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Model

Application: electron injection in semiconductor (diode)

0 a<0 a>0 1

~> device scale: nanometers
~ electron injection at high energies E
~~ semiclassical limit ~~ quantum effects (e.g. tunneling)
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Model

The time-dependent Schrodinger equation

Quantum mechanical model for a single particle in an electric field:

2
ih%lll(t,x) = (—2hmAX + V(X)> V(t,x)

[time-independent potential V/(x)]

~» W(t,x) ...state/wave function.
~ |W(t,x)|? ... probability density of the particle.
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Model

The time-dependent Schrodinger equation

Quantum mechanical model for a single particle in an electric field:

2
ih%lll(t,x) = (2hmAX + V(X)> V(t, x)

[time-independent potential V/(x)]
Separation of variables:
V(t, x) = P(x)f(t)

—iE
~ f(t) = e ...where E represents the total energy of the
particle.
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Model

Stationary Schrodinger equation (diode ~» 1D model)

X
0 a<0 a>0 1

~ stationary Schrodinger equation with open boundary condi-
tions:

3 () + (E = V() $(x) =0, x€[0,1]

a=x(0) +iy/E — V(0)1(0) = 0
Zmtx(D) —IVE = V(1)y(1) = ~2VE - V(1)
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Model

Stationary Schrodinger equation (diode ~» 1D model)

X
0 a<0 a>0 1

~ stationary Schrodinger equation with open boundary condi-
tions:

2 P (x) + a(x)(x) =0, x€0,1]

€¢X + v/ a 1/} =
5¢X(1 —lx/a(1 Jo(1) = —2iy/a(1)
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Motivation

Airy function

Airy equation: €29, (x) + x¥(x) =0

Airy function Ai(57) for e = 1072

06

Ai(55)

cal Analysis
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Motivation

Airy function

Airy equation: £29,(x) + xtp(x) =0

Airy function Ai(57) for e = 1072
T T

06 T T

Ai(5)

~+ wavelength ~ \/% (restricted stepsize h < ¢ to resolve oscillations)
a(x

~+ want (coarse) stepsize h independent of the wavelength
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Motivation

Known results

l
turning point

—QQ—

~+ standard WKB methods: @) + @

~+ [Lorenz - Jahnke - Lubich (2005)]: D
e-uniform; error O(h?), for h < O(/¢);

~~ [Negulescu (2005)]: 3
FEM-based

~+ [Arnold - B. Abdallah - Negulescu (2011)]: @
e-asymptotically correct scheme; error O(g3h?)
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Hybrid Method

Hybrid method for an e-uniform scheme

The approach for the oscillatory regime incl. a turning point
consists of two main steps:

@ (1) analytic preprocessing of ODE to eliminate the dominant
oscillations

@ (2) numerical (e-asymptotically correct) scheme for
approximating oscillatory integrals
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Motivation

Hankel function

Numerical Analysis

00000

1
) + V) =0 = () = yEH)( - 222
HY(x) ... Hankel functions (Bessel functions of the third kind) ... v = -
0.2 T
R
015 .
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Motivation

Choice of the ansatz functions w; for general a(x)

Motivated by the case a(x) = x“ we make a product ansatz with
Hankel functions [Langer, 1931] where a(x) has a root of order

_ 1 .
Oz>Oandl/—T+2.

90 R ) = o0 IO =12
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Motivation

Choice of the ansatz functions w; for general a(x)

Motivated by the case a(x) = x“ we make a product ansatz with
Hankel functions [Langer, 1931] where a(x) has a root of order

_ 1 .
a>oandl/—r+2.

