3 Numerical Simulations

The Cross-Diffusion Model¹

Figure: schematic picture of an ion channel

2 major effects for modelling flow through an ion channel:

- electrostatic interaction
- size exclusion

¹M. Burger, B. Schlake, and M.T. Wolfram. "Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries". In: *Nonlinearity* 25.4 (2012), pp. 961–990.

The Cross-Diffusion Model¹

2 major effects for modelling flow through an ion channel:

- electrostatic interaction
- size exclusion

Figure: schematic picture of an ion channel

Evolution of the ion concentrations u_i , i = 1, ..., n

$$\partial_t u_i = \operatorname{div}\left(\underbrace{D_i \left(u_0 \nabla u_i - u_i \nabla u_0\right)}_{\operatorname{Diffusion}} + \underbrace{D_i \mu z_i u_i u_0 \nabla \Phi}_{\operatorname{Drift}}\right)$$

Volume filling: solvent concentration $u_0 = 1 - \sum_{i=1}^n u_i$

Electric potential: $-\Delta \Phi = \sum_{i=1}^{n} z_i u_i + f$

 $\begin{array}{lll} D_i > 0 & \dots \text{ diffusion coefficient} & \mu > 0 & \dots \text{ mobility constant} \\ z_i \in \mathbb{R} & \dots \text{ ion charge} & f \in L^{\infty} & \dots \text{ permanent charge density} \end{array}$

¹M. Burger, B. Schlake, and M.T. Wolfram. "Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries". In: *Nonlinearity* 25.4 (2012), pp. 961–990.

Mathematical Difficulties

Equation for u_i can be rewritten as system

$$\partial_t u = \operatorname{div}\left(A(u)\nabla u + F(u,\Phi)\right)$$

with diffusion matrix A(u) given by

$$A_{ii}(u) = D_i u_i, \quad A_{ij}(u) = D_i(u_0 + u_i), \quad j \neq i$$

Mathematical Difficulties

Equation for u_i can be rewritten as system

$$\partial_t u = \operatorname{div}\left(A(u)\nabla u + F(u,\Phi)\right)$$

with diffusion matrix A(u) given by

$$A_{ii}(u) = D_i u_i, \quad A_{ij}(u) = D_i(u_0 + u_i), \quad j \neq i$$

- A is nonsymmetric and not positive semidefinite
- no maximum principle for cross-diffusion systems
- degenerate structure of the equations

System possesses entropy functional $\mathcal{H}[u] = \int_{\Omega} h(u) dx$ with

$$h(u) = \sum_{i=0}^n u_i (\log u_i - 1) + \sum_{i=1}^n \mu z_i u_i \Phi$$

¹A. Jüngel. "The boundedness-by-entropy method for cross-diffusion systems". In: *Nonlinearity* 28 (2015), pp. 1963–2001.

System possesses entropy functional $\mathcal{H}[u] = \int_{\Omega} h(u) dx$ with

$$h(u) = \sum_{i=0}^n u_i (\log u_i - 1) + \sum_{i=1}^n \mu z_i u_i \Phi$$

• transform system to entropy variables

$$w_i = \partial h(u) / \partial u_i = \log(u_i / u_0) + \mu z_i \Phi$$

¹A. Jüngel. "The boundedness-by-entropy method for cross-diffusion systems". In: *Nonlinearity* 28 (2015), pp. 1963–2001.

System possesses entropy functional $\mathcal{H}[u] = \int_{\Omega} h(u) dx$ with

$$h(u) = \sum_{i=0}^n u_i (\log u_i - 1) + \sum_{i=1}^n \mu z_i u_i \Phi$$

• transform system to entropy variables

$$w_i = \partial h(u) / \partial u_i = \log(u_i / u_0) + \mu z_i \Phi$$

 \Rightarrow solve $\partial_t u(w) = \operatorname{div}(B(w)\nabla w)$ with $B = \operatorname{diag}(D_i u_i(w)u_0(w))$ and $0 < u_i(w) < 1$

¹A. Jüngel. "The boundedness-by-entropy method for cross-diffusion systems". In: *Nonlinearity* 28 (2015), pp. 1963–2001.

