

On mathematical morphology, non-linear filters, and length scale control in topology optimization

Eddie Wadbro and Linus Hägg

Department of Computing Science Umeå University

AANMPDE 10: October 2-6, 2017 Paleochora, Crete, Greece

This work is financially supported by the Swedish Foundation for Strategic Research (No. AM13-0029) and the Swedish Research Council (No. 621-3706)

Material distribution (Topology optimization)

- Placement of material arbitrarily in region Ω_D
- \blacktriangleright Material distribution function ρ constant in each element

- $\rho = 0$ if void and 1 if solid
- Want to solve:

 $\begin{array}{l} \min_{\rho} \quad J(\rho) \quad (\text{compliance}) \\ \text{s.t.} \quad \rho(1-\rho) = 0 \text{ a.e.} \\ \quad \int \rho \leq V \\ \text{governing PDE} \end{array}$

Typical approach—Relaxation

 $\begin{array}{l} \min_{\rho} \quad J(\rho) \\ \text{s.t. } 0 < \varepsilon \leq \rho \leq 1 \\ \int \rho \leq V \\ \text{governing PDE} \end{array}$

Theorem For the continuous case, there exists a solution to the relaxed minimal compliance problem

Typical approach—Penalization

$$\min_{\rho} J(\rho^{\rho})$$
s.t. $0 < \varepsilon \le \rho \le 1$

$$\int \rho \le V$$
governing PDF

Theorem The continuous problem is ill-posed (it lacks solutions within the set of feasible designs)

Can also add explicit penalty term to the objective function

Typical approach—Penalization

$$\begin{array}{l} \min_{\rho} & J(\rho^{\rho}) \\ \text{s.t.} & 0 < \varepsilon \leq \rho \leq 1 \\ & \int \rho \leq V \\ & \text{governing PDE} \end{array}$$

Theorem The continuous problem is ill-posed (it lacks solutions within the set of feasible designs)

Can also add explicit penalty term to the objective function

Typical approach—Filtering

 $\min_{\rho} J(F(\rho)^{p})$ s.t. $0 < \varepsilon < \rho < 1$ $\int F(\rho) \leq V$

governing PDE

Here F is some averaging operator

Theorem For the continuous case: if $F(\rho)$ is a convolution product of a filter kernel ϕ and the density ρ , then there exists a solution to the relaxed minimal compliance problem (Bourdin 2001)

Quasi-arithmetic means (f-means)

- Arithmetic mean $M_x(\mathbf{x}; \mathbf{w}) = \mathbf{w}^T \mathbf{x} \equiv \sum_{i=1}^m w_i x_i$ $\mathbf{w}^T \mathbf{1}_m = 1$ $w_i > 0$
- $\textbf{Harmonic mean} \\ M_{x^{-1}}(\boldsymbol{x}; \boldsymbol{w}) = (\boldsymbol{w}^T \boldsymbol{x}^{-1})^{-1}$

▶ ...

• Geometric mean $M_{\ln x}(\mathbf{x}; \mathbf{w}) = \prod_{i=1}^{m} x_i^{w_i} \equiv \exp\left(\mathbf{w}^T \ln \mathbf{x}\right)$

Quasi-arithmetic mean (*f*-mean) $M_f(\mathbf{x}; \mathbf{w}) = f^{-1}(\mathbf{w}^T \mathbf{f}(\mathbf{x})) \iff f(M_f) = \mathbf{w}^T \mathbf{f}(\mathbf{x})$

Properties of *f*-means

 $egin{aligned} &M_f(oldsymbol{x})=M_f(oldsymbol{x};rac{1}{m}oldsymbol{1}_m)\ oldsymbol{x}\in[0,1]^m \end{aligned}$

P1 $M_f(\mathbf{x})$ is continuous and strictly increasing in each variable

P2 $M_f(\mathbf{x})$ is symmetric, that is, $M_f(\mathbf{P}\mathbf{x}) = M_f(\mathbf{x})$ for all permutation matrices $\mathbf{P} \in \mathbb{R}^{m \times m}$

P3 $M_f(\mathbf{x})$ is *reflexive*, that is, for $c \in [0,1]$, we have $M_f(c\mathbf{1}_m) = c$

P4 $M_f(\mathbf{x})$ is associative, that is, for $k \in \{1, \ldots, m-1\}$, we have $M_f(x_1, \ldots, x_m) = M_f(c\mathbf{1}_k, x_{k+1}, \ldots, x_m)$, where $c = M_f(x_1, \ldots, x_k)$

Theorem (Kolmogorov 1930, Nagumo 1930)

