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1 Global Navigation Satellite System Reflectom-

etry.

• The main goal of GNSS-R is to derive information on the proper-
ties of a portion of soil (e.g., soil moisture, snow depth, wave con-
figurations, ...), by remote sensing; that is, by analyzing signals
emitted by GNSS satellites, and the reflected signals captured by
an antenna.

• Example: Moisture increases the dielectric constant of the soil
medium;

• Dielectric constant can be retrieved from measurements of reflec-
tivity or transmissivity of surface;

• To recover dielectric constant, one has to solve an inverse problem
concerning the Fresnel coefficients.









(GNSS-R, cont.)

• Again: The GPS receiver measures a number of quantities, re-
lated to the perpendicular and parallel polarization of the signals.

• These quantities depend principally on the value of the incidence
angle θ, and on the dielectric constant ε.

• The dielectric constant is intrinsic of the soil, and provides infor-
mation on its composition and properties.

• For “dispersive” soils, ε ∈ Cl ; for non-dispersive ones, ε ∈ IR>0.

• In fact, assume <(ε) > 1; i.e., the soil is denser than the air (for
which, by convention, ε = 1).

• Also, here, neglect scattering due to the ‘roughness’ of the soil.



2 The Fresnel Coefficients.

• For a smooth, perfectly flat, non-magnetic surface, the Fresnel
reflection coefficients are a combination of the horizontal and ver-
tical polarization coefficients

Γn =
cos θ −

√
ε− sin2 θ

cos θ +
√
ε− sin2 θ

, (2.1)

Γp =
ε cos θ −

√
ε− sin2 θ

ε cos θ +
√
ε− sin2 θ

. (2.2)

• Often, only measurements of moduli |Γn|, |Γp|, or of combinations
such as 1

2 |Γn − Γp| or 1
2 |Γn + Γp| (circular polarization).

• In each case, the goal is to recover the value of ε from the available
measurements on Γn and Γp, via system (2.1)+(2.2).



3 Background.

• Maxwell’s equations (linear).

• Assume: Time-harmonic dependence, yielding “elliptic” equa-
tions for the fields; e.g.,

∆E + k2E = 0 . (3.1)

• In fact, a family of such equations, parametrized by t:

E(t, x) = ejωtE0(x) (j2 := −1) . (3.2)

• Assume: Plane waves:

E0(x) = E0 e− j k u·x , E0 ∈ IR3 , |u| = 1 . (3.3)

• Note: E and H orthogonal (E ·H = 0).



(Background, cont.)

• Plane wave incident onto a plane boundary, assumed to be the
(x, y)-plane.

• Parallel (or horizontal) polarization: E orthogonal to the (x, z)-
plane, H parallel to the (x, z)-plane.

• Perpendicular (or vertical) polarization: viceversa, i.e. H orthog-
onal to the (x, z)-plane, E parallel to the (x, z)-plane.

• Imposing the continuity of the tangential components of the fields
across the boundary z = 0, and then implementing Snell’s laws,
deduce the Fresnel system (2.1)+(2.2).



4 Goal.

• Assume have measurements of γn := |Γn| and γp := |Γp|, with
0 < γp ≤ γn < 1 (see figure 4).





(Goal, cont.)

• Continuous curves of figure are of γn and γp; such curves are all
of same shape, for each ε ∈ IR>1.

• Given incidence angle θ ∈
]
0, π2
[
, and such measured values γn,

γp ∈ ]0, 1[, find ε ∈ Cl , with <(ε) > 1, solution of the system

∣∣∣∣∣cos θ −
√
ε− sin2 θ

cos θ +
√
ε− sin2 θ

∣∣∣∣∣ = γn , (4.1)

∣∣∣∣∣ε cos θ −
√
ε− sin2 θ

ε cos θ +
√
ε− sin2 θ

∣∣∣∣∣ = γp . (4.2)



5 Immediate Remarks.

• In the literature, system (4.1)+(4.2) seems to be solved numerically,
even though exact, algebraic solution is (almost) elementary.

• If soil is known to be essentially non-dispersive, i.e. |=(ε)| << 1,
then one solves (4.1)+(4.2) for ε ∈ IR>1.

• However, in this case system is over-determined, and can be
solved only under suitable compatibility conditions.