System possesses entropy functional $\mathcal{H}[u] = \int_{\Omega} h(u) dx$ with

$$h(u) = \sum_{i=0}^n u_i (\log u_i - 1) + \sum_{i=1}^n \mu z_i u_i \Phi$$

• transform system to entropy variables

$$w_i = \partial h(u) / \partial u_i = \log(u_i / u_0) + \mu z_i \Phi$$

 \Rightarrow solve $\partial_t u(w) = \operatorname{div}(B(w)\nabla w)$ with $B = \operatorname{diag}(D_i u_i(w)u_0(w))$ and $0 < u_i(w) < 1$

• gradient estimates for $u_0^{1/2}$ and $u_0^{1/2}u_i$ from entropy inequality

$$\frac{d\mathcal{H}[u]}{dt} + \mathcal{I}[u] \leq 0, \quad \text{with } \mathcal{I}[u] = \frac{1}{2} \int_{\Omega} \sum_{i=1}^{n} D_{i} u_{0} u_{i} |\nabla w_{i}|^{2} dx$$

¹A. Jüngel. "The boundedness-by-entropy method for cross-diffusion systems". In: *Nonlinearity* 28 (2015), pp. 1963–2001.

System possesses entropy functional $\mathcal{H}[u] = \int_{\Omega} h(u) dx$ with

$$h(u) = \sum_{i=0}^n u_i (\log u_i - 1) + \sum_{i=1}^n \mu z_i u_i \Phi$$

transform system to entropy variables

$$w_i = \partial h(u) / \partial u_i = \log(u_i / u_0) + \mu z_i \Phi$$

 \Rightarrow solve $\partial_t u(w) = \operatorname{div}(B(w)\nabla w)$ with $B = \operatorname{diag}(D_i u_i(w)u_0(w))$ and $0 < u_i(w) < 1$

• gradient estimates for $u_0^{1/2}$ and $u_0^{1/2}u_i$ from entropy inequality

$$\frac{d\mathcal{H}[u]}{dt} + \mathcal{I}[u] \leq 0, \quad \text{with } \mathcal{I}[u] = \frac{1}{2} \int_{\Omega} \sum_{i=1}^{n} D_i u_0 u_i |\nabla w_i|^2 dx$$

 \Rightarrow weak formulation by rewriting $u_0 \nabla u_i - u_i \nabla u_0 = u_0^{1/2} \left(\nabla (u_0^{1/2} u_i) - 3u_i \nabla u_0^{1/2} \right)$

¹A. Jüngel. "The boundedness-by-entropy method for cross-diffusion systems". In: *Nonlinearity* 28 (2015), pp. 1963–2001.

Analytic Results

- Stationary equations: existence of bounded weak solutions and uniqueness in special cases [Burger, Schlake, Wolfram, 2012]¹
- $\Phi \equiv 0$: global existence of bounded weak solutions and uniqueness for $D_i = D$ [Zamponi, Jüngel, 2017]²
- Global existence for full problem with potential and mixed B.C. and uniqueness for $D_i = D$ [G., Jüngel]³

¹M. Burger, B. Schlake, and M.T. Wolfram. "Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries". In: *Nonlinearity* 25.4 (2012), pp. 961–990.

²N. Zamponi and A. Jüngel. "Analysis of degenerate cross-diffusion population models with volume filling". In: *Ann. Inst. H. Poincaré – AN.* vol. 34. 2017, pp. 1–29.

³A. Gerstenmayer and A. Jüngel. "Analysis of a degenerate parabolic cross-diffusion system for ion transport". In: *arXiv preprint arXiv:1706.07261* (2017).

Analytic Results

- Stationary equations: existence of bounded weak solutions and uniqueness in special cases [Burger, Schlake, Wolfram, 2012]¹
- $\Phi \equiv 0$: global existence of bounded weak solutions and uniqueness for $D_i = D$ [Zamponi, Jüngel, 2017]²
- Global existence for full problem with potential and mixed B.C. and uniqueness for $D_i = D$ [G., Jüngel]³

Our Aim

Find a finite volume scheme that preserves the entropy inequality and gradient estimates (and ideally converges)

¹M. Burger, B. Schlake, and M.T. Wolfram. "Nonlinear Poisson–Nernst–Planck equations for ion flux through confined geometries". In: *Nonlinearity* 25.4 (2012), pp. 961–990.

²N. Zamponi and A. Jüngel. "Analysis of degenerate cross-diffusion population models with volume filling". In: Ann. Inst. H. Poincaré – AN. vol. 34. 2017, pp. 1–29.