Any sequence of functions satisfying P1–P4 is of the form $M_f(\mathbf{x}; \frac{1}{m} \mathbf{1}_m) = f^{-1} \left(\frac{1}{m} \mathbf{1}_m^T f(\mathbf{x}) \right)$ for some continuous function f

fW-mean filters

Replace the value of the design variable in one element with the f-mean of the values of its neighboring elements

fW-mean filter

- ► $F(\rho) = f^{-1}(Wf(\rho))$ $W = [w_{ij}] \in \mathbb{R}^{n \times n}$ $w_{ij} \ge 0$ and $W1_n = 1_n$
- $w_{ij} > 0$ iff $j \in \mathcal{N}_i \subset \{1, \ldots, n\}$
- Replace f^{-1} with g, then a vast majority of available filters
 - Heaviside filter (Guest et al. 2004)
 - Morphology-based filters (Sigmund 2007)
 - Pythagorean mean based filters (Svanberg and Svärd 2014)
 can be handled in a similar manner
- Filters can be applied in a cascade: $\mathbf{F}^{(N)} \circ \mathbf{F}^{(N-1)} \circ \ldots \circ \mathbf{F}^{(1)}$, where $\mathbf{F}^{(K)}(\mathbf{\rho}) = \mathbf{f}_{K}^{-1} \left(\mathbf{W}^{(K)} \mathbf{f}_{K}(\mathbf{\rho}) \right)$, $K \in \{1, \ldots, N\}$

- Let $\Omega \subset \mathbb{R}^d$ be bounded and connected
 - Lipschitz boundary $\partial \Omega$
 - Structure is fixed at $\Gamma_D \subset \partial \Omega$
- Admissible displacements $\mathcal{U} = \left\{ u \in H^1(\Omega)^d \mid u|_{\Gamma_D} \equiv 0 \right\}$
- Design variable ρ
- ▶ Physical design $\tilde{\rho}(\rho) = \underline{\rho} + (1 \underline{\rho})P(F(\rho))$ in which
 - ► <u>ρ</u> > 0
 - \overline{P} is an invertible penalty function
 - ► F(ρ) is a continuous version of the filtering
- ▶ Equilibrium displacement $u \in U$ solves $a(\rho; u, v) = \ell(v) \ \forall v \in U$
 - $\ell(v) = \int_{\Omega} b \cdot v + \int_{\Gamma_L} t \cdot v$
 - $a(\rho; u, v) = \int_{\Omega} \tilde{\rho}(\rho) E\epsilon(u) : \epsilon(v),$

where E is a constant elasticity tensor

Admissible designs

$$\mathcal{A} = \left\{ \rho \mid 0 \le \rho \le 1 \text{ a.e. on } \Omega, \ \int_{\Omega} F(\rho) \le V \right\} \subset L^{\infty}(\Omega)$$

• Continuous filtering: $(F(\rho))(x) = f^{-1}\left(\frac{1}{|\mathcal{N}_x|} \int_{\mathcal{N}_x} (f \circ \rho)(y) \, \mathrm{d}y\right)$

- \mathcal{N}_x neighborhood of x with measure (area or volume) $|\mathcal{N}_x| > 0$
- ▶ f smooth and invertible function $f : [0,1] \rightarrow [f_{\min}, f_{\max}] \subset \mathbb{R}$

A standard problem formulation

Find $\rho^* \in \mathcal{A}$ and $u^* \in \mathcal{U}$ such that $\ell(u^*) \leq \ell(u) \ \forall u \in \mathcal{U}^* \text{ and } a(\rho^*; u^*, v) = \ell(v) \ \forall v \in \mathcal{U}$

Alternative equivalent problem formulation

Find
$$u^* \in \mathcal{U}^*$$
 such that $\ell(u^*) = \inf_{u \in \mathcal{U}^*} \ell(u)$, (1)
where $\mathcal{U}^* = \left\{ u \in \mathcal{U} \mid \begin{array}{l} \exists \rho \in \mathcal{A} \text{ such that} \\ a(\rho; u, v) = \ell(v) \ \forall v \in \mathcal{U} \end{array} \right\}$

E. Wadbro, On nonlinear filters in topology optimization, October, 2017

(10:28)

Theorem If $|\mathcal{N}_x| > 0$ for all $x \in \Omega$, then there exists a solution to problem (1)

Proof (melody) For details, see Hägg & Wadbro (2017)

▶ Pick minimizing sequence (u_m) , $u_m \in U^*$

- ▶ let (ρ_m) sequence so that $a(\rho_m; u_m, v) = \ell(v) \quad \forall v \in U$
- bilinear form a coercive so subsequence (u_m) converges weakly to u^{*} in H¹(Ω)^d