• More specifically, looking for real solutions ε ∈ IR>1:

– (4.1) yields εn = ϕ(γn, θ); (4.2) yields εp = ψ(γp, θ);

– So, need to make sure that:
1) εn = εp =: ε; 2) ε is independent of θ.

• In all cases, find “optimal” strategy to find ε.



6 Real Solutions of (4.1).

Theorem 6.1 1 ) For all θ ∈
[
0, π

2

[
and all corresponding γn ∈ ]0, 1[ (as measured),

there exists a unique solution ε = εn > 1 of equation (4.1), given by

εn = 1 +
4 γn cos2 θ

(1− γn)2
. (6.1)

2 ) This solution is independent of θ if and only if the measured values of γn satisfy
the following condition: There is α > 1 such that

γn(θ) =

√
α− sin2 θ − cos θ√
α− sin2 θ + cos θ

(6.2)

for all θ ∈
[
0, π

2

[
. In this case, εn(θ) ≡ α. �

• Solution (6.1) is immediate.

• Condition (6.2) certainly not surprising, as it essentially is the
definition of γn itself.



7 The Brewster Angle.

• When ε ∈ IR>0, the numerator of (2.2) can change sign: at angle

θB = θB(ε) = arctan(
√
ε) . (7.1)

• θB called Brewster angle.

• ε > 1 ⇐⇒ θB >
π
4 .

• It is in fact often observed in measurements that there indeed is
an angle θ̃ such that, correspondingly, γp ≈ 0 (recall figure 4). In
this case, θ̃ is taken as an approximation of θB.



8 Real Solutions of (4.2).

Solution of (4.2) in three steps:

1. Algebraic solution [slightly less immediate than for (4.1)]. In con-
trast with (4.1), find three different solutions to (4.2):

1.1 A solution ε0
p defined for all θ ∈

]
0, π2
[
, and

1.2 Two other solutions, ε1
p and ε2

p, defined in a smaller interval[
θ0,

π
2

[
⊂
]
π
4 ,

π
2

[
• In the common interval

[
θ0,

π
2

[
, ε0

p ≥ ε1
p ≥ ε2

p ≥ 1.

2. Condition for the existence of a solution εp of (4.2) independent of
θ. Again not surprisingly, this condition is essentially the defini-
tion of γp itself.

3. Obtain this constant solution εp by suitably patching together
the three above different solutions of (4.2).



(Real Solutions of (4.2), cont.)

Theorem 8.1 Assume there is θB ∈
]
π
4 ,

π
2

[
such that, correspond-

ingly, γp = 0. For γp ∈ [0, 1[, set

λp :=
1 + γp
1− γp

. (8.1)

• λp depends on θ, via γp, and λp ≥ 1. Then:

1 ) For all θ ∈
[
0, π2
[

and all corresponding γp ∈ [0, 1[ (as measured),
there exists a solution ε0

p > 1 of problem (4.2), given by

ε0
p =

λ2
p

2 cos2 θ

(
1 +

√
1− sin2(2θ)

λ2
p

)
, (8.2)

with
ε0
p ≥ tan2 θ ∀ θ ∈

[
0, π2
[
. (8.3)

Thus, ε0
p cannot be independent of θ in all of

[
0, π2
[
.



(Theorem 8.1, cont.)

2 ) Assume that
λp(θ) sin(2θ) ≤ 1 (8.4)

(see below). Then, for all θ ∈
[
θB,

π
2

[
and all corresponding γp ∈ [0, 1[,

there is a solution ε1
p > 1 of problem (4.2), given by

ε1
p =

1

2λ2
p cos2 θ

(
1 +

√
1− λ2

p sin2(2θ)

)
. (8.5)

This solution satisfies the conditions

2 sin2 θ ≤ ε1
p ≤ tan2 θ ∀ θ ∈

[
θB,

π
2

[
. (8.6)

Thus, again, ε1
p cannot be independent of θ in all of

[
θB,

π
2

[
(unless

ε1
p ≥ 2 for all θ ∈

[
θB,

π
2

[
, in which case it may be independent of θ).



(Theorem 8.1, cont.)