³A. Gerstenmayer and A. Jüngel. "Analysis of a degenerate parabolic cross-diffusion system for ion transport". In: *arXiv preprint arXiv:1706.07261* (2017).

Simplified Problem

Simplified Equations

$$\begin{aligned} \partial_t u_i &= D \operatorname{div}(u_0 \nabla u_i - u_i \nabla u_0) & \text{ in } \Omega \times (0, T), \text{ for } i = 1, \dots, n, \\ \nabla u_i \cdot \nu &= 0 & \text{ on } \partial \Omega \times (0, T), \\ u(0) &= u^0 & \text{ in } \Omega. \end{aligned}$$

Assumptions:

- \bullet vanishing potential $\Phi\equiv 0$
- equal diffusion coefficients $D_i = D > 0$
- homogeneous Neumann B.C.
- $u^0 \in L^\infty(\Omega)$ with $0 \le u^0 \le 1$
- $\Omega \subset \mathbb{R}^2$ polygonal domain

2 Numerical Analysis

3 Numerical Simulations

Finite Volume Methods

Admissible mesh $\mathcal{M} = (\mathcal{T}, \mathcal{E}, \mathcal{P})$:

 \mathcal{T} ... family of open polygonal cells \mathcal{E} ... family of edges $\mathcal{P} = (x_K)_{K \in \mathcal{T}}$... family of cell centers

FVM provides functions $u_{\mathcal{T}} = \sum_{K \in \mathcal{T}} \mathbb{I}_K u_K$.. constant on each cell

Finite Volume Methods

Admissible mesh $\mathcal{M} = (\mathcal{T}, \mathcal{E}, \mathcal{P})$:

 \mathcal{T} ... family of open polygonal cells \mathcal{E} ... family of edges $\mathcal{P} = (x_K)_{K \in \mathcal{T}}$... family of cell centers

FVM provides functions $u_{\mathcal{T}} = \sum_{K \in \mathcal{T}} \mathbb{I}_K u_K$.. constant on each cell

For example:

$$-\int_{\mathcal{K}} \operatorname{div}(u_i \nabla u_0) dx = \sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \int_{\sigma} u_i \nabla u_0 \cdot \nu ds \approx -\sum_{\sigma \in \mathcal{E}_{\mathcal{K}}} \underbrace{\frac{\mathsf{m}(\sigma)}{d_{\sigma}}}_{=:\tau_{\sigma}} u_{i,\sigma}(u_{0,\mathcal{K}} - u_{0,L})$$

The Scheme

Find $u^k_{i,\mathcal{T}}$ and $\Phi^k_{\mathcal{T}}$ such that for $K \in \mathcal{T}$, $k \geq 1$ and $1 \leq i \leq n$

$$\mathsf{m}(K)\frac{u_{i,K}^{k}-u_{i,K}^{k-1}}{\Delta t}+\sum_{\sigma\in\mathcal{E}_{K}}\mathcal{F}_{i,K,\sigma}^{k}=0\,,$$

The Scheme

Find $u_{i,\mathcal{T}}^k$ and $\Phi_{\mathcal{T}}^k$ such that for $K \in \mathcal{T}$, $k \ge 1$ and $1 \le i \le n$

$$\mathsf{m}(K)\frac{u_{i,K}^{k}-u_{i,K}^{k-1}}{\Delta t}+\sum_{\sigma\in\mathcal{E}_{K}}\mathcal{F}_{i,K,\sigma}^{k}=0\,,$$

... implicit Euler in time & finite volume discretization in space with fluxes

$$\mathcal{F}_{i,K,\sigma}^{k} = \tau_{\sigma} D\left(u_{0,\sigma}^{k}(u_{i,K}^{k} - u_{i,L}^{k}) - u_{i,\sigma}^{k}(u_{0,K}^{k} - u_{0,L}^{k})\right),$$

with

$$\begin{split} u_{0,\sigma}^{k} &= \max\{u_{0,K}^{k}, u_{0,L}^{k}\},\\ u_{i,\sigma}^{k} &= \begin{cases} u_{i,K}^{k} & \text{if } u_{0,K}^{k} - u_{0,L}^{k} \leq 0\\ u_{i,L}^{k} & \text{if } u_{0,K}^{k} - u_{0,L}^{k} > 0 \end{cases} \quad \text{for } i \geq 1. \end{split}$$

Proposition 1

There exists a unique solution (u, Φ) to the scheme that satisfies $0 \le u_{i,K}^k \le 1$ for all $k \ge 1$, i = 0, ..., n and $K \in \mathcal{T}$.