Theorem If $|\mathcal{N}_x| > 0$ for all $x \in \Omega$, then there exists a solution to problem (1)

Proof (melody) For details, see Hägg & Wadbro (2017)

▶ Pick minimizing sequence (u_m) , $u_m \in U^*$

- ▶ let (ρ_m) sequence so that $a(\rho_m; u_m, v) = \ell(v) \quad \forall v \in U$
- bilinear form a coercive so subsequence (u_m) converges weakly to u^{*} in H¹(Ω)^d
- Define $\tau_m = f \circ \rho_m \in L^{\infty}(\Omega)$
 - ▶ Banach–Agaoglu: subsequence (au_m) converges weak* to au^*
 - ... define $\rho^* = f^{-1} \circ \tau^*$.
 - ▶ Banach–Agaoglu: $F(\rho_m) \rightarrow F(\rho^*)$ pointwise
 - Lebesques dominated convergece theorem: $\rho^* \in \mathcal{A}$

Theorem If $|\mathcal{N}_x| > 0$ for all $x \in \Omega$, then there exists a solution to problem (1)

Proof (melody) For details, see Hägg & Wadbro (2017)

▶ Pick minimizing sequence (u_m) , $u_m \in U^*$

- ▶ let (ρ_m) sequence so that $a(\rho_m; u_m, v) = \ell(v) \quad \forall v \in U$
- bilinear form a coercive so subsequence (u_m) converges weakly to u^* in $H^1(\Omega)^d$
- Define $\tau_m = f \circ \rho_m \in L^{\infty}(\Omega)$
 - ▶ Banach–Agaoglu: subsequence (τ_m) converges weak* to τ^*
 - ... define $\rho^* = f^{-1} \circ \tau^*$.
 - ▶ Banach–Agaoglu: $F(\rho_m) \rightarrow F(\rho^*)$ pointwise
 - Lebesques dominated convergece theorem: $\rho^* \in \mathcal{A}$
- ... some further arguments to show that

• $a(\rho_m; u_m, v) - a(\rho^*; u^*, v) \rightarrow 0$ for any $v \in U$

▶ Thus $u^* \in \mathcal{U}$ and since ℓ is linear & bounded $\ell(u_m) \rightarrow \ell(u^*)$

Morphological operators (review: Heijmans 1995)

Gain information about a set M by probing it by a convex set B

E. Wadbro, On nonlinear filters in topology optimization, October, 2017

(12:28)

Morphological operators (review: Heijmans 1995)

Gain information about a set M by probing it by a convex set B

Definition of the minimum length scale of M

M open

• *B* is the open unit ball for some metric on \mathbb{R}^d

Local length scale

- ► $R_B(M; x) = \sup\{r > 0 \mid \exists y \in M \text{ s.t. } x \in y + rB \subset M\}$
 - Radius of "largest" ball in M containing x
 - $R_B(M; x) > 0$

Minimum length scale

- $R_B(M) = \inf_{x \in M} R_B(M; x)$
 - "Smallest" local length scale

Problem with length scale $R_B(M)$

- The design domain Ω is typically a hyperrectangle
- B is often an open Euclidian ball
- $R_B(\Omega, x) \to 0$ as $x \to \bullet \implies R_B(\Omega) = 0$
- ► So $M \subset \Omega$ and $V = \Omega \setminus \overline{M}$ cannot both possess minimum length scale (w.r.t. R_B)

Morphological operators-bounded domain

Dilation: $\mathcal{D}^{\Omega}_{B}(M) = \mathcal{D}_{B}(M) \cap \Omega$ Erosion: $\mathcal{E}^{\Omega}_{B}(M) = \mathcal{E}_{B}(\Omega^{\complement} \cup M) \cap \Omega$ E. Wadbro, On nonlinear filters in topology optimization, October, 2017

Morphological operators-bounded domain

Closing: $C_B^{\Omega}(M) = C_B^{\Omega}(\mathcal{D}_B^{\Omega}(M))$ Opening: $\mathcal{O}_B^{\Omega}(M) = \mathcal{D}_B^{\Omega}(\mathcal{E}_B^{\Omega}(M))$ E. Wadbro, On nonlinear filters in topology optimization, October, 2017

 $\mathcal{O}^\Omega_B(M)\subset M\subset \mathcal{C}^\Omega_B(M)$

Minimum length scale of M relative Ω

- M and Ω open
- *B* is the open unit ball for some metric on \mathbb{R}^d

Local length scale

$$R^{\Omega}_{B}(M;x) = \sup\{r > 0 \mid E^{\Omega}_{rB}(M;x) \neq \emptyset\}$$

$$E^{\Omega}_{rB}(M;x) = \{y \in M \mid x \in (y + rB) \cap \Omega \subset M\}.$$

