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Global Navigation Satellite System Reflectom-
etry.

The main goal of GNSS-R is to derive information on the proper-
ties of a portion of soil (e.g., soil moisture, snow depth, wave con-
figurations, ...), by remote sensing; that is, by analyzing signals
emitted by GNSS satellites, and the reflected signals captured by
an antenna.

Example: Moisture increases the dielectric constant of the soil
medium;

Dielectric constant can be retrieved from measurements of reflec-
tivity or transmissivity of surface;

To recover dielectric constant, one has to solve an inverse problem
concerning the FRESNEL coefficients.
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(GNSS-R, cont.)

e Again: The GPS receiver measures a number of quantities, re-
lated to the perpendicular and parallel polarization of the signals.

e These quantities depend principally on the value of the incidence
angle 6, and on the dielectric constant ¢.

e The dielectric constant is intrinsic of the soil, and provides infor-
mation on its composition and properties.

e For “dispersive” soils, € € U; for non-dispersive ones, € € IR~.

e In fact, assume R(e) > 1; i.e., the soil is denser than the air (for
which, by convention, € = 1).

e Also, here, neglect scattering due to the ‘roughness’ of the soil.



2 The Fresnel Coefficients.

e For a smooth, perfectly flat, non-magnetic surface, the Fresnel
reflection coefficients are a combination of the horizontal and ver-
tical polarization coefficients

ro— cosf — \/e —sin’ 0 | (2.1)
cosf + /e — sin’ @
r, - gcosf) — /e —sin*0 (2.2)

ecosf + e —sin’0 '

e Often, only measurements of moduli |I',|, ||, or of combinations
such as 5 I, — [',| or 5 |I';, + [',| (circular polarization).

e In each case, the goal is to recover the value of € from the available
measurements on I',, and I',, via system (2.1)+(2.2).



3 Background.
e Maxwell’s equations (linear).

e Assume: Time-harmonic dependence, yielding “elliptic” equa-
tions for the fields; e.g.,

AE+KE=0. (3.1)

e In fact, a family of such equations, parametrized by t:

E(t,z) = /! Ey(x) (j2 = —1). (3.2)

e Assume: Plane waves:

Ey(z) = Ege kv, Eye R, |ul=1. (3.3)

e Note: F and H orthogonal (E - H = 0).



(Background, cont.)

e Plane wave incident onto a plane boundary, assumed to be the
(x,y)-plane.

e Parallel (or horizontal) polarization: F orthogonal to the (x, 2)-
plane, H parallel to the (z, z)-plane.

e Perpendicular (or vertical) polarization: viceversa, i.e. H orthog-
onal to the (z, z)-plane, E parallel to the (x, z)-plane.

e Imposing the continuity of the tangential components of the fields
across the boundary z = 0, and then implementing SNELL’s laws,
deduce the Fresnel system (2.1)4(2.2).
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4 Goal.

e Assume have measurements of v, := |I',| and ~, = |I',|, with
0 < <7 <1 (see figure 4).
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(Goal, cont.)

e Continuous curves of figure are of +, and +,; such curves are all
of same shape, for each ¢ € IR~;.

e Given incidence angle 6 € ]0, 3 [, and such measured values -,

v € 10,1[, find € € €, with R(e) > 1, solution of the system

cosf — /e —sin6

= = Y, (4.1)
cosf + e —sin“ 0
ecosh — /e —sin’f

—3 = Tp- (4.2)
gcost + e —sin“6




5 Immediate Remarks.

e In the literature, system (4.1)+(4.2) seems to be solved numerically,
even though exact, algebraic solution is (almost) elementary.

If soil is known to be essentially non-dispersive, i.e. |3(e)| << 1,
then one solves (4.1)4(4.2) for ¢ € IR~;.

However, in this case system is over-determined, and can be
solved only under suitable compatibility conditions.

e More specifically, looking for real solutions € € IR-1:
— (1) yields e, = ¢(Vn, 0); (4.2) yields €, = ¥(7p, 0);
— So, need to make sure that:
1) e, =¢p=¢; 2) ¢ is independent of 6.

In all cases, find “optimal” strategy to find e.



