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Material distribution (Topology optimization)

I Placement of material arbitrarily in region ΩD

I Material distribution function ρ constant in each element

f

ΩD

I ρ = 0 if void and 1 if solid

I Want to solve:

min
ρ

J(ρ) (compliance)

s.t. ρ(1− ρ) = 0 a.e.∫
ρ ≤ V

governing PDE
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Typical approach—Relaxation

min
ρ

J(ρ)

s.t. 0 < ε ≤ ρ ≤ 1∫
ρ ≤ V

governing PDE

Theorem For the continuous case, there exists a solution to the
relaxed minimal compliance problem
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Typical approach—Penalization

min
ρ

J(ρp)

s.t. 0 < ε ≤ ρ ≤ 1∫
ρ ≤ V

governing PDE

Theorem The continuous problem is ill-posed (it lacks solutions
within the set of feasible designs)

Can also add explicit penalty term to the objective function
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Typical approach—Filtering

min
ρ

J
(
F (ρ)p

)
s.t. 0 < ε ≤ ρ ≤ 1∫

F (ρ) ≤ V

governing PDE

Here F is some averaging operator

Theorem For the continuous case: if F (ρ) is a convolution product
of a filter kernel φ and the density ρ, then there exists a solution to
the relaxed minimal compliance problem (Bourdin 2001)

E. Wadbro, On nonlinear filters in topology optimization, October, 2017 (5 : 28)



Quasi-arithmetic means (f -means)

I Arithmetic mean

Mx(x ;w) = wTx ≡
m∑
i=1

wixi

wT1m = 1

wi > 0

I Harmonic mean
Mx−1(x ;w) =

(
wTx−1

)−1

I Geometric mean
Mln x(x ;w) =

∏m
i=1 x

wi

i ≡ exp
(
wT ln x

)
I . . .

Quasi-arithmetic mean (f -mean)

Mf (x ;w) = f −1
(
wT f (x)

)
⇐⇒ f (Mf ) = wT f (x)

E. Wadbro, On nonlinear filters in topology optimization, October, 2017 (6 : 28)



Properties of f -means

Mf (x) = Mf (x ; 1
m1m)

x ∈ [0, 1]m

P1 Mf (x) is continuous and strictly increasing in each variable

P2 Mf (x) is symmetric, that is, Mf (Px) = Mf (x) for all
permutation matrices P ∈ Rm×m

P3 Mf (x) is reflexive, that is, for c ∈ [0, 1], we have Mf (c1m) = c

P4 Mf (x) is associative, that is, for k ∈ {1, . . . ,m − 1}, we have
Mf (x1, . . . , xm) = Mf (c1k , xk+1, . . . , xm), where
c = Mf (x1, . . . , xk)

Theorem (Kolmogorov 1930, Nagumo 1930)

Any sequence of functions satisfying P1–P4 is of the form

Mf (x ; 1
m1m) = f −1

(
1
m1m

T f (x)
)
for some continuous function f
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fW -mean filters

Replace the value of the design variable in one element with the
f -mean of the values of its neighboring elements

fW -mean filter

I F (ρ) = f −1 (Wf (ρ))
W = [wij ] ∈ Rn×n

wij ≥ 0 and W1n = 1n

I wij > 0 iff j ∈ Ni ⊂ {1, . . . , n}
I Replace f −1 with g , then a vast majority of available filters

I Heaviside filter (Guest et al. 2004)
I Morphology-based filters (Sigmund 2007)
I Pythagorean mean based filters (Svanberg and Svärd 2014)

can be handled in a similar manner

I Filters can be applied in a cascade: F (N) ◦ F (N−1) ◦ . . . ◦ F (1),

where F (K)(ρ) = f −1
K

(
W (K)f K (ρ)

)
, K ∈ {1, . . . ,N}
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Existence of solutions: continuous min compliance

I Let Ω ⊂ Rd be bounded and connected
I Lipschitz boundary ∂Ω
I Structure is fixed at ΓD ⊂ ∂Ω

I Admissible displacements U =
{
u ∈ H1(Ω)d | u|ΓD

≡ 0
}

I Design variable ρ

I Physical design ρ̃(ρ) = ρ+ (1− ρ)P(F (ρ)) in which
I ρ > 0
I P is an invertible penalty function
I F (ρ) is a continuous version of the filtering

