Analytic Preprocessing

Numerical Analysis

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An efficient approximation-scheme for Schrödinger-type equations including turning points

Kirian Döpfner with Anton Arnold and Jens Geier

TECHNICAL UNIVERSITY Vienna Institute for Analysis and Scientific Computing

October 2, 2017

- \rightsquigarrow device scale: nanometers
- \rightsquigarrow electron injection at high energies E
- → semiclassical limit → quantum effects (e.g. tunneling)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Introduction 00000 Model Analytic Preprocessing

Numerical Analysis

The time-dependent Schrödinger equation

Quantum mechanical model for a single particle in an electric field:

$$\mathrm{i}\hbarrac{\partial}{\partial t}\Psi(t,x)=\left(-rac{\hbar^2}{2m}\Delta_x+V(x)
ight)\Psi(t,x)$$

[time-independent potential V(x)]

 $\stackrel{\rightsquigarrow}{\longrightarrow} \Psi(t,x) \dots \text{state/wave function.} \\ \stackrel{\rightsquigarrow}{\longrightarrow} |\Psi(t,x)|^2 \dots \text{probability density of the particle.}$

Introduction 00000 Model Analytic Preprocessing

Numerical Analysis

The time-dependent Schrödinger equation

Quantum mechanical model for a single particle in an electric field:

$$\mathrm{i}\hbarrac{\partial}{\partial t}\Psi(t,x)=\left(-rac{\hbar^2}{2m}\Delta_x+V(x)
ight)\Psi(t,x)$$

[time-independent potential V(x)]

Separation of variables:

$$\Psi(t,x)=\psi(x)f(t)$$

 $\rightsquigarrow f(t) = e^{\frac{-iEt}{\hbar}} \dots$ where *E* represents the total energy of the particle.

$$\begin{cases} \frac{\hbar^2}{2m}\psi_{xx}(x) + (E - V(x))\psi(x) = 0, \quad x \in [0, 1] \\ \frac{\hbar}{\sqrt{2m}}\psi_x(0) + i\sqrt{E - V(0)}\psi(0) = 0 \\ \frac{\hbar}{\sqrt{2m}}\psi_x(1) - i\sqrt{E - V(1)}\psi(1) = -2i\sqrt{E - V(1)} \end{cases}$$

ヘロト ヘ週ト ヘヨト ヘヨト

æ

 \rightsquigarrow stationary Schrödinger equation with open boundary conditions:

$$\begin{cases} \varepsilon^2 \psi_{xx}(x) + a(x)\psi(x) = 0, \quad x \in [0, 1] \\ \varepsilon \psi_x(0) + i\sqrt{a(0)}\psi(0) = 0 \\ \varepsilon \psi_x(1) - i\sqrt{a(1)}\psi(1) = -2i\sqrt{a(1)} \end{cases}$$

・ロト ・ 一 ト ・ モト ・ モト

æ

Introduction 00000 Motivation Analytic Preprocessing

Numerical Analysis

Airy function

Airy equation: $\varepsilon^2 \psi_{xx}(x) + x \psi(x) = 0$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 00000 Motivation Analytic Preprocessing

Numerical Analysis

Airy function

Airy equation: $\varepsilon^2 \psi_{xx}(x) + x \psi(x) = 0$

 $\xrightarrow{\varepsilon} \text{ wavelength} \sim \frac{\varepsilon}{\sqrt{a(x)}} \text{ (restricted stepsize } h < \varepsilon \text{ to resolve oscillations)}$ $\xrightarrow{\to} \text{ want (coarse) stepsize } h \text{ independent of the wavelength}$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- \rightsquigarrow standard WKB methods: (1) + (3)
- → [Lorenz Jahnke Lubich (2005)]: ① ε -uniform; error $\mathcal{O}(h^2)$, for $h \leq \mathcal{O}(\sqrt{\varepsilon})$;
- \rightarrow [Negulescu (2005)]: ③ FEM-based
- → [Arnold B. Abdallah Negulescu (2011)]: ① ε -asymptotically correct scheme; error $\mathcal{O}(\varepsilon^3 h^2)$