6 Real Solutions of «u.1).

Theorem 6.1 1) Forallf € [O, %[ and all corresponding ~y, € 10,1 (as measured),
there exists a unique solution € = €,, > 1 of equation (4.1), given by

4+, cos?f

En=1+
(1 —7m)?

(6.1)

2) This solution is independent of 0 if and only if the measured values of 7y, satisfy
the following condition: There is a > 1 such that

B a — sin?6 — cosf
Vo —sin? 0 + cosf

for all 6 € [0,Z]. In this case, £,(0) = a. o

Yn(0)

e Solution (6.1) is immediate.

e Condition (6.2) certainly not surprising, as it essentially is the
definition of ~,, itself.



7 The Brewster Angle.

e When ¢ € IR-(, the numerator of (2.2) can change sign: at angle

Op = Op(c) = arctan(y/e) . (7.1)

e Op called BREWSTER angle.

ec>1 <« 0Op>7.

e It is in fagt often observed in measurements that there indeed is
an angle ¢ such that, correspondingly, v, ~ 0 (recall figure 4). In
this case, # is taken as an approximation of 0.



8 Real Solutions of «.2).

Solution of (4.2) in three steps:

1. Algebraic solution [slightly less immediate than for (4.1)]. In con-
trast with (4.1), find three different solutions to (4.2):

1.1 A solution 52 defined for all f € ]O z [, and

)
1.2 Two other solutions, ¢, and ¢
6o, 5[ < ]3]

e In the common interval [90, 5 [, €

, defined in a smaller interval

1 2
>e,2¢e,2> 1

2. Condition for the existence of a solution €, of (4.2) independent of
0. Again not surprisingly, this condition is essentially the defini-
tion of -, itself.

3. Obtain this constant solution e, by suitably patching together
the three above different solutions of (4.2).



(Real Solutions of (1.2), cont.)

Theorem 8.1 Assume there is Og € ] ,%[ such that, correspond-

ingly, v, = 0. For vy, € [0, 1], set

B

(8.1)

o )\, depends on 0, via 7y,, and A\, > 1. Then:

1) For all § € [0,Z[ and all corresponding 7, € (0,1 (as measured),

there exists a solution 62 > 1 of problem (4.2), given by

A2 sin®(26)
0 — b 1 1— 8.2
“p 200829< Jr\/ >‘12) ’ (8.2)
with
e)>tan’0 V@€ [0,5]. (8.3)

Thus, 52 cannot be independent of 6 in all of [0,%[.



(Theorem 8.1, cont.)

2) Assume that
Ap(0) sin(26) <1 (8.4)

(see below). Then, for all 8 € [93, %[ and all corresponding v, € [0, 1],
there is a solution 511) > 1 of problem (4.2), given by

1
1 _ — )2 «in2
Ep = TN cos? 6 (1 + \/1 AZ sin (20)) : (8.5)

This solution satisfies the conditions

2 sin?f < 5]1, < tan 0 Ve [83,%[. (8.6)

Thus, again, 511, cannot be independent of 0 in all of [93,%[ (unless
811) > 2 for all 0 € [93, 5 [, in which case it may be independent of 0).



(Theorem 8.1, cont.)

3) In addition, problem (4.2) also has, in }03,%[, a solution 5]% > 1,
given by

1 :
p

This solution satisfies the condition

e2<2sin’0  VOe |05 (8.8)

e Condition (8.4) is necessary for the existence of a solution ¢ > 1
of (42) (not necessarily independent of ) in [0, 5 [



9 Constant Real Solutions to (2.

o If tan?fp > 2, define
o if 0<6<0p,
Ep =

el if  0p<0<

vl

o If 1 < tan?6dp < 2, define #; by the identity
2 sin? #; = tan’fp
(See figure 9), and
o it 0<60<0p,
g, =14 &l if 0p<0<0;,

eh if 0<6<3.

(9.1)

(9.2)

(9.3)
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(Constant Real Solutions to (4.2), cont.)

Theorem 9.1 Define ¢, : [O,%[ — [1,4+00[ by (9.1) if tan?fp > 2, or
by 9.3) if 1 < tan?0p < 2. Then:

1) g, is a continuous solution of (4.2);

2) €, is independent of 6 if and only if the measured values of y, satisfy
the following condition: There s 8 > 1 such that

_ |Bcost — [ — sin? 6
Bcosh+ /[ —sin?6

for all § € [0,%] (compare to (22)). In this case, £,(6) = B = tan®fp.