I Equilibrium displacement u ∈ U solves a(ρ; u, v) = `(v) ∀v ∈ U
I `(v) =

∫
Ω

b · v +
∫
ΓL

t · v

I a(ρ; u, v) =
∫
Ω
ρ̃(ρ)Eε(u) : ε(v),

where E is a constant elasticity tensor
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Existence of solutions: continuous min compliance

I Admissible designs

A =

{
ρ | 0 ≤ ρ ≤ 1 a.e. on Ω,

∫
Ω

F (ρ) ≤ V

}
⊂ L∞(Ω)

I Continuous filtering:
(
F (ρ)

)
(x) = f −1

(
1

|Nx |
∫
Nx

(f ◦ ρ)(y)dy

)
I Nx neighborhood of x with measure (area or volume) |Nx | > 0
I f smooth and invertible function f : [0, 1] → [fmin, fmax] ⊂ R

I A standard problem formulation

Find ρ∗ ∈ A and u∗ ∈ U such that

`(u∗) ≤ `(u) ∀u ∈ U∗ and a(ρ∗; u∗, v) = `(v) ∀v ∈ U

I Alternative equivalent problem formulation

Find u∗ ∈ U∗ such that `(u∗) = inf
u∈U∗

`(u), (1)

where U∗=

{
u ∈ U |

∃ρ ∈ A such that

a(ρ; u, v) = `(v) ∀v ∈ U

}
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Existence of solutions: continuous min compliance

Theorem If |Nx | > 0 for all x ∈ Ω, then there exists a solution to
problem (1)

Proof (melody) For details, see Hägg & Wadbro (2017)

I Pick minimizing sequence (um), um ∈ U∗

I let (ρm) sequence so that a(ρm; um, v) = `(v) ∀v ∈ U
I bilinear form a coercive so subsequence (um) converges weakly to

u∗ in H1(Ω)d

I Define τm = f ◦ ρm ∈ L∞(Ω)
I Banach–Agaoglu: subsequence (τm) converges weak* to τ∗

I . . . define ρ∗ = f −1 ◦ τ∗.
I Banach–Agaoglu: F (ρm) → F (ρ∗) pointwise
I Lebesques dominated convergece theorem: ρ∗ ∈ A

I . . . some further arguments to show that
I a(ρm; um, v)− a(ρ∗; u∗, v) → 0 for any v ∈ U

I Thus u∗ ∈ U and since ` is linear & bounded `(um) → `(u∗)
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I Pick minimizing sequence (um), um ∈ U∗

I let (ρm) sequence so that a(ρm; um, v) = `(v) ∀v ∈ U
I bilinear form a coercive so subsequence (um) converges weakly to

u∗ in H1(Ω)d

I Define τm = f ◦ ρm ∈ L∞(Ω)
I Banach–Agaoglu: subsequence (τm) converges weak* to τ∗

I . . . define ρ∗ = f −1 ◦ τ∗.
I Banach–Agaoglu: F (ρm) → F (ρ∗) pointwise
I Lebesques dominated convergece theorem: ρ∗ ∈ A

I . . . some further arguments to show that
I a(ρm; um, v)− a(ρ∗; u∗, v) → 0 for any v ∈ U

I Thus u∗ ∈ U and since ` is linear & bounded `(um) → `(u∗)

E. Wadbro, On nonlinear filters in topology optimization, October, 2017 (11 : 28)



Existence of solutions: continuous min compliance

Theorem If |Nx | > 0 for all x ∈ Ω, then there exists a solution to
problem (1)

Proof (melody) For details, see Hägg & Wadbro (2017)
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Morphological operators (review: Heijmans 1995)

Gain information about a set M by probing it by a convex set B

B

M

DB(M)

EB(M)

OB(M)

CB(M)

Dilation: DB(M) = {m + b | m ∈ M, b ∈ B} =
⋃

b∈B(b +M)

Erosion: EB(M) =
(
D−B(M

{)
){
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Morphological operators (review: Heijmans 1995)

Gain information about a set M by probing it by a convex set B

B

M

DB(M)

EB(M) OB(M)

CB(M)

Closing: CB(M) = EB(DB(M))

Opening: OB(M) = DB(EB(M))
OB(M) ⊂ M ⊂ CB(M)
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Definition of the minimum length scale of M