3 ) In addition, problem (4.2) also has, in
]
θB,

π
2

[
, a solution ε2

p > 1,
given by

εp2 =
1

2λ2
p cos2 θ

(
1−

√
1− λ2

p sin2(2θ)

)
. (8.7)

This solution satisfies the condition

ε2
p ≤ 2 sin2 θ ∀ θ ∈

[
θB,

π
2

[
. (8.8)

�

• Condition (8.4) is necessary for the existence of a solution ε > 1
of (4.2) (not necessarily independent of θ) in

[
0, π2
[
.



9 Constant Real Solutions to (4.2).

• If tan2 θB ≥ 2, define

εp =

{
εp0 if 0 ≤ θ ≤ θB ,

εp1 if θB ≤ θ < π
2 .

(9.1)

• If 1 < tan2 θB < 2, define θ1 by the identity

2 sin2 θ1 = tan2 θB (9.2)

(See figure 9), and

εp =


εp0 if 0 ≤ θ ≤ θB ,

εp1 if θB ≤ θ ≤ θ1 ,

εp2 if θ1 < θ < π
2 .

(9.3)





(Constant Real Solutions to (4.2), cont.)

Theorem 9.1 Define εp :
[
0, π2
[
→ [1,+∞[ by (9.1) if tan2 θB ≥ 2, or

by (9.3) if 1 < tan2 θB < 2. Then:

1 ) εp is a continuous solution of (4.2);

2 ) εp is independent of θ if and only if the measured values of γp satisfy
the following condition: There is β > 1 such that

γp(θ) =

∣∣∣∣∣β cos θ −
√
β − sin2 θ

β cos θ +
√
β − sin2 θ

∣∣∣∣∣ (9.4)

for all θ ∈
[
0, π2
[

(compare to (2.2)). In this case, εp(θ) ≡ β = tan2 θB.
�



10 Common Real Solutions to (4.1) and (4.2).

Theorem 10.1 Let εn and εp be as in theorems 6.1 and 8.1. Then:

1 ) εn(θ) = εp(θ) on all of
[
0, π2
[

if and only if the compatibility condi-
tion

λ2
n cos2 θ + sin2 θ =

{
λn λp if 0 ≤ θ ≤ θB ,

λn
λp

if θB ≤ θ < π
2 ,

(10.1)

holds in
[
0, π2
[
, together with the additional conditions γp ≤ γ2

n if

θB ≤ θ ≤ θ1 , or γ2
n ≤ γp if θ1 ≤ θ < π

2 . In this case, the common
solution εn = εp =: εc is given by

εc =

{
λn λp if 0 ≤ θ ≤ θB ,

λn
λp

if θB ≤ θ < π
2 ,

. (10.2)

2 ) This common solution εc is independent of θ if and only if γn and
γp are of the form (6.2) and (9.4), with α = β; in this case, εc = tan2 θB.

�



11 Complex Solutions of (4.1)+(4.2).

[Work in progress!] =⇒ Preliminary, partial results.

• Given γn, γp ∈ ]0, 1[ as measured, and θ ∈
[
0, π2
[
, define

µn :=
1 + γ2

n

1− γ2
n

, µp :=
1 + γ2

p

1− γ2
p

, (11.1)

C = C(θ) := (µ2
n − 1) cos2 θ − µn µp + 1 . (11.2)

• Note: 1 < µp ≤ µn, µn < λn < 2µn, µp < λp < 2µp.

• Note: C(0) > 0 > C
(
π
2

)
; so, there is θ0 ∈

]
0, π2
[

such that
C(θ0) = 0.

• Note:
θ0 < [= , >]

π

4
⇐⇒ γp > [= , <] γ2

n . (11.3)



(Complex Solutions to (4.1)+(4.2), cont.)

Strategy:

• Set ε = x+ j y ,
√
ε− sin2 θ = u+ j v.

• Replacing into (4.1)+(4.2) obtain

v2 = − (u2 − 2 (µn cos θ)u+ cos2 θ) =: −P (u) , (11.4)

x = u2 − v2 + sin2 θ , (11.5)

y = 2u |v| . (11.6)

• Note: ε is a solution ⇐⇒ ε̄ is a solution.

• Thus, determine u. Need P (u) < 0; =⇒ compatibility conditions

1

λn
cos θ < u < λn cos θ (11.7)

(=⇒ u > 0; in fact, µn cos θ < u < λn cos θ to have <(ε) > 1).