90 R ) = o0 IO =12

[/ (x)]

Phase and Modulus of the Hankel functions for v > 0 and z > O:

o) = [ Valds, o) = o)

HO(z2) = M, (z)e*i0(?)
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Transformation

Transformation to a 1% order system

We transform into the system

<
Il
™ | =
7N
|
2 o
X
N
o =
~_
<
X
m
—
©°
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Transformation

The transformed system

Further transformation via our ansatz functions w; and a
diagonalizing term

7ifx ,BE()?)d)? -
[ e o 0 wi(x)  w2(x)
Z(x) =: ( . ol [ 8- (0)d3 > < ewh(x)  ewh(x) > U(x).

is done to obtain the following system:
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Transformation

The transformed system

Further transformation via our ansatz functions w; and a
diagonalizing term

—i [X Be(R)dR —1
Z(x) = e e A %) N o < wi(x)  wa(x) > U(x).
0 dharts |\ at(x) ewh(x)
is done to obtain the following system:

~ Z'(x) =iB-(x)B.(x) Z(x)|, xe€(0,1), Z(0)=2Z,

2
where  fB.(x) = % (pp" n ;) MV(¢(€X))2
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Transformation

The transformed system

Further transformation via our ansatz functions w; and a
diagonalizing term

—i fx ,BE()?)d)? -
[ e o 0 wi(x)  w2(x)
Z(x) =: ( . ol [ 8- (0)d3 ) < ewh(x)  ewh(x) > U(x).

is done to obtain the following system:

s Z'(x) =ip.(x)B.(x) Z(x)|, xe€(0,1), Z(0)=2,
T y2 X
where Be(x) = 3 (pp// 4 p2> MV(Cb(g))z

strong asymptotic limit Z(x) = const = Z; for e — 0.
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Illustration

[llustration: dominant oscillations eliminated:

—e=102

4 15.07
15.06
15.05
15.04
15.03

solution Ry(x) for e = 1072 RZ1(x) and IZ1(x):
~» amplitude ~ 2 ~> twice the frequency
~ amplitude = O(1073)
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Motivation

An e-asymptotically correct numerical scheme

Design a method with error that vanishes as ¢ — 0.
~> preserve e-asymptotic behaviour
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Motivation

An e-asymptotically correct numerical scheme

Design a method with error that vanishes as ¢ — 0.
~> preserve e-asymptotic behaviour

Applying Picard iteration to the system in Z and and truncating
yields a truncation error 71

Xn+1
Z(mi1) = Z(xa) + / 8(y) Bo(y) dy - Z(xa) + 71
o eR cR2x2 cR2
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Motivation

An e-asymptotically correct numerical scheme
Design a method with error that vanishes as ¢ — 0.
~> preserve e-asymptotic behaviour

Applying Picard iteration to the system in Z and and truncating
yields a truncation error 71

Xn+1
Z(mi1) = Z(xa) + / 8(y) Bo(y) dy - Z(xa) + 71
o eR cR2x2 cR2

= Z(Xn) + B(Xn+1; Xn) Z(Xn) + 72 +7

For a method Ié(x; a) approximating the remaining oscillatory
integral an approximation error ~» occurs.
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The Oscillatory Integral

Asymptotic method

To control the approximation error of the oscillatory integrals -5 in
terms of £, we make use of the asymptotic method for oscillatory
integrals [Olver, 2006]

Xn+1 i
/ i f(x)e=?Xdx = —(ie) [f(x

) é¢(X) Xn+1 _
¢'(X)e } + O(eh)

Xn

O(h)
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The Oscillatory Integral

Asymptotic method

To control the approximation error of the oscillatory integrals -5 in
terms of £, we make use of the asymptotic method for oscillatory
integrals [Olver, 2006]

Xn+1 i
/ i f(x)e=?Xdx = —(ie) [f(x

) é¢(X) Xn+1 _
¢'(X)e } + O(eh)

Xn

O(h)

[Arnold-B.Abdallah-Negulescu, 2011]
~ shifted asymptotic method: error control in terms of the
stepsize h.
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Result

Result
The resulting one-step scheme
Zpi1 = (]I + |§(X,,_|_1;x,,)) Zn (1)

is 15t order consistent and exhibits the following approximation
error.

Theorem (K.D., A. Arnold)

Let a(x) have a zero of order a.. For the scheme (1) introduced
above it holds

|1 Z(xn) — Zal] < Ce® min(ez”,h) ,

forl§n§N,O<5,h§1andV:aL+2.

i.e. the error vanishes as ¢ — 0 even for fixed step size h.
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2 s turning point at x = 0

~~ error O(agh)

ex: a(x) =2x — x

102k

104 E

llzix,) - Z,

10°F El

107 =

10° =

I I I
0® 10 10° 107 10!
stepsize h

10°
1
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