I M open

I B is the open unit ball for some metric on Rd

Local length scale
I RB(M; x) = sup{r > 0 | ∃y ∈ M s.t. x ∈ y + rB ⊂ M}

I Radius of “largest” ball in M containing x
I RB(M; x) > 0

Minimum length scale
I RB(M) = inf

x∈M
RB(M; x)

I “Smallest” local length scale
Mx
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Problem with length scale RB(M)

Ω

B

•

I The design domain Ω is typically a hyperrectangle

I B is often an open Euclidian ball

I RB(Ω, x) → 0 as x → • =⇒ RB(Ω) = 0

I So M ⊂ Ω and V = Ω \M cannot both possess minimum length
scale (w.r.t. RB)
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Morphological operators—bounded domain

B

M

Ω

DΩ
B (M)

Ω

EΩ
B (M)

Ω

OΩ
B (M)

Ω

CΩ
B (M)

Ω

Dilation: DΩ
B (M) = DB(M) ∩ Ω

Erosion: EΩ
B (M) = EB(Ω{ ∪M) ∩ Ω
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Morphological operators—bounded domain

B

M

Ω

DΩ
B (M)

Ω

EΩ
B (M)

Ω

OΩ
B (M)

Ω

CΩ
B (M)

Ω

Closing: CΩ
B (M) = EΩ

B (DΩ
B (M))

Opening: OΩ
B (M) = DΩ

B (EΩ
B (M))

OΩ
B (M) ⊂ M ⊂ CΩ

B (M)
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Minimum length scale of M relative Ω

I M and Ω open

I B is the open unit ball for some metric on Rd

Local length scale
I RΩ

B (M; x) = sup{r > 0 | EΩ
rB(M; x) 6= ∅}

I EΩ
rB(M; x) = {y ∈ M | x ∈ (y + rB) ∩ Ω ⊂ M}.

Minimum length scale
I RΩ

B (M) = inf
x∈M

RΩ
B (M; x)

M
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B-open and B-regular sets

I M is B-open (relative Ω) iff M = OΩ
B (M)

I M is B-regular (rel. Ω) iff M and V = Ω \M both are B-open

This extends the work on r-regular sets: B Euclidian ball with radius
r > 0 and Ω = Rd (Serra 1982, Pavlidis 1982)
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Math. morphology ∼ minimum length scale

Theorem 1

If M 6= ∅ is rB-open relative Ω for some r > 0, then RΩ
B (M) ≥ r

Theorem 2

If M 6= ∅ and RΩ
B (M) > 0, then M is rB-open for any r

satisfying 0 < r < RΩ
B (M)

Theorem 3 (Alternative definition of RΩ
B (M))

If M 6= ∅, then RΩ
B (M) = sup{r > 0 | M = OΩ

rB(M)}

I Convention: sup ∅ = 0
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Math. morphology ∼ minimum length scale

Theorems 1–3 interrelates B-open and B-regular sets to sets whose
interior and/or exterior exhibit positive minimum length scales

Natural generalization: M = OΩ
B (M) and V = OΩ

B̂
(V ) for B 6= B̂

I Duality =⇒ V = OΩ
B̂
(V ) iff M ∩ Ω = CΩ

B̂
(M ∩ Ω)

Minimum length scale constraints

M = OΩ
rB(M) =⇒ RΩ

B (M) ≥ r

M ∩ Ω = CΩ
r̂ B̂
(M ∩ Ω) =⇒ RΩ

B̂
(V ) ≥ r̂
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Mathematical morphology for density based
topology optimization

I Ω discretized using a regular grid
I xi centroid of element i

I ρ = (ρ1, . . . , ρn)
T ∈ [0, 1]n

I ρi determines the material state of element i

I Di (ρ) = max
j∈Ni

ρj and Ei (ρ) = min
j∈Ni

ρj

I Neighborhoods Ni = {j | xj − xi ∈ rB}, r > 0

Minimum length scale constraints

OrB(ρ) = C r̂ B̂(ρ)

ρT (1− ρ) = 0

Note that by definition OrB(ρ) ≤ ρ ≤ C r̂ B̂(ρ)
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Heuristic method for compliance problems

I Physical density P(ρ) = ρ+ (1− ρ)Oh(ρ)
p

I ρ small positive parameter
I p SIMP penalty parameter
I Oh is an approximation of OΩ

B

I Admissible designs
A =

{
ρ ∈ Rn | 0 ≤ ρ ≤ 1 and vTCh(ρ) ≤ V ∗}

I Ch is an approximation of CΩ
B̂
.