Minimum length scale

$$\blacktriangleright R^{\Omega}_{B}(M) = \inf_{x \in M} R^{\Omega}_{B}(M; x)$$

B-open and B-regular sets

- *M* is *B*-open (relative Ω) iff $M = \mathcal{O}_B^{\Omega}(M)$
- *M* is *B*-regular (rel. Ω) iff *M* and $V = \Omega \setminus \overline{M}$ both are *B*-open

This extends the work on r-regular sets: *B* Euclidian ball with radius r > 0 and $\Omega = \mathbb{R}^d$ (Serra 1982, Pavlidis 1982)

Math. morphology \sim minimum length scale

Theorem 1

If $M \neq \emptyset$ is rB-open relative Ω for some r > 0, then $R^{\Omega}_{B}(M) \ge r$

Theorem 2

If $M \neq \emptyset$ and $R^{\Omega}_B(M) > 0$, then M is rB-open for any r satisfying $0 < r < R^{\Omega}_B(M)$

Theorem 3 (Alternative definition of $R_B^{\Omega}(M)$)

If
$$M \neq \emptyset$$
, then $R^{\Omega}_{B}(M) = \sup\{r > 0 \mid M = \mathcal{O}^{\Omega}_{rB}(M)\}$

• Convention: $\sup \emptyset = 0$

Math. morphology \sim minimum length scale

Theorems 1–3 interrelates B-open and B-regular sets to sets whose interior and/or exterior exhibit positive minimum length scales

Natural generalization: $M = \mathcal{O}^{\Omega}_{B}(M)$ and $V = \mathcal{O}^{\Omega}_{\hat{B}}(V)$ for $B \neq \hat{B}$

• Duality
$$\implies V = \mathcal{O}^{\Omega}_{\hat{B}}(V)$$
 iff $\overline{M} \cap \Omega = \mathcal{C}^{\Omega}_{\hat{B}}(\overline{M} \cap \Omega)$

Minimum length scale constraints

$$M = \mathcal{O}_{rB}^{\Omega}(M) \implies R_B^{\Omega}(M) \ge r$$
$$\overline{M} \cap \Omega = \mathcal{C}_{\hat{r}\hat{B}}^{\Omega}(\overline{M} \cap \Omega) \implies R_{\hat{B}}^{\Omega}(V) \ge \hat{r}$$

Mathematical morphology for density based topology optimization

- Ω discretized using a regular grid
 - x_i centroid of element i

$$\boldsymbol{\flat} \ \boldsymbol{\rho} = (\rho_1, \dots, \rho_n)^T \in [0, 1]^n$$

• ρ_i determines the material state of element i

•
$$\mathcal{D}_i(\boldsymbol{\rho}) = \max_{j \in \mathcal{N}_i} \rho_j$$
 and $\mathcal{E}_i(\boldsymbol{\rho}) = \min_{j \in \mathcal{N}_i} \rho_j$

▶ Neighborhoods $N_i = \{j \mid x_j - x_i \in rB\}$, r > 0

Minimum length scale constraints

$$oldsymbol{\mathcal{O}}_{rB}(oldsymbol{
ho}) = oldsymbol{\mathcal{C}}_{\hat{r}\hat{B}}(oldsymbol{
ho})$$
 $oldsymbol{
ho}^T(oldsymbol{1}-oldsymbol{
ho}) = 0$

Note that by definition ${\cal O}_{{}_{r\!B}}(
ho) \le
ho \le {\cal C}_{\hat{r}\hat{B}}(
ho)$

Heuristic method for compliance problems

Physical density
$$\mathcal{P}(\rho) = \underline{\rho} + (1 - \underline{\rho}) \mathcal{O}_h(\rho)^p$$

- ρ small positive parameter
- \overline{p} SIMP penalty parameter
- \mathcal{O}_h is an approximation of \mathcal{O}_B^{Ω}
- Admissible designs

$$\mathcal{A} = ig\{ oldsymbol{
ho} \in \mathbb{R}^n \mid oldsymbol{\check{0}} \leq oldsymbol{
ho} \leq oldsymbol{1} ext{ and } oldsymbol{
u}^{ op} oldsymbol{\mathcal{C}}_h(oldsymbol{
ho}) \leq V^* ig\}$$