Vo(0) (9.4)



10 Common Real Solutions to 41 and u.2).

Theorem 10.1 Let ¢, and €, be as in theorems 6.1 and 8.1. Then:
1) €,(0) = €,(0) on all of [O, %[ if and only if the compatibility condi-
tion

AN, i 0<60< 0B,

it Op<0<3,

3

(10.1)

e

A2 cos? ) + sin® ) = {

>

P

holds in [0,%[, together with the additional conditions | v, <2 | if

O <0 <60, or ’yfb < |if 01 <0< % . In this case, the common
solution €, = €, =: €. 15 given by

10.2
A if Op<0<Z, (102)

Ap

{)\n)\p if 0<0<0p,
Ee =

2) This common solution €. is independent of 0 if and only if v, and
v, are of the form (6.2) and (9.4), with o = 3; in this case, €. = tan®0p.
o



11 Complex Solutions of (1.1)+12).

[Work in progress!] = Preliminary, partial results.

e Given v, 7, € ]0, 1] as measured, and 0 € [0, 5 [, define

C=C0) = (12 —1)cos” 0 — ppp+1. (11.2)

o Note: 1 <ty < pin,  fin < Ay < 2pp,  fp < Ap < 20,

e Note: C(0) > 0 > C’(g); so, there is 0y € ]O,%[ such that
C(6y) = 0.

e Note:

< [=, > % = %> =, <7 (11.3)

4 "



(Complex Solutions to (4.1)+(4.2), cont.)

Strategy:

e Sete=a+jvy, Ve —sin? =u+jo.

e Replacing into (4.1)4(4.2) obtain

v? = —(u* — 2 (uy, cosO)u 4 cos*0) =: — P(u), (11.4)
r = u®—v? +sin’f, (11.5)
y = 2ulv|. (11.6)

e Note: € is a solution <= ¢ is a solution.

e Thus, determine u. Need P(u) < 0; = compatibility conditions
1

" cosf < u < \,cosb (11.7)

(= wu > 0; in fact, |y, cosf < u < A\, cosf|to have R(e) > 1).




(Complex Solutions to (4.1)+(4.2), cont.)

An
2,
To_

(4.1)+(4.2) has a solution € € U for all 6 € ]9*, 5 — 0. [, given by

Theorem 11.1 1) If y2 =+, let 0, := arccos . Then, problem

1

= —|. 11.8
2 4y, cosf ( )

U

In addition, if 0 = 7, problem (4.1)+(42) has also infinitely many com-
plex conjugate solutions

e=e(r) = (P =N+ 1) E£jry /20 r—r2 -1, (11.9)

parametrized by r € }/\i, An { In particular, the solution(11.8) corre-

sponds to the value r = 3~ in (11.9).



(Theorem 11.1, cont.)

2) If v2 £ ~,, there exist angles 0; € }O, 5 [, 1 <i <4, with
0<0 <O<i<O3<0,<7, (11.10)

such that problem (4.1)4(4.2) has a solution ¢ € C if and only if 0 €
101, 0s] or 0 € 105,04 This solution is given by

(i — 11g) co5(20)
= 11.11
B 2C cosf ’ ( )
where C' is as in (11.2). o
e Note: v=0 — y=0 = e=¢, of (6.1).
oNote:9:0:>u:2/i :>P(u)=4b2>0:>v=

S(e) ¢ IR: no.



12 How good are the above results?

e One control situation, with experimental data from:
De Roo - Ulaby, Bistatic Specular Scattering from Rough Dielec-
tric Surfaces, IEEE Trans. on Antennas and Propagation, 42/2,

Feb. 1994.

e Soil is sand, for which

e =3+0.05

is known.

e In their paper, I(¢) is neglected ( |S(e)| << R(e) ).

e Brewster angle would be 6 = arctan(y/3) = 60°; in fact, in paper,

(9]3 ~ 600



(How good are the above results?, cont.)

theta

23
29
36.5
42.5

53.5
58
60 [B]
62.5
66
68

epsilon_n from formula (6.1); epsilon_p from formula (9.3);
epsilon_c from formula (10.2);
% errors = ABS{eps - 3}/3.