Proposition 1

There exists a unique solution (u, Φ) to the scheme that satisfies $0 \le u_{i,K}^k \le 1$ for all $k \ge 1$, i = 0, ..., n and $K \in \mathcal{T}$.

Idea of Proof:

• A priori L^{∞} -bounds on u_i and u_0

Proposition 1

There exists a unique solution (u, Φ) to the scheme that satisfies $0 \le u_{i,K}^k \le 1$ for all $k \ge 1$, i = 0, ..., n and $K \in \mathcal{T}$.

Idea of Proof:

- A priori L^{∞} -bounds on u_i and u_0
- Existence with topological degree method

Proposition 1

There exists a unique solution (u, Φ) to the scheme that satisfies $0 \le u_{i,K}^k \le 1$ for all $k \ge 1$, i = 0, ..., n and $K \in \mathcal{T}$.

Idea of Proof:

- A priori L^{∞} -bounds on u_i and u_0
- Existence with topological degree method
- Oniqueness for u₀

Proposition 1

There exists a unique solution (u, Φ) to the scheme that satisfies $0 \le u_{i,K}^k \le 1$ for all $k \ge 1$, i = 0, ..., n and $K \in \mathcal{T}$.

Idea of Proof:

- A priori L^{∞} -bounds on u_i and u_0
- Existence with topological degree method
- **Output** Uniqueness for u_0
- **(**) Uniqueness for u_i : with discrete version of Gajewski's method, show that

$$d(u^k, v^k) = \int_{\Omega} \sum_{i=1}^n \left(H(u^k_i) + H(v^k_i) - 2H\left(\frac{u^k_i + v^k_i}{2}\right) \right)$$

is non-increasing along two solutions u and v, with $H(u) = u(\log u - 1) + 1$.

Proposition 2

The solution to the scheme satisfies the discrete entropy-production inequality

$$rac{\mathcal{H}^k-\mathcal{H}^{k-1}}{\Delta t}+\mathcal{I}^k\leq 0,$$

Proposition 2

The solution to the scheme satisfies the discrete entropy-production inequality

$$\frac{\mathcal{H}^k - \mathcal{H}^{k-1}}{\Delta t} + \mathcal{I}^k \leq 0,$$

with the discrete entropy

$$\mathcal{H}^k = \sum_{K\in\mathcal{T}} \mathsf{m}(K) \sum_{i=0}^n \left(u_{i,K}^k (\log u_{i,K}^k - 1) + 1
ight),$$

and the discrete entropy production

$$\mathcal{I}^{k} = D \sum_{\sigma \in \mathcal{E}} \tau_{\sigma} \left(4 \sum_{i \geq 1} u_{0,\sigma}^{k} \left(\sqrt{u_{i,K}^{k}} - \sqrt{u_{i,L}^{k}} \right)^{2} + 4 \left(\sqrt{u_{0,K}^{k}} - \sqrt{u_{0,L}^{k}} \right)^{2} + \left(u_{0,K}^{k} - u_{0,L}^{k} \right)^{2} \right)$$

Proposition 2

The solution to the scheme satisfies the discrete entropy-production inequality

$$\frac{\mathcal{H}^k - \mathcal{H}^{k-1}}{\Delta t} + \mathcal{I}^k \leq 0,$$

with the discrete entropy

$$\mathcal{H}^k = \sum_{K\in\mathcal{T}} \mathsf{m}(K) \sum_{i=0}^n \left(u_{i,K}^k (\log u_{i,K}^k - 1) + 1
ight),$$

and the discrete entropy production

$$\mathcal{I}^{k} = D \sum_{\sigma \in \mathcal{E}} \tau_{\sigma} \left(4 \sum_{i \geq 1} u_{0,\sigma}^{k} \left(\sqrt{u_{i,K}^{k}} - \sqrt{u_{i,L}^{k}} \right)^{2} + 4 \left(\sqrt{u_{0,K}^{k}} - \sqrt{u_{0,L}^{k}} \right)^{2} + \left(u_{0,K}^{k} - u_{0,L}^{k} \right)^{2} \right)$$