I v ∈ Rn holds the fractional volume (|E |/|Ω|) of the elements
I V ∗ is the maximum volume fraction
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Quality measures

Measure of non-discreteness (suggested by Sigmund 2007):

MND =
4

n
P̃(ρ)T

(
1− P̃(ρ)

)
where P̃(ρ) is the physical design

Two new quality measures
Measure of difference between open and close:

MDOC =
1

n

∥∥∥C(ρ)−O(ρ)
∥∥∥
1

A related quality measure is

FDOC =
1

n
card

{
i |
(
C(ρ)−O(ρ)

)
i
> 0.5

}
If MND = MDOC = 0, then we have a binary design with minimum
size control of both materials
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Cantilever beam

I Fixed at ΓD
I Downward force

uniformly over ΓF
I OC damping η = 1/2

I Volume fraction V ∗ = 0.5

I Harmonic fW -mean
filters with

I fEH
α
(x) = (x + α)−1 and

I fDH
α
(x) = fEH

α
(1− x)

approximate the erode and dilate operator, respectively
(Svanberg & Svärd 2013)

I Continuation for SIMP penalty p and filter parameter α

I Solved using a standard desktop computer

I Modified version of multigrid-CG code by Amir et al. (2014)

ΓD

ΓN

ΓN

ΓF

1.5L

L
0.
45

L
0.
45

L

Ω
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Cantilever beam

768× 512 elements
Continuation approach first α = 10 and p = 1, 1.5, . . . , 3;
then p = 3 and α = 101−m/2 for m = 1, 2, . . . , 18

RelObj: 1.092 RelObj: 1.100 RelObj: 1.106

RelObj: 1.116 RelObj: 1.119 RelObj: 1.125

MND < 1.2 · 10−5 %,MDOC < 5.0 · 10−6 %, and FDOC = 0
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Cantilever beam—mesh convergence

1536× 1024 elements
Continuation approach first α = 10 and p = 1, 1.5, . . . , 3;
then p = 3 and α = 101−m/2 for m = 1, 2, . . . , 18

MND < 1.3 · 10−6 %,MDOC < 5.0 · 10−7 %, and FDOC = 0
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Cantilever beam—mesh convergence

3072× 2048 elements
Continuation approach first α = 10 and p = 1, 1.5, . . . , 3;
then p = 3 and α = 101−m/2 for m = 1, 2, . . . , 18

MND < 2.3 · 10−6 %,MDOC < 1.0 · 10−6 %, and FDOC = 0

E. Wadbro, On nonlinear filters in topology optimization, October, 2017 (25 : 28)



Cantilever beam—mesh convergence

6144× 4096 elements
Continuation approach first α = 10 and p = 1, 1.5, . . . , 3;
then p = 3 and α = 101−m/2 for m = 1, 2, . . . , 18

MND < 3.9 · 10−6 %,MDOC < 1.8 · 10−6 %, and FDOC = 0
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Minimum heat compliance

I Fixed at ΓD
I Uniform force

distrubuted over Ω

I OC damping η = 0.5

I Volume fraction V ∗ = 0.5

I Harmonic fW -mean
filters with

I fEH
α
(x) = (x + α)−1 and

I fDH
α
(x) = fEH

α
(1− x)

approximate the erode and dilate operator, respectively
(Svanberg & Svärd 2013)

I Continuation for SIMP penalty p and filter parameter α

I Solved using a standard desktop computer

L

L

7L
/
16

7L
/
16

ΓD ΓNΩ
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Minimum heat compliance

512× 512 elements
Continuation approach first α = 10 and p = 1, 1.5, . . . , 3;
then p = 3 and α = 101−m/2 for m = 1, 2, . . . , 18

RelObj: 1.225 RelObj: 1.363 RelObj: 1.475 RelObj: 1.623

RelObj: 1.802 RelObj: 1.977 RelObj: 2.259 RelObj: 2.433

MND < 0.14%, MDOC < 0.018%, and FDOC ≤ 4/5122
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Minimum heat compliance—different neighborhoods

2028× 2048 elements
Continuation approach first α = 10 and p = 1, 1.5, . . . , 3;
then p = 3 and α = 101−m/2 for m = 1, 2, . . . , 18

MND < 0.012%, MDOC < 0.0030%, and FDOC = 24/20482
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