- \mathcal{C}_h is an approximation of $\mathcal{C}^{\Omega}_{\hat{B}}$.
- ► $\mathbf{v} \in \mathbb{R}^n$ holds the fractional volume $(|\mathbf{E}|/|\Omega|)$ of the elements
- V* is the maximum volume fraction

Quality measures

Measure of non-discreteness (suggested by Sigmund 2007):

$$M_{\rm ND} = rac{4}{n} \widetilde{\mathcal{P}}(\boldsymbol{
ho})^T ig(\mathbf{1} - \widetilde{\mathcal{P}}(\boldsymbol{
ho}) ig)$$

where $\widetilde{\mathcal{P}}(
ho)$ is the physical design

Two new quality measures Measure of difference between open and close:

$$M_{\mathsf{DOC}} = \frac{1}{n} \left\| \mathcal{C}(\boldsymbol{\rho}) - \mathcal{O}(\boldsymbol{\rho}) \right\|_{1}$$

A related quality measure is

$$F_{\text{DOC}} = \frac{1}{n} \operatorname{card} \left\{ i \mid \left(\mathcal{C}(\rho) - \mathcal{O}(\rho) \right)_i > 0.5 \right\}$$

If $M_{\rm ND} = M_{\rm DOC} = 0$, then we have a binary design with minimum size control of both materials

Cantilever beam

 Γ_N

approximate the erode and dilate operator, respectively (Svanberg & Svärd 2013)

- \blacktriangleright Continuation for SIMP penalty p and filter parameter α
- Solved using a standard desktop computer
- Modified version of multigrid-CG code by Amir et al. (2014)

Cantilever beam

768 × 512 elements Continuation approach first $\alpha = 10$ and p = 1, 1.5, ..., 3; then p = 3 and $\alpha = 10^{1-m/2}$ for m = 1, 2, ..., 18

Cantilever beam-mesh convergence

1536 × 1024 elements Continuation approach first $\alpha = 10$ and p = 1, 1.5, ..., 3; then p = 3 and $\alpha = 10^{1-m/2}$ for m = 1, 2, ..., 18

 $M_{ND} < 1.3 \cdot 10^{-6}$ %, $M_{DOC} < 5.0 \cdot 10^{-7}$ %, and $F_{DOC} = 0$

Cantilever beam-mesh convergence

 3072×2048 elements Continuation approach first $\alpha = 10$ and $p = 1, 1.5, \dots, 3$; then p = 3 and $\alpha = 10^{1-m/2}$ for $m = 1, 2, \dots, 18$

 $M_{ND} < 2.3 \cdot 10^{-6}$ %, $M_{DOC} < 1.0 \cdot 10^{-6}$ %, and $F_{DOC} = 0$

Cantilever beam-mesh convergence

6144 × 4096 elements Continuation approach first $\alpha = 10$ and p = 1, 1.5, ..., 3; then p = 3 and $\alpha = 10^{1-m/2}$ for m = 1, 2, ..., 18

 $M_{ND} < 3.9 \cdot 10^{-6}$ %, $M_{DOC} < 1.8 \cdot 10^{-6}$ %, and $F_{DOC} = 0$

Minimum heat compliance

- Fixed at Γ_D
- Uniform force distrubuted over Ω
- OC damping $\eta = 0.5$
- Volume fraction $V^* = 0.5$
- Harmonic *fW*-mean filters with
 - $f_{\mathcal{E}_{\alpha}^{H}}(x) = (x + \alpha)^{-1}$ and • $f_{\mathcal{D}_{\alpha}^{H}}(x) = f_{\mathcal{E}_{\alpha}^{H}}(1 - x)$

 α_{1}

approximate the erode and dilate operator, respectively (Svanberg & Svärd 2013)

- \blacktriangleright Continuation for SIMP penalty p and filter parameter α
- Solved using a standard desktop computer

Minimum heat compliance

512 × 512 elements Continuation approach first $\alpha = 10$ and p = 1, 1.5, ..., 3; then p = 3 and $\alpha = 10^{1-m/2}$ for m = 1, 2, ..., 18

 $\mathit{M_{ND}}$ < 0.14 %, $\mathit{M_{DOC}}$ < 0.018 %, and $\mathit{F_{DOC}}$ \leq $4/512^2$

Minimum heat compliance—different neighborhoods

 2028×2048 elements Continuation approach first $\alpha = 10$ and $p = 1, 1.5, \dots, 3$; then p = 3 and $\alpha = 10^{1-m/2}$ for $m = 1, 2, \dots, 18$

 $\mathit{M_{ND}} < 0.012$ %, $\mathit{M_{DOC}} < 0.0030$ %, and $\mathit{F_{DOC}} = 24/2048^2$