 \Rightarrow discrete gradient estimates for $u_0^{1/2}$ and $u_0^{1/2}u_i$

Proposition 2

The solution to the scheme satisfies the discrete entropy-production inequality

$$\frac{\mathcal{H}^k - \mathcal{H}^{k-1}}{\Delta t} + \mathcal{I}^k \leq 0,$$

with the discrete entropy

$$\mathcal{H}^k = \sum_{K \in \mathcal{T}} \mathsf{m}(K) \sum_{i=0}^n \left(u_{i,K}^k (\log u_{i,K}^k - 1) + 1 \right),$$

and the discrete entropy production

$$\mathcal{I}^{k} = D \sum_{\sigma \in \mathcal{E}} \tau_{\sigma} \left(4 \sum_{i \geq 1} u_{0,\sigma}^{k} \left(\sqrt{u_{i,K}^{k}} - \sqrt{u_{i,L}^{k}} \right)^{2} + 4 \left(\sqrt{u_{0,K}^{k}} - \sqrt{u_{0,L}^{k}} \right)^{2} + \left(u_{0,K}^{k} - u_{0,L}^{k} \right)^{2} \right)$$

⇒ discrete gradient estimates for $u_0^{1/2}$ and $u_0^{1/2}u_i$ **Important:** $\sum_{i=0}^n u_{i,\sigma}^k \ge 1!$

Convergence

Theorem

Let \mathcal{T}_m and Δt_m be a sequence of regular admissible meshes and time steps such that $h(\mathcal{T}_m)$, $\Delta t_m \to 0$, and set $u_m = u_{\mathcal{T}_m,\Delta t_m}$ the solution of the scheme. Then there exist functions $u_0, \ldots, u_n \in L^{\infty}(0, T; L^{\infty}(\Omega))$ such that

$$\begin{split} & u_0^{1/2}, \ u_0^{1/2} u_i \in L^2(0, T; H^1(\Omega)), \\ & u_{0,m}^{1/2} \to u_0^{1/2}, \ u_{0,m}^{1/2} u_{i,m} \to u_0^{1/2} u_i \quad \text{ in } L^2(\Omega \times (0, T)), \end{split}$$

and $u = (u_1, \ldots, u_n)$ is a weak solution to the ion transport model.

Convergence

Theorem

Let \mathcal{T}_m and Δt_m be a sequence of regular admissible meshes and time steps such that $h(\mathcal{T}_m)$, $\Delta t_m \to 0$, and set $u_m = u_{\mathcal{T}_m,\Delta t_m}$ the solution of the scheme. Then there exist functions $u_0, \ldots, u_n \in L^{\infty}(0, T; L^{\infty}(\Omega))$ such that

$$\begin{split} & u_0^{1/2}, \ u_0^{1/2} u_i \in L^2(0, T; H^1(\Omega)), \\ & u_{0,m}^{1/2} \to u_0^{1/2}, \ u_{0,m}^{1/2} u_{i,m} \to u_0^{1/2} u_i \quad \text{ in } L^2(\Omega \times (0, T)), \end{split}$$

and $u = (u_1, \ldots, u_n)$ is a weak solution to the ion transport model.

Main Difficulty: compactness of the sequence $(u_{0,m}^{1/2}u_{i,m})_m$ **Solution:** prove discrete version of a degenerate Aubin-Lions lemma

Generalisations of the Results

Scheme with Φ

$$\mathcal{F}_{i,K,\sigma}^{k} = -\tau_{\sigma} D\Big(u_{0,\sigma}^{k}(u_{i,K}^{k} - u_{i,L}^{k}) - u_{i,\sigma}^{k}\Big(\underbrace{(u_{0,K}^{k} - u_{0,L}^{k}) - \hat{u}_{0,\sigma_{i}}^{k}\mu z_{i}(\Phi_{K}^{k} - \Phi_{L}^{k})}_{=:\mathcal{V}_{i,K,\sigma}^{k}}\Big)\Big),$$

where now

$$\begin{split} \hat{u}_{0,\sigma_{i}}^{k} &= \begin{cases} u_{0,K}^{k} & \text{if } z_{i}(\Phi_{K}^{k} - \Phi_{L}^{k}) \leq 0\\ u_{0,L}^{k} & \text{if } z_{i}(\Phi_{K}^{k} - \Phi_{L}^{k}) > 0 \end{cases} \quad \text{for } i \geq 1, \\ u_{i,\sigma}^{k} &= \begin{cases} u_{i,K}^{k} & \text{if } \mathcal{V}_{i,K,\sigma}^{k} \leq 0\\ u_{i,L}^{k} & \text{if } \mathcal{V}_{i,K,\sigma}^{k} > 0 \end{cases} \quad \text{for } i \geq 1. \end{cases} \end{split}$$