Introduction 00000 Hybrid Method Analytic Preprocessing

Numerical Analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Hybrid method for an ε -uniform scheme

The approach for the oscillatory regime incl. a turning point consists of two main steps:

- (1) analytic preprocessing of ODE to eliminate the dominant oscillations
- (2) numerical (ε-asymptotically correct) scheme for approximating oscillatory integrals

Introduction 000000 Motivation Analytic Preprocessing

Numerical Analysis

Hankel function

$$\varepsilon^2 \psi_{xx}(x) + x^{lpha} \psi(x) = 0 \quad \rightsquigarrow \quad \psi(x) = \sqrt{x} H_{\nu}^{(j)}(-\frac{2\nu x^{\frac{1}{2\nu}}}{\varepsilon})$$

 $H_{\nu}^{(j)}(x)$... Hankel functions (Bessel functions of the third kind) ... $\nu = \frac{1}{\alpha+2}$.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Motivation

Choice of the ansatz functions ω_j for general a(x)

Motivated by the case $a(x) = x^{\alpha}$ we make a product ansatz with Hankel functions [Langer, 1931] where a(x) has a root of order $\alpha > 0$ and $\nu = \frac{1}{\alpha+2}$:

$$\psi(\mathbf{x}) \stackrel{arepsilon
ightarrow 0}{\sim} \omega_j(\mathbf{x}) :=
ho(\mathbf{x}) \cdot H^{(j)}_
u(rac{1}{arepsilon}\phi(\mathbf{x})), \qquad j=1,2$$

$$\phi(x) := \int_{x_0}^x \sqrt{a(s)} ds, \qquad \rho(x) := \sqrt{\frac{\phi(x)}{|\phi'(x)|}}$$

Motivation

Choice of the ansatz functions ω_j for general a(x)

Motivated by the case $a(x) = x^{\alpha}$ we make a product ansatz with Hankel functions [Langer, 1931] where a(x) has a root of order $\alpha > 0$ and $\nu = \frac{1}{\alpha+2}$:

$$\psi(\mathbf{x}) \stackrel{arepsilon
ightarrow 0}{\sim} \omega_j(\mathbf{x}) :=
ho(\mathbf{x}) \cdot H^{(j)}_
u(rac{1}{arepsilon}\phi(\mathbf{x})), \qquad j=1,2$$

$$\phi(x) := \int_{x_0}^x \sqrt{a(s)} ds, \qquad \rho(x) := \sqrt{\frac{\phi(x)}{|\phi'(x)|}}$$

Phase and Modulus of the Hankel functions for $\nu \ge 0$ and z > 0:

$$H^{(\mathrm{j})}_
u(z) = M_
u(z) e^{\pm\mathrm{i} heta_
u(z)}$$

Analytic Preprocessing

Numerical Analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Transformation

Transformation to a 1^{st} order system

We transform into the system

$$U(x) := \begin{pmatrix} \psi(x) \\ \varepsilon \psi'(x) \end{pmatrix}$$

$$\rightsquigarrow U' = \frac{1}{\varepsilon} \begin{pmatrix} 0 & 1 \\ -a(x) & 0 \end{pmatrix} U, \qquad x \in (0,1), \qquad U(0) = U_I.$$

/ . / . . .

Analytic Preprocessing

Numerical Analysis

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Transformation

The transformed system

Further transformation via our ansatz functions ω_{j} and a diagonalizing term

$$Z(x) =: \left(\begin{array}{cc} e^{-i\int_{x_0}^x \beta_{\varepsilon}(\hat{x})d\hat{x}} & 0\\ 0 & e^{i\int_{x_0}^x \beta_{\varepsilon}(\hat{x})d\hat{x}} \end{array}\right) \left(\begin{array}{cc} \omega_1(x) & \omega_2(x)\\ \varepsilon\omega_1'(x) & \varepsilon\omega_2'(x) \end{array}\right)^{-1} U(x).$$

is done to obtain the following system:

Analytic Preprocessing

Numerical Analysis

Transformation

The transformed system

Further transformation via our ansatz functions ω_{j} and a diagonalizing term

$$Z(x) =: \left(\begin{array}{cc} e^{-i\int_{x_0}^x \beta_{\varepsilon}(\hat{x})d\hat{x}} & 0\\ 0 & e^{i\int_{x_0}^x \beta_{\varepsilon}(\hat{x})d\hat{x}} \end{array}\right) \left(\begin{array}{cc} \omega_1(x) & \omega_2(x)\\ \varepsilon\omega_1'(x) & \varepsilon\omega_2'(x) \end{array}\right)^{-1} U(x).$$

is done to obtain the following system:

$$Z'(x) = \mathrm{i}\beta_{\varepsilon}(x) \mathbf{B}_{\varepsilon}(x) Z(x) , \quad x \in (0,1) , \quad Z(0) = Z_I ,$$

where $\beta_{\varepsilon}(x)$

~

$$D := rac{\pi}{4} \left(
ho
ho'' + rac{
u^2}{
ho^2}
ight) M_
u (rac{\phi(x)}{arepsilon})^2 \, .$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Analytic Preprocessing

Numerical Analysis

Transformation

The transformed system

Further transformation via our ansatz functions ω_j and a diagonalizing term

$$Z(x) =: \left(\begin{array}{cc} e^{-i\int_{x_0}^x \beta_{\varepsilon}(\hat{x})d\hat{x}} & 0\\ 0 & e^{i\int_{x_0}^x \beta_{\varepsilon}(\hat{x})d\hat{x}} \end{array}\right) \left(\begin{array}{cc} \omega_1(x) & \omega_2(x)\\ \varepsilon\omega_1'(x) & \varepsilon\omega_2'(x) \end{array}\right)^{-1} U(x).$$

is done to obtain the following system:

$$\rightsquigarrow \qquad \qquad \boxed{Z'(x) = \mathrm{i}\beta_{\varepsilon}(x)\,\mathbf{B}_{\varepsilon}(x)\,Z(x)}, \quad x \in (0,1)\,, \quad Z(0) = Z_I\,,$$

where
$$eta_arepsilon(x):=rac{\pi}{4}\left(
ho
ho''+rac{
u^2}{
ho^2}
ight)M_
u(rac{\phi(x)}{arepsilon})^2$$

strong asymptotic limit $Z(x) = const = Z_I$ for $\varepsilon \to 0$.

Analytic Preprocessing

Numerical Analysis

Illustration

Illustration: dominant oscillations eliminated:

solution $\Re \psi(x)$ for $\varepsilon = 10^{-2}$ \rightsquigarrow amplitude ~ 2

 $\Re Z_1(x)$ and $\Im Z_1(x)$: \rightsquigarrow twice the frequency \rightsquigarrow amplitude = $\mathcal{O}(10^{-3})$

・ロト ・ 四ト ・ ヨト ・ ヨト

э

Analytic Preprocessing

Numerical Analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

An ε -asymptotically correct numerical scheme

Design a method with error that vanishes as $\varepsilon \to 0$. \rightsquigarrow preserve ε -asymptotic behaviour

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Motivation

An ε -asymptotically correct numerical scheme

Design a method with error that vanishes as $\varepsilon \to 0$. \rightsquigarrow preserve ε -asymptotic behaviour

Applying Picard iteration to the system in Z and and truncating yields a truncation error γ_1

$$Z(x_{n+1}) = Z(x_n) + \int_{x_n}^{x_{n+1}} \underbrace{i\beta(y)}_{\in\mathbb{R}} \underbrace{\mathbf{B}_{\varepsilon}(y)}_{\in\mathbb{R}^{2\times 2}} dy \cdot \underbrace{Z(x_n)}_{\in\mathbb{R}^2} + \frac{\gamma_1}{\gamma_1}$$

Motivation

An ε -asymptotically correct numerical scheme

Design a method with error that vanishes as $\varepsilon \to 0$. \rightsquigarrow preserve ε -asymptotic behaviour

Applying Picard iteration to the system in Z and and truncating yields a truncation error γ_1

$$Z(x_{n+1}) = Z(x_n) + \int_{x_n}^{x_{n+1}} \underbrace{\mathrm{i}\beta(y)}_{\in\mathbb{R}} \underbrace{\mathbf{B}_{\varepsilon}(y)}_{\in\mathbb{R}^{2\times 2}} dy \cdot \underbrace{Z(x_n)}_{\in\mathbb{R}^2} + \gamma_1$$

 $= Z(x_n) + \tilde{\mathbf{B}}(x_{n+1};x_n) Z(x_n) + \gamma_2 + \gamma_1$

For a method $\tilde{\mathbf{B}}(x; a)$ approximating the remaining *oscillatory* integral an approximation error γ_2 occurs.