gamma_n

0.26915
0.29854
0.31623
0.35481
0.36728
0.39811
0.42170
0.48978
0.50119
0.51880
0.56234
0.57544

eps from Fig. 5;
“True” epsilon = 3;

theta = angle in degrees;

gamma_n and gamma_p from table (in dB);

epsilon_n

3.01557
3.05641
3.06958
3.20312
2.99478
2.96812
2.78456
3.11332
3.01434
291082
2.94272
2.79198

gamma_p

0.26915
0.24831
0.22909
0.19952
0.16788
0.12882
0.08912
0.03162
0.00316
0.06012
0.10893
0.12589

epsilon_p

3.01562
3.00418
3.06834
3.07529
3.08821
3.07684
3.23317
3.10548
3.05711
2.73258
2.753086
3.10664

epsilon_c

3.01565
3.07421
3.06900
3.14671
3.03292
3.00983
2.93947
3.11057
3.02860
2.85500
2.88495
2.88091

grror_c

0.00520
0.02474
0.02300
0.04890
0.01097
0.00328
0.02018
0.03686
0.00953
0.04834
0.03802
0.03970

tan”2(theta)

0
0.18079
0.30726
0.54754
0.83966
1.23346
1.82364
2.56107
3.00000
3.69017
5.04468



(How good are the above results?, cont.)

eps from Fig. 5;
“True” epsilon =3 + 0.05 j;
theta = angle in degrees;
gamma_n and gamma_p from table (in dB);
complex epsilon from formula (11.11) for u;
% error = SQRT{ (Re(eps)-3)*2 + Im(eps) - 0.05)2 }/3.

theta gamma_n  epsilon_n gamma_p eps complex error complex  tan*2(theta)
23 0.29854 3.05641 0.24831 0.18079
29 0.31623 3.06858 0.22909 3.03658 + 0.31496 | 0.08916 0.30726
36.5 0.35481 3.20312 0.19952 0.54754
42.5 0.36728 2.99478 0.16788 U= u_{+} 0.83966
48 0.39811 2.96812 0.12882 1.23346
53.5 0.42170 2.78456 0.08912 u=<u_{-} 1.82364
58 0.48978 3.11332 0.03162 2.56107
60 0.50119 3.01434 0.00316 3.01356 + 0.05525 | 0.00485 3.00000
62.5 0.51880 2.91082 0.05012 3.69017
66 0.56234 2.94272 0.10593 2.82754 + 0.54092 0.17344 5.04468

68 0.57544 2.79198 0.12589



13 A few open questions.

e Find additional conditions for € € U to be independent of 6.

e By theorem 9.1, optimal strategy to solve (4.1)44.2) for € € IR+
is to “wait” till position @ = 05: | = tan®@y|; but:

1. Can one afford to wait that long, in actual measurements?
2. 0p is defined only for non-dispersive soils; otherwise?”

3. Even if measure 7, ~ 0 at some 6,, can conclude R(e) ~
tan®6,, S(e) ~ 07 With what degree of confidence? =
Control of error !

e Solve analogous problems when , and =, are replaced by
5|0y =Tyl and (; or 7) 5|0, + Ty,

e Incorporate roughness of soil in model (typically by Root Mean
Square of microscopic peaks and valleys). — ...... etc.



14 What we REALLY would like to do.

e Revisit the model when at least one of the media (e.g., the soil)
is non-linear. That is, for instance, D = ¢(F) (¢ monotone 7).

e Emitted signal in air may be time-harmonic; but non-linearity of
soil destroys the time-harmonicity of the reflected signal.

e DO THE FRESNEL FORMULAS STILL HOLD?
e At least as a 0-order approximation (of what, exactly)?
e What would replace the Fresnel formulas?

e How to give a more realistic model, which should include scatter-
ing from the terrain?



15 Conclusions.

e Equations (4.1) and (4.2) are explicitly solvable.

e (42) only solvable in specific ranges of 6.

e For non-dispersive soils, best strategy is |¢ = tan?0p|.

e Likewise, if it is known that soil is almost non-dispersive, and can

observe an angle 6, such that v, ~ 0, then

e Values of € from De Roo & Ulaby’s measurements via the explicit

e~ tan?6, + 0|

formulas match “true” values with error not exceeding 1%.
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