Generalisations of the Results

Scheme with Φ

$$\mathcal{F}_{i,K,\sigma}^{k} = -\tau_{\sigma} D\Big(u_{0,\sigma}^{k}(u_{i,K}^{k} - u_{i,L}^{k}) - u_{i,\sigma}^{k}\Big(\underbrace{(u_{0,K}^{k} - u_{0,L}^{k}) - \hat{u}_{0,\sigma_{i}}^{k}\mu z_{i}(\Phi_{K}^{k} - \Phi_{L}^{k})}_{=:\mathcal{V}_{i,K,\sigma}^{k}}\Big)\Big),$$

where now

$$\begin{split} \hat{u}_{0,\sigma_i}^k &= \begin{cases} u_{0,K}^k & \text{if } z_i(\Phi_K^k - \Phi_L^k) \leq 0\\ u_{0,L}^k & \text{if } z_i(\Phi_K^k - \Phi_L^k) > 0 \end{cases} \quad \text{for } i \geq 1, \\ u_{i,\sigma}^k &= \begin{cases} u_{i,K}^k & \text{if } \mathcal{V}_{i,K,\sigma}^k \leq 0\\ u_{i,L}^k & \text{if } \mathcal{V}_{i,K,\sigma}^k > 0 \end{cases} \quad \text{for } i \geq 1. \end{cases} \end{split}$$

Existence and L^{∞} -bounds still hold, entropy inequality only if $\sum_{i=0}^{n} u_{i,\sigma}^{k} \ge \delta > 0!$

Generalisations of the Results

Scheme with Φ

$$\mathcal{F}_{i,K,\sigma}^{k} = -\tau_{\sigma} D\Big(u_{0,\sigma}^{k}(u_{i,K}^{k} - u_{i,L}^{k}) - u_{i,\sigma}^{k}\Big(\underbrace{(u_{0,K}^{k} - u_{0,L}^{k}) - \hat{u}_{0,\sigma_{i}}^{k}\mu z_{i}(\Phi_{K}^{k} - \Phi_{L}^{k})}_{=:\mathcal{V}_{i,K,\sigma}^{k}}\Big)\Big),$$

where now

$$\begin{split} \hat{u}_{0,\sigma_i}^k &= \begin{cases} u_{0,K}^k & \text{if } z_i(\Phi_K^k - \Phi_L^k) \leq 0\\ u_{0,L}^k & \text{if } z_i(\Phi_K^k - \Phi_L^k) > 0 \end{cases} \quad \text{for } i \geq 1, \\ u_{i,\sigma}^k &= \begin{cases} u_{i,K}^k & \text{if } \mathcal{V}_{i,K,\sigma}^k \leq 0\\ u_{i,L}^k & \text{if } \mathcal{V}_{i,K,\sigma}^k > 0 \end{cases} \quad \text{for } i \geq 1. \end{cases} \end{split}$$

Existence and L^{∞} -bounds still hold, entropy inequality only if $\sum_{i=0}^{n} u_{i,\sigma}^{k} \ge \delta > 0!$

Bad news: until now not able to prove anything when D_i not constant.. **Good news:** simulations still look fine

1 Introduction

2 Numerical Analysis

3 Numerical Simulations

Test Case: Calcium Channel

Confined Oxygen $O^{-1/2}$ ions inside the channel contribute to

- permanent charge density $f = -u_O/2$
- sum of concentrations $u_0 = 1 u_1 u_2 u_3 u_0$

Solution after few time steps

Solution close to equilibrium

Long-time Behaviour

 $\underline{Observation:}$ Exponential decay of the relative entropy and exponential convergence of solution to equilibrium

Convergence in Space

Thank you for your attention!