Introduction 00000 The Oscillatory Integral Analytic Preprocessing

Numerical Analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Asymptotic method

To control the approximation error of the oscillatory integrals γ_2 in terms of ε , we make use of the *asymptotic method* for oscillatory integrals [Olver, 2006]

$$\underbrace{\int_{x_n}^{x_{n+1}} f(x) e^{\frac{i}{\varepsilon}\phi(x)} dx}_{\mathcal{O}(h)} = -(i\varepsilon) \left[\frac{f(x)}{\phi'(x)} e^{\frac{i}{\varepsilon}\phi(x)} \right]_{x_n}^{x_{n+1}} + \mathcal{O}(\varepsilon h)$$

Introduction 000000 The Oscillatory Integral Analytic Preprocessing

Numerical Analysis

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Asymptotic method

To control the approximation error of the oscillatory integrals γ_2 in terms of ε , we make use of the *asymptotic method* for oscillatory integrals [Olver, 2006]

$$\underbrace{\int_{x_n}^{x_{n+1}} f(x) e^{\frac{i}{\varepsilon}\phi(x)} dx}_{\mathcal{O}(h)} = -(i\varepsilon) \left[\frac{f(x)}{\phi'(x)} e^{\frac{i}{\varepsilon}\phi(x)} \right]_{x_n}^{x_{n+1}} + \mathcal{O}(\varepsilon h)$$

[Arnold-B.Abdallah-Negulescu, 2011] \rightsquigarrow shifted asymptotic method: error control in terms of the stepsize *h*.

Result

Analytic Preprocessing

Numerical Analysis

Result

The resulting one-step scheme

$$Z_{n+1} := \left(\mathbb{I} + \widetilde{\mathbf{B}}(x_{n+1}; x_n) \right) Z_n \tag{1}$$

is 1^{st} order consistent and exhibits the following approximation error.

Theorem (K.D., A. Arnold)

Let a(x) have a zero of order α . For the scheme (1) introduced above it holds

$$||Z(x_n)-Z_n|| \leq C\varepsilon^{4\nu}\min(\varepsilon^{2\nu},h),$$

for $1 \le n \le N$, $0 < \varepsilon, h \le 1$ and $\nu = \frac{1}{\alpha+2}$.

i.e. the error vanishes as $\varepsilon \to 0$ even for fixed step size *h*.

Analytic Preprocessing

Numerical Analysis

Error

Result

ex:
$$a(x) = 2x - x^2 \rightsquigarrow$$
 turning point at $x = 0$
 \rightsquigarrow error $\mathcal{O}(\varepsilon^{\frac{4}{3}}h)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

Result

References

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Anton Arnold ; Naoufel Ben Abdallah ; Claudia Negulescu. WKB-Based Schemes for the Oscillatory 1D Schrödinger Equation in the Semiclassical Limit.

SIAM Journal on Numerical Analysis, 2011.

Rudolph E. Langer.

On the asymptotic solutions of ordinary differential equations, with an application to the Bessel functions of large order. Trans. Amer. Math. Soc., 1931.

Katina Lorenz ; Tobias Jahnke ; Christian Lubich.

Adiabatic integrators for highly oscillatory second-order linear differential equations with time-varying eigendecomposition. BIT Numerical Mathematics, 2005.

Naoufel, Ben Abdallah ; Mireille, Mouis ; Claudia, Negulescu . An accelerated algorithm for 2D simulations of the quantum ballistic transport in nanoscale MOSFETs.

Journal of Computational Physics, 2007.

S. Olver.

Moment-free numerical integration of highly oscillatory functions. IMA Journal of Numerical Analysis, 2006.