(Complex Solutions to (4.1)+(4.2), cont.)

Theorem 11.1 1) If γ2
n = γp, let θ∗ := arccos

√
λn
2µn

. Then, problem

(4.1)+(4.2) has a solution ε ∈ Cl for all θ ∈
]
θ∗,

π
2 − θ∗

[
, given by

u =
1

2µn cos θ
. (11.8)

In addition, if θ = π
4 , problem (4.1)+(4.2) has also infinitely many com-

plex conjugate solutions

ε = ε(r) = (r2 − λp r + 1)± j r
√

2λp r − r2 − 1 , (11.9)

parametrized by r ∈
]

1
λn
, λn

[
. In particular, the solution(11.8) corre-

sponds to the value r = 1
λn

in (11.9).



(Theorem 11.1, cont.)

2) If γ2
n 6= γp, there exist angles θi ∈

]
0, π2
[
, 1 ≤ i ≤ 4, with

0 < θ1 < θ2 <
π
4 < θ3 < θ4 <

π
2 , (11.10)

such that problem (4.1)+(4.2) has a solution ε ∈ Cl if and only if θ ∈
]θ1, θ2[ or θ ∈ ]θ3, θ4[. This solution is given by

u =
(µn − µp) cos(2θ)

2C cos θ
, (11.11)

where C is as in (11.2). �

• Note: v = 0 =⇒ y = 0 =⇒ ε = εn of (6.1).

• Note: θ = 0 =⇒ u = 1
2µn

=⇒ P (u) = 1
4µ2

n
> 0 =⇒ v =

=(ε) /∈ IR: no.



12 How good are the above results?

• One control situation, with experimental data from:
De Roo - Ulaby, Bistatic Specular Scattering from Rough Dielec-
tric Surfaces, IEEE Trans. on Antennas and Propagation, 42/2,
Feb. 1994.

• Soil is sand, for which ε = 3 + 0.05 j is known.

• In their paper, =(ε) is neglected ( |=(ε)| << <(ε) ).

• Brewster angle would be θ = arctan(
√

3) = 600; in fact, in paper,
θ̃B ≈ 600.



(How good are the above results?, cont.)



(How good are the above results?, cont.)



13 A few open questions.

• Find additional conditions for ε ∈ Cl to be independent of θ.

• By theorem 9.1, optimal strategy to solve (4.1)+(4.2) for ε ∈ IR>1

is to “wait” till position θ = θB: ε = tan2θB ; but:

1. Can one afford to wait that long, in actual measurements?

2. θB is defined only for non-dispersive soils; otherwise?

3. Even if measure γp ≈ 0 at some θp, can conclude <(ε) ≈
tan2 θp, =(ε) ≈ 0? With what degree of confidence? =⇒
Control of error !

• Solve analogous problems when γn and γp are replaced by
1
2 |Γn − Γp| and (¿ or ?) 1

2 |Γn + Γp|.

• Incorporate roughness of soil in model (typically by Root Mean
Square of microscopic peaks and valleys). . . . . . . etc.



14 What we really would like to do.

• Revisit the model when at least one of the media (e.g., the soil)
is non-linear. That is, for instance, D = ε(E) (ε monotone ?).

• Emitted signal in air may be time-harmonic; but non-linearity of
soil destroys the time-harmonicity of the reflected signal.

• DO THE FRESNEL FORMULAS STILL HOLD?

• At least as a 0-order approximation (of what, exactly)?

• What would replace the Fresnel formulas?

• How to give a more realistic model, which should include scatter-
ing from the terrain?

• . . . . . .



15 Conclusions.

• Equations (4.1) and (4.2) are explicitly solvable.

• (4.2) only solvable in specific ranges of θ.

• For non-dispersive soils, best strategy is ε = tan2 θB .

• Likewise, if it is known that soil is almost non-dispersive, and can
observe an angle θp such that γp ≈ 0, then ε ≈ tan2 θp + 0 j .

• Values of ε from De Roo & Ulaby’s measurements via the explicit
formulas match “true” values with error not exceeding 1%.

τὸ τέλος
.

εὐχαριστούμεν πολ́ι


